Application of transportation problem under pentagonal Neutrosophic environment

Document Type: Research Paper

Author

Department of Revenue, Ministry of Finance, Govt. of India.

Abstract

The paper talks about the pentagonal Neutrosophic sets and its operational law. The paper presents the cut of single valued pentagonal Neutrosophic numbers and additionally introduced the arithmetic operation of single-valued pentagonal Neutrosophic numbers. Here, we consider a transportation problem with pentagonal Neutrosophic numbers where the supply, demand and transportation cost is uncertain. Taking the benefits of the properties of ranking functions, our model can be changed into a relating deterministic form, which can be illuminated by any method. Our strategy is easy to assess the issue and can rank different sort of pentagonal Neutrosophic numbers. To legitimize the proposed technique, some numerical tests are given to show the adequacy of the new model.

Keywords

Main Subjects


Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous localities. Journal of mathematics and physics20(1-4), 224-230.
[2] Dantzig, G. B., & Thapa, M. N. (2006). Linear programming 2: theory and extensions. Springer Science & Business Media.
[3] Zadeh, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.
[4] Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems1(1), 45-55.
[5] Chanas, S., Kołodziejczyk, W., & Machaj, A. (1984). A fuzzy approach to the transportation problem. Fuzzy sets and systems13(3), 211-221.
[6] Das, S. K., Mandal, T., & Edalatpanah, S. A. (2017). A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Applied intelligence, 46(3), 509-519.
[7] Dinagar, D. S., & Palanivel, K. (2009). The transportation problem in fuzzy environment. International journal of algorithms, computing and mathematics2(3), 65-71.
[8] Kaur, A., & Kumar, A. (2011). A new method for solving fuzzy transportation problems using ranking function. Applied mathematical modelling35(12), 5652-5661.
 [9] Pandian, P., & Natarajan, G. (2010). A new algorithm for finding a fuzzy optimal solution for fuzzy transportation problems. Applied mathematical sciences4(2), 79-90.
[10] Kundu, P., Kar, S., & Maiti, M. (2013). Some solid transportation models with crisp and rough costs. International journal of mathematical and computational sciences7(1), 14-21.
[11] Kaur, A., & Kumar, A. (2012). A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Applied soft computing, 12(3), 1201-1213.
 [12] Kundu, P., Kar, S., & Maiti, M. (2014). Multi-objective solid transportation problems with budget constraint in uncertain environment. International journal of systems science45(8), 1668-1682.
[13] Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A pythagorean fuzzy approach to the transportation problem. Complex & intelligent systems5(2), 255-263.
[14] Liu, P., Yang, L., Wang, L., & Li, S. (2014). A solid transportation problem with type-2 fuzzy variables. Applied soft computing24, 543-558.
[15] Tada, M., & Ishii, H. (1996). An integer fuzzy transportation problem. Computers & mathematics with applications, 31(9), 71-87.
 [16] Liu, S. T., & Kao, C. (2004). Solving fuzzy transportation problems based on extension principle. European journal of operational research153(3), 661-674.
 [17] Saad, O. M., & Abass, S. A. (2003). A parametric study on tranportation problem under fuzzy environment. Journal of fuzzy mathematics, 11(1), 115-124.
 [18] A. Charnes, Charnes, A., & Cooper, W. W. (1954). The stepping stone method of explaining linear programming calculations in transportation problems. Management science, 1(1), 49-69.
 [19] Chanas, S., & Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy sets and systems82(3), 299-305.
[20] Maheswari, P. U., & Ganesan, K. (2018, April). Solving fully fuzzy transportation problem using pentagonal fuzzy numbers. Journal of physics: conference series (Vol. 1000, No. 1, p. 012014). IOP Publishing.
 [21] Das, S. K., & Edalatpanah, S. A. (2020). New insight on solving fuzzy linear fractional programming in material aspects. Fuzzy optimization and modelling, 1, 1-7.
[22] Das, S. K., Mandal, T., & Edalatpanah, S. A. (2017). A new approach for solving fully fuzzy linear fractional programming problems using the multi-objective linear programming. RAIRO-operations research51(1), 285-297.
[23] Das, S. K., Mandal, T., & Behera, D. (2019). A new approach for solving fully fuzzy linear programming problem. International journal of mathematics in operational research15(3), 296-309.
[24] Atanassov K. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20, 87-96.
[25] Ebrahimnejad, A., & Verdegay, J. L. (2018). A new approach for solving fully intuitionistic fuzzy transportation problems. Fuzzy optimization and decision making17(4), 447-474.
 [26] Nagoorgani, A., & Abbas, S. (2013). A new method for solving intuitionistic fuzzy transportation problem. Applied mathematical science, 7(28), 1357–1365.
[27] Singh, S. K., & Yadav, S. P. (2016). A new approach for solving intuitionistic fuzzy transportation problem of type-2. Annals of operations research243(1-2), 349-363.
 [28] Singh, S. K., & Yadav, S. P. (2015). Efficient approach for solving type-1 intuitionistic fuzzy transportation problem. International journal of system assurance engineering and management6(3), 259-267.
[29] Singh, S. K., & Yadav, S. P. (2016). Intuitionistic fuzzy transportation problem with various kinds of uncertainties in parameters and variables. International journal of system assurance engineering and management7(3), 262-272.
 [30] Hussain, R. J., & Kumar, P. S. (2012). Algorithmic approach for solving intuitionistic fuzzy transportation problem. Applied mathematical sciences6(80), 3981-3989.
 [31] Aggarwal, S., & Gupta, C. (2017). Sensitivity analysis of intuitionistic fuzzy solid transportation problem. International journal of fuzzy systems19(6), 1904-1915.
 [32] Singh, S. K., & Yadav, S. P. (2016). A novel approach for solving fully intuitionistic fuzzy transportation problem. International journal of operational research26(4), 460-472.
 [33] Mahmoodirad, A., Allahviranloo, T., & Niroomand, S. (2019). A new effective solution method for fully intuitionistic fuzzy transportation problem. Soft computing23(12), 4521-4530.
[34] Das, S. K., Edalatpanah, S. A., & Mandal, T. (2018). A proposed model for solving fuzzy linear fractional programming problem: numerical point of view. Journal of computational science25, 367-375.
[35] Das, S. K. (2017). Modified method for solving fully fuzzy linear programming problem with triangular fuzzy numbers. International journal of research in industrial engineering6(4), 293-311.
[36] Smarandache, F. (1998). A unifying field in logics: Neutrosophic logic, Neutrosophy, Neutrosophic set, Neutrosophic probability (fifth eition). AmericanResearchPress, Rchoboth.
[37] Wang, H., Smarandache, F., Zhang, Y. Q., & Sunderraman, R. (2010). Single valued Neutrosophic sets. Multispace and multistructure, 4, 410–413. 
[38] Ye, J. (2018). Neutrosophic number linear programming method and its application under Neutrosophic number environments. Soft computing22(14), 4639-4646.
[39] Roy, R., & Das, P. (2015). A Multi-objective production planning problem based on Neutrosophiclinear programming approach. Infinite Study.
[40]Abdel-Basset, M., Gunasekaran, M., Mohamed, M., & Smarandache, F. (2019). A novel method for solving the fully Neutrosophic linear programming problems. Neural computing and applications31(5), 1595-1605.
[41] Edalatpanah, S. A. (2020). A direct model for triangular Neutrosophic linear programming. International journal of neutrosophic science1(1), 19-28.
[42] Maiti, I., Mandal, T., & Pramanik, S. (2019). Neutrosophic goal programming strategy for multi-level multi-objective linear programming problem. Journal of ambient intelligence and humanized computing, 1-12.
[43] Edalatpanah, S. A. (2020). Data envelopment analysis based on triangular Neutrosophic numbers. CAAI transactions on intelligence technology. Retrieved from
https://www.researchgate.net/profile/Sa_Edalatpanah3/publication/339979254_Data_Envelopment_Analysis_Based_on_Triangular_Neutrosophic_Numbers/links/5e86e5fb92851c2f5277b0bc/Data-Envelopment-Analysis-Based-on-Triangular-Neutrosophic-Numbers.pdf
[44] Mohamed, M., Abdel-Basset, M., Zaied, A. N. H., & Smarandache, F. (2017). Neutrosophic integer programming problem. Infinite Study.
[45] Banerjee, D., & Pramanik, S. (2018). Single-objective linear goal programming problem with Neutrosophic numbers. Infinite Study.
[46] Das, S. K., & Dash, J. K. (2020). Modified solution for Neutrosophic linear programming problems with mixed constraints. International journal of research in industrial engineering9(1), 13-24.
[47] Das, S. K., & Chakraborty, A. (2020). A new approach to evaluate linear programming problem in pentagonal Neutrosophic environment. Complex & intelligent systems, 1-10.
 [48] Chakraborty, A., Mondal, S. P., Alam, S., Ahmadian, A., Senu, N., De, D., & Salahshour, S. (2019). The pentagonal fuzzy number: its different representations, properties, ranking, defuzzification and application in game problems. Symmetry11(2), 248.
[49] Chakraborty, A., Broumi, S., & Singh, P. K. (2019). Some properties of pentagonal Neutrosophic numbers and its applications in transportation problem environment. Neutrosophic sets and systems28(1), 16.
[50] Korukoğlu, S., & Ballı, S. (2011). An improved vogel's approximatio method for the transportation problem. Mathematical and computational applications16(2), 370-381.
[51] Bharati, S. K. (2019). Trapezoidal intuitionistic fuzzy fractional transportation problem. Soft computing for problem solving (pp. 833-842). Springer, Singapore.
[52] Ahmad, F., & Adhami, A. Y. (2019). Neutrosophic programming approach to multiobjective nonlinear transportation problem with fuzzy parameters. International journal of management science and engineering management14(3), 218-229.
[53] Srinivasan, R., Karthikeyan, N., Renganathan, K., & Vijayan, D. V. (In press). Method for solving fully fuzzy transportation problem to transform the materials. Materials today: proceedings.
[54] Maiti, I., Mandal, T., Pramanik, S., Das, S.K. (2020). Solving multi-objective linear fractional programming problem based on Stanojevic’s normalization technique under fuzzy environment. International journal of operation research. DOI: 10.1504/IJOR.2020.10028794.