Document Type : Research Paper

Authors

1 Department of Computer Science, University of Uyo, Nigeria.

2 Department of Computer Science, Akwa Ibom State University, Uyo, Nigeria.

Abstract

Several attempts had been made to analyze emotion words in the fields of linguistics, psychology and sociology; with the advent of computers, the analyses of these words have taken a different dimension. Unfortunately, limited attempts have so far been made to using interval type-2 fuzzy logic (IT2FL) to analyze these words in native languages. This study used IT2FL to analyze Igbo emotion words. IT2F sets are computed using the interval approach method which is divided into two parts: the data part and the fuzzy set part. The data part preprocessed data and its statistics computed for the interval that survived the preprocessing stages while the fuzzy set part determined the nature of the footprint of uncertainty; the IT2F set mathematical models for each emotion characteristics of each emotion word is also computed. The data used in this work was collected from fifteen subjects who were asked to enter an interval for each of the emotion characteristics: Valence, Activation and Dominance on an interval survey of the thirty Igbo emotion words. With this, the words are being analyzed and can be used for the purposes of translation between vocabularies in consideration to context.

Keywords

Main Subjects

[1]          Lakoff, G., & Johnson, M. (1980). The metaphorical structure of the human conceptual system. Cognitive science, 4(2), 195-208.
[2]          Russell, J. A. (1980). A circumplex model of affect. Journal of personality and social psychology, 39(6), 1161-1178.
[3]          Russell, J. A., & Mehrabian, A. (1977). Evidence for a three-factor theory of emotions. Journal of research in personality, 11(3), 273-294.
[4]          Barrett, L. F. (2004). Feelings or words? Understanding the content in self-report ratings of experienced emotion. Journal of personality and social psychology, 87(2), 266–281
[5]          [5]              Klir G. and T. Folger (1988). Fuzzy sets, uncertainty, and information. Prentice-Hall, Englewood cliffs, NJ.
[6]          Mendel, J. M. (2003, May). Fuzzy sets for words: a new beginning. The 12th IEEE international conference on fuzzy systems, FUZZ'03. (Vol. 1, pp. 37-42). IEEE.
[7]          Kazemzadeh, A. (2010, July). Using interval type-2 fuzzy logic to translate emotion words from Spanish to english. International conference on fuzzy systems (pp. 1-8). IEEE. DOI:10.1109/FUZZY.2010.5584884
[8]          Cakmak, O., Kazemzadeh, A., Can, D., Yildirim, S., & Narayanan, S. (2012). Root-word analysis of Turkish emotional language. Corpora for research on emotion sentiment & social signals. Retrieved from
https://www.researchgate.net/profile/Serdar_Yildirim/publication/264855680_Root-Word_Analysis_of_Turkish_Emotional_Language/links/549951d80cf2d6581ab02839/Root-Word-Analysis-of-Turkish-Emotional-Language.pdf
[9]          Kazemzadeh A. (2010). An interval  type-2  fuzzy  logic  system  to  trans-  late emotion words from Spanish to English. Proceedings of FUZZ-IEEE at the world conference on computational intelligence (WCCI). Barcelona, Spain: IEEE.
[10]      Oflazer, K. (1994). Two-level description of Turkish morphology. Literary and linguistic computing, 9(2), 137-148.
[11]      Kazemzadeh, A., Lee, S., Georgiou, P. G., & Narayanan, S. S. (2011, October). Emotion twenty questions: Toward a crowd-sourced theory of emotions. International conference on affective computing and intelligent interaction (pp. 1-10). Springer, Berlin, Heidelberg.
[12]      Cakmak, O., Kazemzadeh, A., Yildirim, S., & Narayanan, S. (2012, December). Using interval type-2 fuzzy logic to analyze Turkish emotion words. Proceedings of the 2012 Asia pacific signal and information processing association annual summit and conference (pp. 1-4). IEEE.
[13]      Jang, H., & Shin, H. (2010, August). Language-specific sentiment analysis in morphologically rich languages. In Coling 2010: Posters (pp. 498-506). Coling 2010 Organizing Committee.
[14]      Kazemzadeh, A., Lee, S., & Narayanan, S. (2013). Fuzzy logic models for the meaning of emotion words. IEEE Computational intelligence magazine, 8(2), 34-49. DOI: 10.1109/MCI.2013.2247824
[15]      Qamar, S., & Ahmad, P. (2015). Emotion detection from text using fuzzy logic. International journal of computer applications, 121(3). (0975 – 8887.
[16]      Howells, K., & Ertugan, A. (2017). Applying fuzzy logic for sentiment analysis of social media network data in marketing. Procedia computer science, 120, 664-670.
[17]      Brainerd, C. J. (2018). The emotional-ambiguity hypothesis: A large-scale test. Psychological science, 29(10), 1706-1715. DOI: 10.1177/0956797618780353
[18]      Bahreini, K., Van der Vegt, Westera W. (2019). Multimedia tools and applications. https://doi.org/10.1007/s11042-019-7250-z
[19]      Onwuejeogwu, M. A. (1972). The Ikenga: The cult of individual achievements and advancements. Afr. notes6(2), 92.
[20]      Uchendu V. (1965). The Igbo of South-East Nigeria. Holt Rinehart & Winston, New York
[21]      Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
[22]      Mendel, J. M., & Liu, F. (2007). Super-exponential convergence of the Karnik–Mendel algorithms for computing the centroid of an interval type-2 fuzzy set. IEEE transactions on fuzzy systems, 15(2), 309-320.
[23]      Mendel, J. M. (2007). Computing with words and its relationships with fuzzistics. Information sciences, 177(4), 988-1006.
[24]      Liu, F., & Mendel, J. M. (2008). Encoding words into interval type-2 fuzzy sets using an interval approach. IEEE transactions on fuzzy systems, 16(6), 1503-1521.
[25]      Kazemzadeh, A., Lee, S., & Narayanan, S. (2013). Fuzzy logic models for the meaning of emotion words. IEEE computational intelligence magazine, 8(2), 34-49. DOI: 10.1109/MCI.2013.2247824
[26]      Liu, F., & Mendel, J. M. (2007, July). An interval approach to fuzzistics for interval type-2 fuzzy sets. 2007 IEEE international fuzzy systems conference (pp. 1-6). IEEE.
[27]      Liu, F., & Mendel, J. M. (2008). Encoding words into interval type-2 fuzzy sets using an interval approach. IEEE transactions on fuzzy systems, 16(6), 1503-1521.
[28]      Guzmán, J. C., Miramontes, I., Melin, P., & Prado-Arechiga, G. (2019). Optimal genetic design of type-1 and interval type-2 fuzzy systems for blood pressure level classification. Axioms, 8(1), 1-35. DOI:10.3390/axioms8010008
[29]      Dirik, M., Castillo, O., & Kocamaz, A. F. (2019). Visual-servoing based global path planning using interval type-2 fuzzy logic control. Axioms, 8(2), 1-16. DOI: 10.3390/axioms8020058
[30]      Damirchi-Darasi, S. R., Zarandi, M. F., Turksen, I. B., & Izadi, M. (2019). Type-2 fuzzy rule-based expert system for diagnosis of spinal cord disorders. Scientia Iranica. Transaction E, industrial engineering, 26(1), 455-471. DOI:10.24200/SCI.2018.20228
[31]      Rahimi D., Mohammad H., Burhan T. (2018). Type-2 fuzzy rule-based expert system for diagnosis of spinal cord disorders. Scientia Iranica, 26(1). 455-471. DOI:10.24200/SCI.2018.20228
[32]      Wu, D. (2012). On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE transactions on fuzzy systems, 20(5), 832-848.
[33]      Almahasneh, R., Tüű-Szabó, B., Kóczy, L. T., & Földesi, P. (2020). Optimization of the time-dependent traveling salesman problem using interval-valued intuitionistic fuzzy sets. Axioms, 9(2), 53.
[34]      Ruba A., Boldizsár T, László T. & Péter f. (2020). Optimization of the time-dependent traveling problem using interval-valued intuitionistic fuzzy sets. Axioms 9(53), 1-14. DOI: 10.3390/axioms9020053