Document Type : Research Paper


Department of Mathematical Sciences, University of Peloponnese, Graduate TEI of Western Greece, Greece.


The present work focuses on two directions. First, a new fuzzy method using triangular / trapezoidal fuzzy numbers as tools is developed for evaluating a group’s mean performance, when qualitative grades instead of numerical scores are used for assessing its members’ individual performance. Second, a new technique is applied for solving Linear Programming problems with fuzzy coefficients. Examples are presented on student and basket-ball player assessment and on real life problems involving Linear Programming under fuzzy conditions to illustrate the applicability of our results in practice. A discussion follows on the perspectives of future research on the subject and the article closes with the general conclusions.


Main Subjects

[1]     Klir, G. J. & Folger, T. A. (1988). Fuzzy sets, Uncertainty and   information. Prentice-Hall, London.
[2]     Voskoglou, M. Gr. (2017). Finite markov chain and fuzzy logic assessment models: emerging research and opportunities. Createspace independent publishing platform, Amazon, Columbia, SC, USA.
[3]     Voskoglou, M. G. (2019). An essential guide to fuzzy systems. Nova science publishers, New York, USA.
[4]     Voskoglou, M. G. (2011). Measuring students modeling capacities: a fuzzy approach. Iranian journal of fuzzy systems8(3), 23-33.
[5]     Voskoglou, M. Gr. (2012). A Study on Fuzzy Systems. American journal of computational and applied mathematics, 2(5), 232-240. Retrieved from
[6]     Voskoglou, M. G. (2019). Methods for assessing human–machine performance under fuzzy conditions. Mathematics7(3), 230.
[7]     Van Broekhoven, E., & De Baets, B. (2006). Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions. Fuzzy sets and systems157(7), 904-918.
[8]     Sakawa, M. (2013). Fuzzy sets and interactive multiobjective optimization. Springer science & business media.Plenum press, NY and London.
[9]     Kaufman, A., & Gupta, M. M. (1991). Introduction to fuzzy arithmetic. New York: Van Nostrand Reinhold Company.
[10] Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications (Vol. 144). Academic press, New York.
[11] Dinagar, D. S., & Kamalanathan, S. (2017). Solving fuzzy linear programming problem using new ranking procedures of fuzzy numbers. International journal of applications of fuzzy sets and artificial intelligence7, 281-292.
[12] Wikipedia. (2014). Center of mass: A system of particles. Retrieved October 10, 2014 from
[13] Wang, M. L., Wang, H. F., & Lin, C. L. (2005). Ranking fuzzy number based on lexicographic screening procedure. International journal of information technology & decision making4(04), 663-678.
[14] Wang, Y. J., & Lee, H. S. (2008). The revised method of ranking fuzzy numbers with an area between the centroid and original points. Computers & mathematics with applications55(9), 2033-2042.
[15] Dantzig, G. B. (1951). Maximization of a linear function of variables subject to linear inequalities. Activity analysis of production and allocation13, 339-347.
[16] Dantzig, G.B. (1951). Maximization of a linear function of variables subject to linear inequalities. In T. C. Koopmans (Eds.), Activity analysis of production and allocation (pp. 339–347). Wiley& Chapman - Hall, New York, London.
[17] Dantzig, G. B. (1983). Reminiscences about the origins of linear programming. In Mathematical programming the state of the art (pp. 78-86). Springer, Berlin, Heidelberg.
[18] Taha, H. A. (1967). Operations research – an introduction, Second Edition. Collier Macmillan, N. Y., London.
[19] Tanaka, H., & Asai, K. (1984). Fuzzy linear programming problems with fuzzy numbers. Fuzzy sets and systems13(1), 1-10.
[20] Verdegay, J. L. (1984). A dual approach to solve the fuzzy linear programming problem. Fuzzy sets and systems14(2), 131-141.
[21] Voskoglou, M. G. (2018). Solving linear programming problems with grey data. Oriental journal of physical sciences3(1), 17-23.