K-algebras on quadripartitioned single valued neutrosophic sets

Document Type : Research Paper

Authors

1 Department of Mathematics, Nirmala College For Women, Coimbatore, Tamilnadu, India.

2 Department of Mathematics, Assistant Professor, Nirmala College for Women, Coimbatore, India.

Abstract

Abstract Quadripartitioned single valued neutrosophic (QSVN) set is a powerful structure where we have four components Truth-T, Falsity-F, Unknown-U and Contradiction-C. And also it generalizes the concept of fuzzy, initutionstic and single valued neutrosophic set. In this paper we have proposed the concept of K-algebras on QSVN, level subset of QSVN and studied some of the results. In addition to this we have also investigated the characteristics of QSVN Ksubalgebras under homomorphism.

Keywords

Main Subjects


[1]     Agboola, A. A. A., & Davvaz, B. (2015). Introduction to neutrosophic bci/bck-algebras. International journal of Mathematics and Mathematical Sciences.  https://doi.org/10.1155/2015/370267
[2]     Akram, M., & Dar, K. H. (2010). Generalized fuzzy K-algebras.In VDM Verlag.
[3]     Akram, M., Dar, K. H., Jun, Y. B., & Roh, E. H. (2007). Fuzzy Structures on K (G)-algebras. Southeast Asian bulletin of mathematics31(4).
[4]     Akram, M., Dar, K. H., Meng, B. L., & Shum, K. P. (2008). Interval-valued intuitionistic fuzzy ideals of K-algebras. WSEAS Trans. Math7(9), 559-565.
[5]     Akram, M., Dar, K. H., & Shum, K. P. (2011). Interval-valued (α, β)-fuzzy K-algebras. Applied soft computing11(1), 1213-1222.
[6]     Akram, M., Davvaz, B., & Feng, F. (2013). Intuitionistic fuzzy soft K-algebras. Mathematics in computer science7(3), 353-365.
[7]     Akram, M., Gulzar, H., & Smarandache, F. (2019). Neutrosophic soft topological K-algebras. Infinite Study.
[8]     Akrama, M., Gulzara, H., & Shumb, K. P. (2018). Certain notions of single-valued neutrosophic K-algebras. Infinite Study.
[9]     Atanassov, K. (2016). Intuitionistic fuzzy sets. International journal bioautomation20, 87-96.
[10] Belnap, N. D. (1977). A useful four-valued logic. In Modern uses of multiple-valued logic (pp. 5-37). Springer, Dordrecht.
[11] Dar, K. H., & Akram, M. (2004). Characterization of a K (G)-algebra by self maps. Southeast Asian bulletin of mathematics28(4).
[12] Dar, K. H., & Akram, M. (2005). On a K-Algebra Built on a Group. Southeast Asian Bulletin of Mathematics29(1), 41-49.
[13] Dar, K. H., & Akram, M. (2007). On K-homomorphisms of K-algebras. International mathematical forum, 46, 2283-2293. http://www.m-hikari.com/imf-password2007/45-48-2007/darIMF45-48-2007-1.pdf
[14] Jun, Y. B., & Kim, K. H. (2000). Intuitionistic fuzzy ideals of BCK-algebras. International journal of mathematics and mathematical sciences24 (12), 839-849.
[15] Mohana, K., & Mohanasundari, M. (2018). Quadripartitioned single valued neutrosophic rough sets. In Nirmala annual research congress (NARC-2018) (Vol. 3, p. 165).
[16] Mohanasundari, M., & Mohana, K. (2020). Improved correlation coefficients of quadripartitioned single-valued neutrosophic sets and interval-quadripartitioned neutrosophic sets. In Neutrosophic sets in decision analysis and operations research (pp. 331-363). IGI Global.
[17] Mohan, M., & Krishnaswamy, M. (2020). Axiomatic characterizations of quadripartitioned single valued neutrosophic rough sets. Journal of new theory, (30), 86-99.
[18] Mohanasundari, M., & Mohana, K. (2020). Quadripartitioned single valued neutrosophic dombi weighted aggregation operators for multiple attribute decision making. Neutrosophic sets and systems32(1), 9.
[19] Chatterjee, R., Majumdar, P., & Samanta, S. K. (2016). On some similarity measures and entropy on quadripartitioned single valued neutrosophic sets. Journal of intelligent & fuzzy systems30(4), 2475-2485. Smarandache, F. (1999). A unifying field in Logics: Neutrosophic Logic. In Philosophy (pp. 1-141). American Research Press.
[20] Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite study.
[21] Zadeh, L. A. (1965). Fuzzy sets. Inf. Control, 8, 338-353.