Document Type : Research Paper


Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria.


If R is a ring, then Rn(I) is called a refined neutrosophic ring. Every AH-subset of Rn(I) has the form P = ∑ni=0 p i Ii= {a0+a1I+⋯+anIn: ai∈p i}, where p i are subsets of the classical ring R. The objective of this paper is to determine the necessary and sufficient conditions on p i which make P be an ideal of Rn(I). Also, this work introduces a full description of the algebraic structure and form for AH-maximal and minimal ideals in Rn(I).


Main Subjects

[1]        Smarandache, F., & Abobala, M. (2020). n-Refined neutrosophic rings. International journal of neutrosophic science, 5, 83-90.
[2]       Sankari, H., & Abobala, M. (2020). n-refined neutrosophic modules. Neutrosophic sets and systems, 36, 1-11.
[3]     Sankari, H., & Abobala, M. (2020). AH-Homomorphisms in neutrosophic rings and refined neutrosophic rings. Neutrosophic sets and systems, 38.
[4]       Kandasamy, W. V., & Smarandache, F. (2006). Some neutrosophic algebraic structures and neutrosophic n-algebraic structures. Infinite Study.
[5]       Smarandache F., and Abobala, M. (2020). n-refined neutrosophic vector spaces. International journal of neutrosophic science, 7(1), 47-54.
[6]       Abobala, M., Hatip, A., & Alhamido, R. (2019).A contribution to neutrosophic groups. International journal of neutrosophic science, 0(2), 67-76.
[7]       Abdel-Basset, M., Gamal, A., Son, L. H., & Smarandache, F. (2020). A bipolar neutrosophic multi criteria decision making framework for professional selection. Applied sciences10(4), 1202.
[8]       Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., & Smarandache, F. (2020). Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization theory based on neutrosophic and plithogenic sets (pp. 1-19). Academic Press.
[9]       Abobala, M. (2019).  n-refined neutrosophic groups I. International journal of neutrosophic science, 0(1), 27-34.
[10]   Agboola, A. A. A., Akwu, A. D., & Oyebo, Y. T. (2012). Neutrosophic groups and subgroups. International .J .Math. Combin, 3, 1-9.
[11]   Abdel-Basset, M., Manogaran, G., Gamal, A., & Chang, V. (2019). A novel intelligent medical decision support model based on soft computing and IoT. IEEE internet of things journal7(5), 4160-4170.
[12]   Smarandache, F. (2013). n-Valued refined neutrosophic logic and its applications to physics. Progress in physics, 4, 143-146.
[13]   Abobala, M., & Lattakia, S. (2020). Classical homomorphisms between n-refined neutrosophic rings. International journal of neutrosophic science7, 74-78.
[14]   Alhabib, R., & Salama, A. A. (2020). the neutrosophic time series-study its models (linear-logarithmic) and test the coefficients significance of its linear model. Neutrosophic sets and systems33, 105-115.
[15]   Abdel-Basset, M., Mohamed, M., Elhoseny, M., Chiclana, F., & Zaied, A. E. N. H. (2019). Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artificial intelligence in medicine101, 101735.
[16]   Sankari, H., & Abobala, M. (2020). Neutrosophic linear diophantine equations with two variables (Vol. 38). Infinite Study.
[17]   Abobala, M. (2020). Ah-subspaces in neutrosophic vector spaces. International journal of neutrosophic science6, 80-86.
[18]   Edalatpanah, S. A. (2020). Systems of neutrosophic linear equations. Neutrosophic sets and systems33(1), 92-104.
[19]   Abobala, M. (2020). A study of ah-substructures in n-refined neutrosophic vector spaces. International journal of neutrosophic science9, 74-85.
[20]   Abobala, M. (2021). Foundations of neutrosophic number theory. Neutrosophic sets and systems39(1), 10.
[21]   Abobala, M. (2020). On some neutrosophic algebraic equations. Journal of new theory, (33), 26-32.
[22]   Abobala, M. (2021). Semi homomorphisms and algebraic relations between strong refined neutrosophic modules and strong neutrosophic modules. Neutrosophic sets and systems39(1), 9.