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Abstract

The Ordered Weighted Averaging (OWA) operator was introduced by Yager [58] to provide a method for aggregating

inputs that lie between the max and min operators. In this article several variants of the generalizations of the fuzzy-
probabilistic OWA operator - POWA (introduced by Merigo [27] and [28]) are presented in the environment of fuzzy

uncertainty, where different monotone measures (fuzzy measure) are used as an uncertainty measure. The considered

monotone measures are: possibility measure, Sugeno (- additive measure, monotone measure associated with Belief
Structure and capacity of order two. New aggregation operators are introduced: AsSPOWA and SA-AsPOWA. Some

properties of

new aggtregation operators are proved. Concrete faces of new operators are presented with respect to

different monotone measures and mean operators. Concrete operators are induced by the Monotone Expectation

(Choquet integral) or Fuzzy Expected Value (Sugeno integral) and the Associated Probability Class (APC) of a monotone

measure. For the new operators the information measures—Orness, Entropy, Divergence and Balance are introduced as

some extensions of the definitions presented in [28].

Keywords: Mean fuzzy aggregation operators, Associated probabilities, Finite sugeno averaging, Finite

choquet averaging, Body of evidence, Possibility measure, Fuzzy decision making.
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Introduction

Our research is concerned with quantitative-information analysis of the complex uncertainty and its
use for modelling of more precise decisions with minimal decision risks from the point of view of
systems approach. The main objects of our attention are 1) the analysis of Information Structures of
expert’s knowledge, their uncertainty measure and imprecision variable, which was constructed in the
Part I of this work; 2) the construction of instruments of aggregation operators, which condense both
characteristics of incomplete information - an uncertainty measure and an imprecision vatiable in the
scalar ranking values of possible alternatives in the decision-making system. Some aspects of this
problem are considered in current Part of our research.
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In Section 2 some preliminary concepts are presented. Probability representations—Associated
Probability Class (APC) of a monotone measure [5], [37], [39], [42], [44] is considered for different
classes of a monotone measure. Concepts of the Most Typical Value (MTV) [18], [19], [41], [42] of a
compatibility function (membership function) of some imprecise variable with respect to some
monotone measure is presented. The Fuzzy Expected value (FEV) [9] and Monotone Expectation (ME)
[5] are interpreted as important MTVs of a compatibility function. The probability representations of
ME and FEV are presented by the APC of a monotone measure. Also, in this Subsection the associated
probabilities representations are considered for the Choquet capacity of order two [7], possibility
measure [11], Sugeno @- additive measure [45] and 2 monotone measure associated with Dempster-
Shafer Belief Structure [45].

In Section 3 new generalizations of the POWA operator (definition 4, Part I) are presented with respect
to different monotone measures (insert of the probability measure) and different mean operators. New
versions of the POWA operator are defined. AsSPOWA operator is induced by the ME and SA-
AsPOWA operator is induced by the FEV. In Subsection 3.3 the generalized variants of information
measures — Orness, Entropy, Divergence and Balance are introduced for the new aggregation operators.
Some properties of new operators are proved.

2| Associated Probabilities of a Monotone Measure

When trying to functionally describe insufficient expert data, in many real situations the property of
additivity remains unrevealed for a measurable representation of a set and this creates an additional
restriction. Hence, to study such data, it is frequently better to use monotone measures instead of
additive ones.

We introduce the definition of a monotone measure (fuzzy measure) [45] adapted to the case of a finite
referential.

A
1

Definition 1. Let S:i 5,5 ,... 5 I bea finite setand g be a set function g . 2° '

(O e
@DEDEDED

!
0,1 i We say g

is a monotone measure on S if it satisfies

() g(A)=0: g(s) %;
(i) "ABIS,ifA B, theng(A) g8 ).

A monotone measure is a normalized and monotone set function. It can be considered as an extension
of the probability concept, where additivity is replaced by the weaker condition of monotonicity. Non-
additive but monotone measures were first used in the fuzzy analysis in the 1980s [45] and is well

investigated ([8], [15], [21]-[23], [37]-[39], [44], [45], [54]-[56], [62] and others).

A fuzzy integral is a functional which assigns some number or a compatibility value to each fuzzy subset
when the monotone measure is taken as an uncertainty measure. As known ([10], [15], [18], [19], [25],
[26], [37], [38], [45], [63] and others), the concept of a fuzzy integral condenses the information provided
by a compatibility (or membership) function of a fuzzy set and a monotone measure. Having the
monotone measure determined, we can estimate a fuzzy subset by the most typical compatibility value
- most typical value (MTV) ([18], [19], [41]-[45] and others) or a fuzzy average. As already known, fuzzy
averages (MTVs) differ both in form and content from probabilistic—statistical averages and other
numerical characteristics such as mode and median and others. Nevertheless, in some cases ‘non-fuzzy’
(objective) and ‘fuzzy’ (subjective) averages coincide ([18], [19], [41]-[45] and others). For a given set of
fuzzy subsets with compatibility function values from the interval [0; 1], the fuzzy average determines
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the most typical representative compatibility value. From the point of our future presentations in the role

”’- of MTV we consider only two fuzzy statistics (integrals):
i

J. Tuzzy. B Appl - Monotone Expectatioh ME (or Choquet Integral) and
- Fuzzy Expected Value FEV (or Sugeno Integral). So, we consider some aspects of a monotone measure in fuzzy

193 statistics.
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Definition 2. Assume S= i S,,8,,mS, ils a set on which we have a monotone measure g and a function

a.SY R suchthata(s)t a 20,/ 4,2,..,n.

Then

a) The aggregation
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=
o
=
o
3
1
Q
OB
v
R
=
S
<o
-I-@IOOOI
Q
N—
3
&
= ol o

g({ S0 )}) 1 0, is called a Finite Choquet Averaging (FCA) or Monotone Expectation (ME) operator. In the

proceeding /(Q) is index function such that g, is the jth largest of the {a,.}

=1

b) The aggregation
FE\/g (a,....a, )1 FSA@Q ,....a 2:
_ i o b @
=a_ maxminja /amaX ;W o
j=1,m b
where M;/. =915, S5 5, 5> Cmax = MQX{ a}} is called a Finite Sugeno Averaging (FSA) or a Fuzzy

i=1,m

Expected Value (FEV) operator.

New View of fuzzy aggregations, part ii: associated probabilities in the POWA operator

The ME always exists and is finite for each monotone measure g and some compatibility variable &. It is
obvious that MEg (a) is a generalization of the mathematical expectation £,(a) and the ME of a non-

negative function & with respect to a monotone measure g coincides with the mathematical expectation

of a with respect to a probability measure that depends only on g and the ordering of the values of 4.

Following the Definition 2&e maximum number of probability distributions in ME (EQ. (1)) coincides
with the number of possible orderings or permutations in a set with /melements, that is, /77/. Thus, it
makes sense to associate the 777/ probabilities to each monotone measure, provided that they are deduced

from this monotone measure through the different possible orderings.

In general, the possible orderings of the elements of S are given by the permutations of a set with m

elements, which form the group S .



Definition 3. [5]. The probability functions £, defined by

P‘ . 'nz-y%} - S SQ}Z)yz (3)
Rg(s,gzlg 1 g({ S wzyiS )gz’o g2

o

for each Qtae @) Z) foj a g A, are called the associated probabilities and the Associated

Probability Class (APC) -{P,};, of the monotone measure g .

An interesting case is when the monotone measure is a probability. It is easy to prove that in this case,
all associated probabilities are equal.

Proposition 1. [5]. A monotone measure g is a probability measure (g=p) if and only if its m!

associated probabilities coincide.

The concept of duality of monotone measures is very important, since it permits one to obtain

alternative representations of a piece of information. Monotone measures g, and g are dual if

9.(A)=1 -9 (A) A Z.So,we will consider a monotone measure and its dual measure to contain

the same information, but codified in a different way. The most remarkable case where different
monotone measures provide the same /77/ probabilities, but ordered in a different way, is the case of

dual monotone measures. Before exposing it in the following proposition, we need a definition:

Definition 4. We will say that two permutations 22112 are dual if b( ﬁt ( (o0 -90

Proposition 2. [5]. A necessary and sufficient condition for two monotone measures g, and g to be

dual is to have the same m! associated probabilities corresponding to dual permutations, that is, £, = Pg

,if L and Q are dual, where P and P are associated probabilities for the measures g, and g

respectively.

An especially interesting class of monotone measures is the capacities of order two [7], because they
cover a great number of monotone measures.

o

Definition 5. Let . g~ (be a pair of dual monotone measures:

g. is a lower capacity of order two if and only if

"AB 1S, g(A (B) 8. (A B%E g?(A) géB) ;g is an upper capacity of order two if and only

if* A,B1S, g(A ® ¢ (A BE gt{4) .g'{8).

The most used classes of monotone measures such as belief and plausibility measures [35], necessity and
possibility ones [11], @-measures [45] and probabilities are capacities of order two.
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o

i
Proposition 3. [5]. Let 2. g 5 be a pair of dual monotone measures. Then g, is a lower capacity of

order two (g, is an upper capacity of order two, respectively) if and only if

0.(A)= rglr%P‘(A) A XN,

)
(g'(A) :r%a%(P,Q(A) A X, ).
So the main characteristic of a capacity of order two is that it only depends on the probabilities associated
to such a measure, but does not depend on the permutations that generate them: we can regenerate the
initial monotone measure by only knowing its associated probabilities, without the necessity to know the
corresponding permutations. This characteristic makes the use of capacities of order two by means of

associated probabilities especially easy.
Starting from this property, the following result is evident and valid for every monotone measure:
Proposition 4. [5]. If £, 1 £, are the associated probabilities to a monotone measure g , then for every

a:X- R ,itholds

0

rglg E. (a) ¢ ME (a) Gm@aﬁx Epyg(a) : ®)

2

{
Proposition 5. [39]. A necessary and sufficient condition for a pair of dual fuzzy measures & i to be
P Y p Y 2.9 |

MEgy (a) = rylrF: pr(a), MEg, (a) :rgaﬁx EPTQ(a) . ©)

lower and upper capacities of order two, respectively, is that " @:X - R,

Let S/;a ) ( %’3} E ) ) be the subgroup of all permutations such that " Qi g) ,

()i ds b o) .

Following Propositionuzi Definitions£there exist some connections of mathematical expectations with

e, )6, (4 Bl ).
SUEEE CIERE o
=§llpwg( gzo()Q(z . ) g{(%

I

<

respect to dual associated probability A ,.Q,‘,‘j 7( Q gé)



where P, and P, are associated probabilities for g, and g monotone measures, respectively; £ and

1 are dual permutations and @ is symmetric.

2.1| Probability representation of the FEV

It clearly follows that (Definition 2the FEV somehow ‘averages’ the values of the compatibility function
a not in the sense of a statistical average but by cutting subsets of the F level, whose values of

monotone measure g are either sufficiently ‘high’ or sufficiently low’. The FEV gives a concrete value

of the compatibility function &, this value being the most typical characteristic of all possible values
with respect to the monotone measure g, obtained by cutting off the ‘upper’ and ‘lower’ strips on the

graph of g(H H) =g({s/a(s) 2’Ht. Thus, the incomplete information carried by an imprecision
variable @ and an uncertain measure g is condensed in the FEV, which is the MTV of all compatibility
levels of a. Following definition 2b for all permutation such that {3 g) the FEV can be written by

the associated probabilities of a lower capacity of order two g, as

4

©)

FEV (a)=a_ minminmax{a(s.., /a xP.. (A®3},
gk( ) Max i) mi g { ( Qz )Ogcﬂ( 3}

(P2

where Af {522217‘? ey S } s b5 1

5 {
Let % g 5 be a pair of a dual lower and upper capacities of order two. Using Propositionsnd 3 and
& !

Formula (e FEV can be written, " Q1 g’):

FEV, (a)=a,,, mnminmax{a(s,, 48 %By (A3} 4

=1,m QI §
= - : (o - (10)
FEVg, aj=a _ maxmaxmin{a(s,, %/261 og'p (A™)} 5
i=1,m Qi g : 2
— RS . (Q2
=a__ Tﬁnx 7r§l_!niaé<mln{a(sz22 )7/261 oP@@* (A} 6

2.2| Dempster—Shafer Belief Structure and Its Associated Probabilities

The Theory of Evidence (Dempster—Shafer Belief Structure) ([11], [15], [22], [23], [25], [32], [37], [43],
[56], [59], [62] and others) is a powerful tool which enables one to build:

, OE1 OUwOi wEl EPUPOOUWESEwWUT 1 PUwWUPUOUz wdl EVUUUIT UOw
Aggregation operators in an uncertagmvironment and so on.

The Theory of Evidence is based on two dual monotone measures: Belief measures and Plausibility
measures. These classes of monotone measures are subclasses of classes of dual lower and upper
capacities of order two. This is easily provable after introduction of Belief and Plausibility measures ([22]
and [23] and others). Belief and Plausibility measures can be characterized by the set function:

m:2°Y [0;1]. (11)
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which is required to satisfy two conditions:

@ m(A) =0,
(b) a m(B)=1.
Bi 2°
This function is called a Basic Probability Assignment (BPA). For each set Bi 2°, the value m(B)

expresses the proportion that all available and relevant evidence supporting the claim that a particular

element of S, whose characterization in terms of relevant attributes is deficient, belongs to the set B. This

value m(B) , pertains solely to one set — B; it does not imply any additional claims regarding subsets of B

. If there is some additional evidence supporting the claim that the element belongs to a subset of B, say

B,1 B, it must be expressed by another value m(BJ) [23].

Let m be a PBA on S. The plausibility measure P/ associated to /m is given by

PIA) = & m@B), "A 23

BES:Al B, O
and the Belief measure Be/ associated to /77 is given by

Bel(A)= 4 m(B), " A i2°.

B:BEA

Inverse procedures ate also possible. Given, for example, a Belief measure Bée/, the corresponding BPA

is determined for all A1 2° by formula

mA)= § (-1)"“8‘ Bel(B), 12
B:BI A
where |A 1B | is the cardinality of the set difference of A and B. If the Belief measure is also additive that
is

Bel( AUB)=Bel(A) Bel(B),

if AIB=AAB 25 (13)

then we obtain the classical probability measure [23].

Given a BPA, every set Al 2° for which m(B) >0 is called a focal element. The pair <FS, m> where

F, denotes the set of all focal elements induced by /is called a Body of Evidence. Because Bé/ is a lower
capacity of order two, then using Propositionadd Eqs.(29)and (30)we receive probability representation
of the BPA, " A 12°, Q1 g

( Q) &  0zazz
l l BIFs:Bl{sy; 523 Tozo:
m(A) _ gz{s«gz(ti‘i)\A\B\ min"‘,(Be')( % (14)

Bi F,:BIA QR



where {Pz(fel) } 8 g are the associated probabilities of the monotone measure Be/.

2.3| Possibility Measure and Its Associated Probabilities

When the focal elements of a body of evidence <FS, /77> are required to be nested,

F ={A/ 54/, E /E//} , the associated belief and plausibility measures are called consonant [23]. The

special branch of the evidence theory that deals only with bodies of evidence whose focal elements are
nested is referred to as the possibility theory [11].

Special counterparts of Be/ measures and P/ measures in the possibility theory are called necessity
(Nec) measures and possibility ( PoS) measures, respectively:

Proposition 6. [23]. Given a consonant body of evidence<Fs, /77> , the associated consonant belief

(necessity) and plausibility (possibility) measures possess the following properties:

Nec(AI B)=min{Nec(A);Nec(B)} for all A,B 23
Pos( AU B) = max{Pos(A); Pos(B)}for all A,B 2. (15)

Proposition 7. [23]. Every possibility measure P0s on 2° can be uniquely determined by its possibility

|
distribution function Q AE  w; max Q7 €. via the formula:
s s

" A 125 Pos(A) xgzixQZ ( (14)

£ L
Assume the finite universe 5=% 5,88 Ji is given and let FSI{A/ ®\ E AE/} be some
1 2 /

consonant body of evidence.

Let

m. 1m( ) = S
Ql 5(29) Q. "Q=A 0 .y zZ

Then, we have the /-tuple

m =<mjl, mjz,...,mjl> 17)

and /m-tuple

P=(Ps, PyreesP) - (18)

It is easy to show that

{17

1 Fuzzy. Exi. Appl

198

Sirbiladze |J. Fuzzy. Ext. Appl. 2(3) (2021) 191-211



Ji—.

I Fuzzy. Ext. Appl

199

New View of fuzzy aggregations, part ii: associated probabilities in the POWA operator

FR=a 9 z9% jyzazt

Iy 2Eeteg? s o e (19)
pm =R g, QY WEO

t i i i+ (I3

Let {P.-(Pos)} __be the associated probabilities class of a possibility measure Pos. Then, we have the
Q £

following connection between {_(12} , {/77/./ } and {P‘} B g ol %

P,(‘Pos)(s,gz)é:ipoi{ S ,,92,5732}) —,SEC& s ,.,S %9“
X

Q
=maxQZ. O -2 000, QZ O 2
@yz0 oo - 93§z06 yﬂ%
=max g m, -max a m =
FIAG L8, 15 & PakZORLA o 20)
ié 0, otherwise
_1 . " S
=1 a m - a mj,lfQZ@tz QZ C

Das,bh 7 8 s, B, 8
f q-&gzb/%q 5 € ASqi 6 24 6 €

Since Pos is a capacity of order two, using Propositiorwb receive:

Q=@ ‘(){})OEQE Gopd &ou . o
m=Q g =
g o, ompn) ve s

2.4| Monotone Measures Associated with a Belief Structure and Its Associated
Probabilities

Let m be a BPA with a body of evidence £, ={A A,..,A q} . For each focal element A/.,j =1..,q, let

Ve

W’ be a weighting vector of dimension ‘A/.‘ whose components w’(i) (W" 1 <W0(_Z ),..., W_”(‘A /P>)

satisty the conditions

e {
w(i) i %0, 1 i , a‘i/l‘ w(i) =1. We shall call these the allocation vectors. In [56], it was shown that a set

. § J g
g(A):‘aém (AJ.) OAaW?( ),E.. A" 2§ 23)

is a monotone measure associated with the belief structure? Thus, by selecting a collection

o _J11/0 1170 0 . . . .
w —{W SWe LW } of allocation vectors, we can define a unique monotone measure associated with
1 2 q

a belief structure. For example: if all the W’ are such that w’(2) = 1, then the resulting monotone measure
J 7



is the plausibility measure P/. Ifall W° are selected such that wo( }A /.P =1, then this results in the belief

measure Beél.

We have the following important proposition concerning all associated monotone measures with a belief
structure.

Proposition 8. [56]. If g is any monotone measure generated from a collection of allocation vectors,

then

@ BeA)eg(A) ®(a) A 2F;
(b) The Shapley Entropy of generated monotone measures coincide

Eshap/ey(Beo = Es‘hap/ey( @ :Eshap/ey( P) -

L.e. generated monotone measures have the same information but codified in a different way.

Now, we shall compute the associated probabilities of a monotone measure g associated with the belief

structure: " R £ Z 0 y 2z

o f
o K E 4

2.5| Sugeno ¢ -Additive Monotone Measure and Its Associated Probabilities

e %]
Definition 6. [45]. A monotone measure g - V80,1 E(LJ> -)7 is called a @-additive monotone

measure if forany A,B1 2°, Al B = ,

0,(AUB)=g{A) 6 [B) @O} A &) 29

It is easy to verify that for any A i 2°

%ng;%16~-° 6)

O(1+6 9 - - (19
Note, that gg((ﬁ: l)i is a probability measure if & g, = LIt is easy to prove that the @-additive
sis

monotone measure g ; is a capacity of order twoand g;=9. ;; 5 -
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”’- monotone measure g ; for any a 5 as
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Al s o B v (89) e8

or, more exactly, as

A= 4 1O( +1 ((#9) @)

=1

where 71=1,2,...,m, QI g A s the location of s, in the permutation LGif Q2 ,then O/‘il 1 7).

3| Associated Probabilities’ Aggregations in the POWA Operator

Different approaches were developed by the authors, which constructed aggregation operators with respect
to a monotone measure, where I11-16 and other levels of Information Structure (Definition, Part I) were
considered ([1]-[4], [6], [9], [10], [13], [14], [16], [17], [20], [21], [24]-[34], [36]-[44], [46]-[55], [57]-[61], [63]
and others). But for the POWA or FPOWA-type operators (definitions 4 and 5, Part 1) Information
Structures on the levels 15 and 16 (or weighted OWA operators constructed on the basis of a monotone
measure) were not investigated. So, we leave the Information Structures 11-14 and go to the levels of 15
and 16. In this paper we consider the level I5 and we will consider the level 16 in the Part I1I of this work.

It is important that in the aggregation operators POWA and FPOWA the both nature of incomplete

information: 1. An uncertain measure (probability distribution {p,}) and 2. An imprecision variable

(random variable (&) or fuzzy variable (#)) are condensed in the outcome values, which gives us more

credibility to use these aggregation operators in applications.
In this Section we define new generalization of the POWA operator where more general measure of

uncertainty — monotone measure (fuzzy measure) is used instead of probability measure in the role of

uncertainty measure.

3.1| AsPOWA operators induced by the ME

Let on the states of nature S=

——:

|
0,1 i instead

@DEDEDED/

L
| . .
5,5, % be given some monotone measure g - Y

&
of probability measure P =1 PPy P

f

making systems when we use monotone measure g as a measure of fuzzy uncertainty ([10], [15], [18], [19],

[24]-[26], [36], [37], [39], |[40]-[43] and others) the definition of which was given in Section 2. In Section 2
the FEV and ME were defined along with their probability representations by associated probability class

(APC) { 4}, where the number of probability distributions on S is equal to k=m/ . We have &

P, :A( ,C)V There exist many aggregations in the decision

values of mathematical expectations for random or fuzzy-random variable &- {HAQ( é} _ where
A @ £

a,(9=8 Ole)o0 12 &



So, we will focus on the use of /77/ mathematical expectations in the POWA operator, instead of one

expectation ‘c'rﬂ( ak a £, asamore usual extension of this operator.

Let M:R“YR', k=m! be some deterministic mean aggregation function with symmetricity,

boundedness, monotonicity and idempodency properties (see the definition in the Section 2, Part I). Let
a:SY R be some variable.

Definition 7. An associated POWA operator-AsPOWA of dimension M is a mapping
ASPOWA :R"™ Y R*, that has an associated objective weighted vector W of dimension /m such that

3

w, I
i=1

@DEDEDED-
@DEDEDED/

[ {
| B . v [ .
0,1 i and qw; =1, some uncertainty measure - monotone measure g [ 2°Y €0, 1 i with

associated probability class { 4,} , and is defined according the following formula:

Qo

o

AsPOWAaa a,,..,a_ %}a Qo+

+H1 “H2 o% d %/O’ gg (31)
:’5- Qo+ 2 %
¢

=1

where bj is the jth largest of the {a,},/=1,...,m.

It is easy to prove that in general cases of operator M the ASPOWA operator is induced by the ME:

Proposition 9. Let M be the Min operator, then ASPOWA operator may be written as:
AsPOWAmMIn % A s @
e 2
¢

-OQOO

3

(32)

=1

- Qo+ 2y %naqg ()/ 0 Aéo«
) g 4

and if monotone measure g is a lower capacity of order two, then in the AsSPOWAmin operator the

AsSPOWAmMIn % a.,..a g
al 2 m O
¢ 7 o 33
=" "E %OZO Z§hhbzog %y ‘Hz
G %

second addend coincides with MEg:

Proposition 10. Let M be the Max operator, then AsSPOWA operator may be written as:
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o

AsPOWAmax% a,,.,a
=" O o+ ZS’/ @1% ((yg
=1 ® E gl i

and if monotone measure g is an upper capacity of order two, then in the AsSPOWAmax operator the

(34)

0 -|-0@oo:

-|-CDOO

TS

second addend coincides with MEg:

AsPOWAmax%,a - | §=
al 2 m 0
¢ o o %)
=" "I’EE%OZO ZghthOQ %y "mz
9 - G

These proofs are easy if we use the results of PropositionfEsg. (6).

Proposition 11. Let M be any mean aggregation operator and in AsSPOWA operator monotone measure
g is a probability measure. Then AsSPOWA and POWA operators coincide.

o

&

AsSPOWA %1, Ay,
¢
Proof. As known the associated probabilities of probability measure coincide (see Proposition Lsing

o

POWA a%a2 (36)

-OQOO

P

-OBOO

the property of idempotency of operator M %l/l % E,. -k

$P1, - E g because

prp i ,..,k; Eﬁ, Ep and

M(E . E,,...E )= E ,then AsSPOWA removes to the POWA (EQ. (9)Part D).

D

Proposition 12. If g, and ¢ are dual monotone measures on 2°, then AsSPOWA operators constructed

on basis g, and g coincide:

Proof. Using symmetricity of operator M and results of Prop#on Zit is easy to prove this proposition:

consider AsSPOWA operator for the lower monotone measure g,

AsPOWA (a,a,,...,a )=

k

k
where {P, } is the associated probability class for the measure g, and {P} is the associated probability
y

) =1 i=1
class for the measure g -
Now we consider different variants of the AsSPOWA operator induced by the ME with respect to different

classes of monotone measures. Following the Section 2 associated probabilities’ formulas were presented
for different classes of monotone measures. For example: a) possibility measure (Subsection 2.3); b)



monotone measure associated with a belief structure (Subsection 2.4); ¢) Sugeno @-additive monotone
measure (Subsection 2.5). Therefore, there exist many combinatorial possibilities for the analytical
construction of concrete faces of the ASPOWA operator for concrete classes of a monotone measure
and concrete operator M induced by the ME. But this procedure is omitted here. We will consider some
of them:

1) Consider ASPOWAmax for the Sugeno @-additive monotone measure g ;. Using Eq. (34)and (28) we

receive:
AsPOWAmax% ,a._,...,a gr
e 1 2 m 0
, C. T
="H@_ 0 O +2y "H2 (37)
.. Jziémé i1 R ..I
Omax] 480, ({s ), AL &6 20 Qi 1 &)
R Ling 9ol i @ jﬁ” )l

2) Analogously we may construct the face of AsPOWAmin:

Wo
o q(x)l

AsPOWAmMIn g ,a,8, 0"H@_ 00 +
Fo .m0 B 80 2048 o9
s X & A
WL H2 O ¢ I%gg ({5000 A qﬁﬂg
¢ % Q202 %

3) Following Subsection 2.4 we consider the ASPOWAmin and AsPOWAmax operators for the monotone
measure associated with the belief structure. Using EQS.(32) (33) and (24)we construct new vatiants

of the AsSPOWA operator:
AsPOWAmax% a,,..a, %"H@ o0 +7 V-
N 2 =1 ~
R e »
Omaxi ae a ua,
! Eimgﬁ'%ﬁ'{sﬂz}mfe'“ {39272 S }Q)dﬁ QZO};
AsPOWAmMIn %Iaz, La, %H@. 0 O +Zy "H2
g, ¢ S g (40)
. Tné 0 u 1
Omini §¢& m (F. Jw (FI S g5 S } @ |
(U % |=1gﬁi AR sg5)s A ( ) : { ez y }Q % %

3.2] AsPOWA operators induced by the FEV

In this Subsection we define new generalizations of the POWA operator induced by the Sugeno
Averaging Operator - Fuzzy Expected Value (FEV) with respect to probability measure- P.

Analogously Definition #q. (31) but difference is that Mathematical Expectation operator £ () is

changed by the FE |/P() .

Definition 8. A Sugeno Averaging POWA operator SA-POWA of dimension /77 is a mapping
SA- POWA:R” YR, that has an associated weighting vector W of dimension /M such that

- m
w. | %0, 1 i an a =1 according to the following formula:
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2 8
SA- POWA%l,aZ,...,am 9=
¢ T
=H& 0 O +Z§- sZ548 ofzozhh
="k af y H%(??-% mgs P =0T (41)
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where b/. =a,, is the j-th largest of the {&7/ = a(s) 2(} , 1 2,2,..,r0n S thete exists probability

!

m J:Ig /
o _ . mo ‘ b . Q A
distribution {p/.—P(s/‘.)} with 91,0/_1, o¢p o w ‘P%S/‘(z)"?(Z)"""?/) ggzg B, and
g T

. a.
al = _
i) ’

meafa)

On the basis of the Definitions 2id 8 analogously to the Definitionwe may generalize the POWA operator
induced by the FEV with respect to some monotone measure g .

Definition 9. A Sugeno Averaging AsPOWA operator SA-AsPOWA of dimension /M is mapping
SA- AsPOWA :R™ W(; , that has an associated objective weighted vector W of dimension m such that

e | " e !
W/.i §0,1 iand 4w, =1 ; some monotone measure g.:2°- %0,liwith associated probability class
j=1
{P?.} e according the following formula:
3 8
SA- AsPOWA%PaZ,...,?m 8=
¢ T 3 0 C
%:EVP %,a?, a8
,qa 1 m Q C
s b C 42
‘HE O 2y B eSnAp o3z ¢ "
= X + - e 0
1@ G Q y I% %gﬁ 2 m§<§
2 EV. E
FE a8
¢ ¢ S
where
FEV, &8,.a,,...a g m q} maxmlr{ g V\?QL'
Poga L ™ 9 =Lm i 4.m T Iij) ] 1
P o
and =P [{s 5,5, })6%; ) @3)
ai — aI(i) ") I'E
i(J) ! coom
max{a}

Now we consider SA-AsPOWA operators induced by the FEV with respect to M =Max and M =Min
averaging operators:



o

SA- AsPOWAmax% ,a,,...,a §=
el 2 0

LM ¢ :
=H@ 9 + ) (44)
- A § £ & a4
1 -H2 0 Ofop 0§00p GOlg &FOm!
1=1,m Q& j4,m " I f |
gt 8 |
SA- AsPOWAmMIn % A, .., a §=
&1 2 m 0
(; -

=H@ 99 -+ (43)
= hY <

+1 “Hz O Ofo b

I1=1,m

It is easy to prove the propositions analogously to Propositiond® But these propositions ate omitted
here.

3.3| Information Measures of the AsSPOWA and SA-AsPOWA Operators

Analogously to [28] (see Section 3, Part I) now we extend the definitions of the information measures
for the AsSPOWA and SA-AsPOWA operators:

Definition 10. The Orness measure of the AsSPOWA operator is the extension of the E(. (13)Part I:

g @ Q)g m o S 0
o vo i dpnd
e 9 9
. . . (40)
+(1 “H2 oem ?@7‘%“'792& q |
8]:1 TQQ m-1 : |
Ao o @8 m Am.i O
¢ ¢ ) @7)

For AsPOWAmax we receive:
but for AsSPOWAmin we have:

Constructing the Ornesseasure of the SA-AsPOWA operator induced by the FEV we receive the

analogous extension.

Definition 11. The Orness measute of the SA-AsPOWA operator is the extension of the E(. (13)Part

(48)
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(49)

é L s e a0 |
+H1 “Hz OF 000868202 /A of |
gjzl,m [ 'm-1 ) m |

For example, for the ASPOWAmax operator we have:

(50)

1)

Definition 12. The entropy (the dispersion) H of the AsSPOWA operator of the amount of information
is defined as:

g o 2 g
HE.PoPy B
g —_—
e m 4 . i 52
103 ¢ 490" ! -
= 4 = ém
F+(1 H2 O8] 8,,(d O)/zéﬁ i?
I g]:l . g |
I -
For example, if we have AsSPOWAmax operator, then
;%z @ ) g
Hg)l,pz,...,pm 8:
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é" m 4 . 1 53
o o qo)o ! 9
" e g0 g
+(1 “Hz O O&§ 4 opn.é i
i ( hﬁgj:l QZo?( )féoz @

and for AsPOWAmin:



8o ° 8
H%l,pz,...,pm 8:
é,, n g { 54
108 ¢ o) 0 | o
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RO ggﬁﬁomg f)/éaze L
Definition 13. The divergence measure Div has the following face:
Ao o 2 g ?m 3 % 0
. L -
DIV% P.,..P & +
1 2 m g I‘f g-%:]:l 1 _il]
¢ i Yy
£ ¢ a )
e 2 ~
“ gr Q s .
+(1 - H% &ii oEs %1 %e I
|. 8]- g =
where "HZ E is an Orness measure of the OWA operator
L.m Bm-j
"HZ B3 & 1
=1 Jg -1 !
and "HZ . is an Orness measure of associated probabilities’ aggregations:
s o B - Q7 §
HZ,&a oz ¢ (50)

=1 TQAQ ‘m-1

Analogously to Definition 18e may construct the concrete analytical forms of the measure Div for
AsPOWAmax and AsOWAmin and other operators with respect to different monotone measures (Here
these formulas are omitted).

Definition 14. The Balance parameter of the AsSPOWA operator has the following extension

QOO0

do o 0§ 4 Anii
B |%,P,...,P I8 +
a(; 1172 m 9 @i 'J? m-1 &

&n  Am+1 707 §/2 -

!
AR < e L

J 1

7)

o

The Bal of the AsSPOWAmax and AsPOWAmin operators and the H, Div, Bal parameters of the SA-
AsPOWA operator may be written analogously Definitions 1@ but are omitted here.

3| Conclusion

New generalizations of the POWA operator were presented with respect to monotone measure’s APC
and induced by the Choquet or Sugeno integrals (finite cases). There exist many combinatorial variants
to construct faces or expressions of generalized operators: AsSPOWA, and SA-AsPOWA for concrete
mean operators (Mean, Max, Min and so on) and concrete monotone measures (Choquet capacity of

order two, monotone measures associated with belief structure, possibility measure and Sugeno -

additive measure). Some properties of new operators and their information measures (Orness, Enropy,

Divergence and Balang®ved. But only some variants (AsSPOWAmax, AsSPOWAmin and others) are
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presented, the list of which may be longer that it is presented in the paper. So, other presentations of new

operators and properties of information measures will be considered in our future research. The new

generalizations of the FPOWA operator in the fuzzy environment with respect to monotone measures will

be considered in the Part I1I of this work, where a practical example will be constructed for the illustration

of the properties of generalized operators.
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