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Abstract 

 

1 | Introduction  

Our research is concerned with quantitative-information analysis of the complex uncertainty and its 

use for modelling of more precise decisions with minimal decision risks from the point of view of 

systems approach. The main objects of our attention are 1) the analysis of Information Structures of 

expert’s knowledge, their uncertainty measure and imprecision variable, which was constructed in the 

Part I of this work; 2) the construction of instruments of aggregation operators, which condense both 

characteristics of incomplete information - an uncertainty measure and an imprecision variable in the 

scalar ranking values of possible alternatives in the decision-making system. Some aspects of this 

problem are considered in current Part of our research. 
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inputs that lie between the max and min operators. In this article several variants of the generalizations of the fuzzy-

probabilistic OWA operator - POWA (introduced by Merigo [27] and [28]) are presented in the environment of fuzzy 

uncertainty, where different monotone measures (fuzzy measure) are used as an uncertainty measure. The considered 
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different monotone measures and mean operators. Concrete operators are induced by the Monotone Expectation 

(Choquet integral) or Fuzzy Expected Value (Sugeno integral) and the Associated Probability Class (APC) of a monotone 
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In Section 2 some preliminary concepts are presented. Probability representations–Associated 

Probability Class (APC) of a monotone measure [5], [37], [39], [42], [44] is considered for different 

classes of a monotone measure. Concepts of the Most Typical Value (MTV) [18], [19], [41], [42] of a 

compatibility function (membership function) of some imprecise variable with respect to some 

monotone measure is presented. The Fuzzy Expected value (FEV) [9] and Monotone Expectation (ME) 

[5] are interpreted as important MTVs of a compatibility function. The probability representations of 

ME and FEV are presented by the APC of a monotone measure. Also, in this Subsection the associated 

probabilities representations are considered for the Choquet capacity of order two [7], possibility 

measure [11], Sugenoᾦ-additive measure [45] and a monotone measure associated with Dempster-

Shafer Belief Structure [45]. 

In Section 3 new generalizations of the POWA operator (definition 4, Part I) are presented with respect 

to different monotone measures (insert of the probability measure) and different mean operators. New 

versions of the POWA operator are defined. AsPOWA operator is induced by the ME and SA-

AsPOWA operator is induced by the FEV. In Subsection 3.3 the generalized variants of information 

measures – Orness, Entropy, Divergence and Balance are introduced for the new aggregation operators. 

Some properties of new operators are proved. 

2| Associated Probabilities of a Monotone Measure 

When trying to functionally describe insufficient expert data, in many real situations the property of 

additivity remains unrevealed for a measurable representation of a set and this creates an additional 

restriction. Hence, to study such data, it is frequently better to use monotone measures instead of 

additive ones. 

We introduce the definition of a monotone measure (fuzzy measure) [45] adapted to the case of a finite 

referential. 

Definition 1. Let 
1 2 m

S s ,s ,..., s
ë û
î îî î
=ì ü
î îî îí ý

 be a finite set and g  be a set function Sg : 2 0 , 1
è ø
é ù
Ýé ù
é ùé ùê ú

. We say g  

is a monotone measure on S  if it satisfies 

()
() ()

Å = =

" Ì Ì ¢

(i) g 0; g(S) 1;

(ii) A,B S, if A B, then g A g B .  

A monotone measure is a normalized and monotone set function. It can be considered as an extension 

of the probability concept, where additivity is replaced by the weaker condition of monotonicity. Non-

additive but monotone measures were first used in the fuzzy analysis in the 1980s [45] and is well 

investigated ([8], [15], [21]-[23], [37]-[39], [44], [45], [54]-[56], [62] and others). 

A fuzzy integral is a functional which assigns some number or a compatibility value to each fuzzy subset 

when the monotone measure is taken as an uncertainty measure. As known ([10], [15], [18], [19], [25], 

[26], [37], [38], [45], [63] and others), the concept of a fuzzy integral condenses the information provided 

by a compatibility (or membership) function of a fuzzy set and a monotone measure. Having the 

monotone measure determined, we can estimate a fuzzy subset by the most typical compatibility value 

- most typical value (MTV) ([18], [19], [41]-[45] and others) or a fuzzy average. As already known, fuzzy 

averages (MTVs) differ both in form and content from probabilistic–statistical averages and other 

numerical characteristics such as mode and median and others. Nevertheless, in some cases ‘non-fuzzy’ 

(objective) and ‘fuzzy’ (subjective) averages coincide ([18], [19], [41]-[45] and others). For a given set of 

fuzzy subsets with compatibility function values from the interval [0; 1], the fuzzy average determines 
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the most typical representative compatibility value. From the point of our future presentations in the role 

of MTV we consider only two fuzzy statistics (integrals):  

- Monotone Expectation ɬ ME (or Choquet Integral) and  

- Fuzzy Expected Value ɬ FEV (or Sugeno Integral). So, we consider some aspects of a monotone measure in fuzzy 

statistics. 

Definition 2. Assume  
1 2 m

S s ,s ,...,s
ë û
î îî î
=ì ü
î îî îí ý

 is a set on which we have a monotone measure g  and a function 

0
a :S  R+Ý  such that

i i
a(s ) a 0, i 1,2,...,m¹ ² = .  

Then  

a) The aggregation 

Where 
j i( 1) i( j ) i( 1) i( j 1)

w g s ,....., s g s ,....., s ,
-

å õ å õë û ë ûæ ö æ öî î î îî î î îæ ö æ ö= -ì ü ì üæ ö æ öî î î îæ ö æ öî î î îí ý í ýç ÷ ç ÷

 

{ }( )i( 0 )
g s 0 ,¹  is called a Finite Choquet Averaging (FCA) or Monotone Expectation (ME) operator. In the 

proceeding i( )Ö  is index function such that 
i( j )

a  is the jth largest of the {}
m

i i 1
a

=
. 

b) The aggregation 

where 
j i( 1) i( 2) i( j )
ὓw g({s ,s ,...,s })=  , {}max i

i 1,m
a max a

=

=   is called a Finite Sugeno Averaging (FSA) or a Fuzzy 

Expected Value (FEV) operator. 

The ME always exists and is finite for each monotone measure g  and some compatibility variable a . It is 

obvious that ()g
ME a  is a generalization of the mathematical expectation 

P
E (a)  and the ME of a non-

negative function a  with respect to a monotone measure g  coincides with the mathematical expectation 

of a  with respect to a probability measure that depends only on g  and the ordering of the values of a . 

Following the Definition 2a the maximum number of probability distributions in ME (Eq. (1)) coincides 

with the number of possible orderings or permutations in a set with m elements, that is, m! . Thus, it 

makes sense to associate the m!  probabilities to each monotone measure, provided that they are deduced 

from this monotone measure through the different possible orderings. 

In general, the possible orderings of the elements of S  are given by the permutations of a set with  m  

elements, which form the group
m

S . 

=

¹

¹ =ä

g 1 2 m

m

1 2 m j i( j)
j 1

ME (a ,a ,...,a )

FCA(a ,a ,...,a ) w a ,
 (1) 

=

¹ =

ë û
î îî î

= ì ü
î îî îí ý

g 1 m 1 m

max i( j) max j
j 1,m

FEV (a ,...,a ) FSA(a ,...,a )

ὓa maxmin a a ; w ,
 (2) 
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Definition 3. [5]. The probability functions 
ᾮ

P  defined by 

           

 

for each () () ( ) m
ᾮ ᾮ ẙ Ẕᾮ ẚ ẔẖẖẖẔᾮ Ộ Ế
å õ
æ ö
æ ö= Í
æ öæ ö
ç ÷

, are called the associated probabilities and the Associated 

Probability Class (APC) -
ᾮ ᾮ Ế

{P }
Í

 of the monotone measure g .  

An interesting case is when the monotone measure is a probability. It is easy to prove that in this case, 

all associated probabilities are equal. 

Proposition 1. [5]. A monotone measure g  is a probability measure ( g p)=  if and only if its m! 

associated probabilities coincide. 

The concept of duality of monotone measures is very important, since it permits one to obtain 

alternative representations of a piece of information. Monotone measures g
*
 and g* are dual if 

g ( A) 1 g ( A), A S*

*
= - " Ë . So, we will consider a monotone measure and its dual measure to contain 

the same information, but codified in a different way. The most remarkable case where different 

monotone measures provide the same m!  probabilities, but ordered in a different way, is the case of 

dual monotone measures. Before exposing it in the following proposition, we need a definition: 

Definition 4.  We will say that two permutations 
m

ᾮẔᾮ Ế*Í  are dual if () ( )ᾮ Ổ ᾮ Ộ Ổ ẙ Ẕ Ổ ẙẔẖẖẖẔỘẖ* = - + =  

Proposition 2. [5]. A necessary and sufficient condition for two monotone measures g
*
 and g* to be 

dual is to have the same m! associated probabilities corresponding to dual permutations, that is, *

*ᾮ ᾮ
P P

*
=

, if ᾮ and ᾮ* are dual, where P
*
 and P* are associated probabilities for the measures g

*
 and g*  

respectively. 

An especially interesting class of monotone measures is the capacities of order two [7], because they 

cover a great number of monotone measures. 

Definition 5.  Let *

*
g , g
å õ
æ ö
æ ö
æ öæ ö
ç ÷

 be a pair of dual monotone measures:  

*
g  is a lower capacity of order two if and only if 

( ) ( ) () ()* * *
A,B S, g A B g A B g A .g B ;

*
" Ì Ç + Æ ² +  *g  is an upper capacity of order two if and only 

if ( ) ( ) () ()* * * *A,B S, g A B g A B g A .g B ." Ì Ç + Æ ¢ +  

The most used classes of monotone measures such as belief and plausibility measures [35], necessity and 

possibility ones [11], ᾦ-measures [45] and probabilities are capacities of order two. 

( ) { }( )
( ) { }( ) { }( )
( ) { }( )

-

-

=

= -

= -

ᾮ ᾮẐẙẑ ᾮẐẙẑ

ᾮ ᾮẐỔẑ ᾮẐẙẑ ᾮẐỔẑ ᾮẐẙẑ ᾮẐỔ ẙẑ

ᾮ ᾮẐỘẑ ᾮẐẙẑ ᾮẐỘ ẙẑ

P s g s ,....,

P s g s ,....,s g s ,....,s ,....,

P s 1 g s ,....,s ,

 (3) 
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Proposition 3. [5]. Let *

*
g , g
å õ
æ ö
æ ö
æ öæ ö
ç ÷

 be a pair of dual monotone measures. Then 
*

g  is a lower capacity of 

order two (
*

g  is an upper capacity of order two, respectively) if and only if               

So the main characteristic of a capacity of order two is that it only depends on the probabilities associated 

to such a measure, but does not depend on the permutations that generate them: we can regenerate the 

initial monotone measure by only knowing its associated probabilities, without the necessity to know the 

corresponding permutations. This characteristic makes the use of capacities of order two by means of 

associated probabilities especially easy. 

Starting from this property, the following result is evident and valid for every monotone measure: 

Proposition 4. [5]. If
ᾮ Ộ

P ,ᾮ ẾÍ , are the associated probabilities to a monotone measure g , then for every 

0
a : X R+  , it holds 

 

Proposition 5. [39]. A necessary and sufficient condition for a pair of dual fuzzy measures 
*

g , g*
å õ
æ ö
æ ö
æ öæ ö
ç ÷

 to be 

lower and upper capacities of order two, respectively, is that 
0

a :X R+"  , 

Let ( )( a) ( a)

m m m
S S SË  be the subgroup of all permutations such that 

( a)

m
ᾮ Ế" Í ,  

Following Proposition 2 and Definitions 2-4 there exist some connections of mathematical expectations with 

respect to dual associated probability ( )( a)

ᾮ ᾮ Ộ
P ; P ᾮ Ế ấ*

*
Í  

 

() ()
Í

= " Ì
m

* ᾮᾮ Ế
g A minP A A X,  

( () ()
Í

= " Ì
m

*

ᾮᾮ Ế
g A maxP A A X,  ).  

(4) 

() () ()
Í Í

¢ ¢
ᾮ ᾮ

m m
P g Pᾮ Ế ᾮ Ế

minE a ME a maxE a .  (5) 

() () () ()*
* Í Í
= =

ᾮ ᾮ
m m

g P Pgᾮ Ế ᾮ Ế
ME a minE a , ME a maxE a . (6) 

( ) ( ) ( )² ² ²
ᾮẐẙẑ ᾮẐẚẑ ᾮẐỘẑ

a s a s ... a s . (7) 

() () ( )( )

() () ( )( )

( )( ) ()
* * * *

=

=

* - + - +
=

= =

= = =

= =

ä

ä

ä

* *ᾮ

* *
ᾮ

*ᾮ

m

g P *ᾮ ᾮẐỔẑ ᾮẐỔẑ
i 1
m

*

ᾮ ᾮẐỔẑ ᾮẐỔẑg P
i 1

m

ᾮ ᾮ ẐỘ Ổ ẙẑ ᾮ ẐỘ Ổ ẙẑ ẻ
j 1

ME a E a P s a s ,

ME a E a P s a s

P s a s E a ,

 (8) 
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where 
ᾮ

P
*

 and 
ᾮ

P *are associated probabilities for 
*

g  and g* monotone measures, respectively; ᾮ and 

ᾮ
*
 are dual permutations and a  is symmetric. 

2.1| Probability representation of the FEV 

It clearly follows that (Definition 2b) the FEV somehow ‘averages’ the values of the compatibility function 

a  not in the sense of a statistical average but by cutting subsets of the ᾜ level, whose values of 

monotone measure g are either sufficiently ‘high’ or sufficiently ‘low’. The FEV gives a concrete value 

of the compatibility function a , this value being the most typical characteristic of all possible values 

with respect to the monotone measure g , obtained by cutting off the ‘upper’ and ‘lower’ strips on the 

graph of ( )ᾜg H g({s / a(s) ᾜủẑ= ² . Thus, the incomplete information carried by an imprecision 

variable a  and an uncertain measure g  is condensed in the FEV, which is the MTV of all compatibility 

levels of a . Following definition 2b for all permutation such that ( a)

m
ᾮ ẾÍ  the FEV can be written by 

the associated probabilities of a lower capacity of order two g
*
 as 

where { }(ᾮẑ

i ᾮẐẙẑ ᾮẐẚẑ ᾮẐỔẑ
A s ,s ,...., s , i 1,..,m= = . 

Let *

*
g , g
å õ
æ ö
æ ö
æ öæ ö
ç ÷

 be a pair of a dual lower and upper capacities of order two. Using Propositions 2 and 3 and 

Formula (9) the FEV can be written, ( a)

m
ᾮ Ế" Í : 

 

 

 

 

 

2.2| Dempster–Shafer Belief Structure and Its Associated Probabilities 

The Theory of Evidence (Dempster–Shafer Belief Structure) ([11], [15], [22], [23], [25], [32], [37], [43], 

[56], [59], [62] and others) is a powerful tool which enables one to build:  

- ,ÖËÌÓÚɯÖÍɯËÌÊÐÚÐÖÕÚɯÈÕËɯÛÏÌÐÙɯÙÐÚÒÚɀɯÔÌÈÚÜÙÌÚȰɯ 

- Aggregation operators in an uncertain environment and so on. 

The Theory of Evidence is based on two dual monotone measures: Belief measures and Plausibility 

measures. These classes of monotone measures are subclasses of classes of dual lower and upper 

capacities of order two. This is easily provable after introduction of Belief and Plausibility measures ([22] 

and [23] and others). Belief and Plausibility measures can be characterized by the set function: 

*
¡¡ *Í=

=
m

(ᾮẑ

g max ᾮẐỔẑ ỘỌợ Ổᾮᾮ Ếj 1,m
FEV (a) a minminmax{a(s a );P (A )},  (9) 

()

*

*

¡¡ *Í=

*
¡

¡Í=

¡¡ *Í=

=

= =

=

m

*

m

m

(ᾮẑ

g max ᾮẐỔẑ ỘỌợ Ổᾮᾮ Ếj 1,m

(ᾮẑ

max ᾮẐỔẑ ỘỌợ Ổᾮg ᾮ Ếi 1,m
(ᾮẑ

max ᾮẐỔẑ ỘỌợ Ổᾮᾮ Ếi 1,m

FEV (a) a min min max{a(s a );P (A )} ,

FEV a a maxmaxmin{a(s ) a ;P (A )}

a maxmaxmin{a(s ) a ;P (A )} .

 (10) 

ÝSm:2  [0;1]. (11) 
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which is required to satisfy two conditions: 

Í

Å=

=ä
SB 2

(a) m( ) 0,

(b) m(B) 1. 

This function is called a Basic Probability Assignment (BPA). For each set SB 2Í , the value ()m B  

expresses the proportion that all available and relevant evidence supporting the claim that a particular 

element of S , whose characterization in terms of relevant attributes is deficient, belongs to the set B . This 

value ()m B , pertains solely to one set –B ; it does not imply any additional claims regarding subsets of  B

. If there is some additional evidence supporting the claim that the element belongs to a subset of B , say 

1
B BÌ , it must be expressed by another value ( )1m B  [23]. 

Let m  be a PBA on S . The plausibility measure Pl  associated to m  is given by 

Ë ¸

= " Íä
I

S

B S: A B Ø

Pl(A) m(B), A 2     

and the Belief measure Bel  associated to m  is given by 

Ë

" Íä S

B:B A

Bel(A)= m(B), A 2 .     

Inverse procedures are also possible. Given, for example, a Belief measure Bel , the corresponding BPA 

is determined for all SA 2Í  by formula 

where  A\ B  is the cardinality of the set difference of A and B. If the Belief measure is also additive that 

is 

then we obtain the classical probability measure [23]. 

Given a BPA, every set SA 2Í  for which ()m B 0>  is called a focal element. The pair 
S

F , m  where 

S
F  denotes the set of all focal elements induced by m is called a Body of Evidence. Because Bel  is a lower 

capacity of order two, then using Proposition 3 and Eqs. (29) and (30) we receive probability representation 

of the BPA, S

m
A 2 ,ᾮ Ế" Í Í : 

 

()
Ì
ä

A\B

B:B A

m(A)= -1 Bel(B),  (12) 

( )= +

=Å Í

U

I S

Bel A B Bel(A) Bel(B),

if A B , A,B 2 ,  (13) 

( )

() ()
Æ ¸

Í Ì

ÍÍ Ì

= ä

ä

S ᾮẐẙẑẔ ᾮẐỔẑ

B {S } ØᾮẐỔẑ

m
S

(Bel)

ᾮ ᾮẐỔẑ
B F :B {s ..,s }

A\B
(Bel)

ᾮᾮ ẾB F :B A

ᾍ Ở ỘẐậẑẔ

m(A)         = -1 minᾍ ậ Ẕ
 (14) 
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where  { }
m

( Bel )

ᾮ ᾮ Ế
P

Í
are the associated probabilities of the monotone measure Bel . 

2.3| Possibility Measure and Its Associated Probabilities 

When the focal elements of a body of evidence 
S

F , m  are required to be nested,

{ }
1 2 lj j j

F A A ... A= Ë Ë Ë , the associated belief and plausibility measures are called consonant [23]. The 

special branch of the evidence theory that deals only with bodies of evidence whose focal elements are 

nested is referred to as the possibility theory [11]. 

Special counterparts of Bel  measures and Pl  measures in the possibility theory are called necessity 

(Nec)  measures and possibility ( Pos ) measures, respectively: 

Proposition 6. [23]. Given a consonant body of evidence
S

F , m , the associated consonant belief 

(necessity) and plausibility (possibility) measures possess the following properties: 

Proposition 7. [23]. Every possibility measure Pos  on S2  can be uniquely determined by its possibility 

distribution function ᾫấẾ ẘẔẙ
è ø
é ù
Ýé ù
é ùé ùê ú

; 
s S

maxᾫẐỞẑ ẙ
Í

=  via the formula: 

 

Assume the finite universe 
1 2 m

S s ,s ,..., s
ë û
î îî î
=ì ü
î îî îí ý

 is given and let 
1 2 lS j j j

F {A A ... A }= Ë Ë Ë  be some 

consonant body of evidence.  

Let  

( )
() +

¹ =

¹ ² = =
i i
j j

i i i i 1 1

m m A , i 1,..., l;

ᾫ ᾫ Ở Ẕᾫ ᾫ ẦỔ ẙẔẖẖẖẔỘẦᾫ ẙẖ 

Then, we have the l -tuple 

 

and m -tuple 

It is easy to show that 

( )
( )

= Í

= Í

I

U

S

S

Nec A B min{Nec(A);Nec(B)} for all A,B 2 ,

Pos A B max{Pos(A);Pos(B)}for all A,B 2 .  (15) 

Í
" Í =S

s A
A 2 , Pos(A) maxᾫẐỞẑẖ (14) 

=
1 2 l
j j j

m m , m ,...,m  (17) 

....,,,
21 m
ppp=p

 
(18) 
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Let { }
m

( Pos )

ᾮ ᾮ Ế
P

Í
be the associated probabilities class of a possibility measure Pos . Then, we have the 

following connection between { }iᾫ , { }
ij

m  and { }
m

ᾮ Ộᾮ Ế
P : ᾮ Ế

Í
" Í  

 

                                                                       

Since Pos  is a capacity of order two, using Proposition 5 we receive: 

 

   

 

                                                                       

2.4| Monotone Measures Associated with a Belief Structure and Its Associated 

Probabilities 

Let m  be a BPA with a body of evidence { }S 1 2 q
F A ,A ,...,A= . For each focal element 

j
A , j 1,..,q ,=  let 

j

0W  be a weighting vector of dimension 
j

A  whose components 
j

0w ( i)  ( )
j j j

0 0 0

j
W w (1),...,w ( A )¹   

satisfy the conditions 

j

0w ( i) 0 ,1
è ø
é ù
Íé ù
é ùé ùê ú

 , j

j

A 0
i 1w ( i) 1
=

=ä .  We shall call these the allocation vectors. In [56], it was shown that a set 

function Sg : 2 0 , 1
è ø
é ù
é ù
é ùé ùê ú

 defined by  

is a monotone measure associated with the belief structure? Thus, by selecting a collection 

{ }
1 2 q

0 0 0 0W W ,W ,...,W=   of allocation vectors, we can define a unique monotone measure associated with 

a belief structure. For example: if all the 
j

0W  are such that
j

0w (1) 1= , then the resulting monotone measure 

+ +

Í Í

ë = =îî
ì = - ¹ =î
îí

ä
ᾨ

i j Sᾨ

i i i 1 l 1

i j
ᾨấỞ Ậ ằ

j j j j

ᾫ Ộ Ẕ Ổ ẙẔẚẔẖẖẔỘ

m ᾫ ᾫ Ẕ ᾫ ẘẔ Ổ ẙẔẚẔẖẖẖẔỗẖ (19) 

( ) { }( ) { }( )

¡

-

= = -

= = -Í Í Í Í

Í Í Í Í

= - =

= - =

= - =

= -

ä ä

ä ä

q q
ᾮẐᾨẑ ổ Ế ᾮẐᾨẑ ổ Ếq q

q q
ᾮẐỔẑ ổ Ế ổ ẾᾮẐỔ ẑq q

(Pos)

ᾮ ᾮẐỔẑ ᾮẐẙẑ ᾮẐỔẑ ᾮẐẙẑ ᾮẐỔ ẙẑ

ᾮẐᾨẑ ᾮẐᾨẑ
ᾨ ẙẔỔ ᾨ ẙẔỔ ẙ

j j
ᾨ ẙẔỔ ᾨ ẙẔỔ ẙq:s A F q:s A F

j j
q:s A F q:s A F

P s Pos s ,...,s Pos s ,...,s

maxᾫẐỞ ẑ ỘỌợᾫẐỞ ẑ

max m max m

0, otherwise

m m , if

ë
î
îî ¡ì <î
î
îí

ᾮẐỔ ẑ ᾮẐỔẑ

 (20) 

{}( ) ( )
Í

= = =
m

(Pos)

i i ᾮ Ổᾮ Ế
ᾫ ẻỚỞ Ở ỘỌợᾍ ỦỞủ Ẕ Ổ ẙẔẚẔẖẖẔỘẔ (21) 

( ) ( )
+

+Í Í

= - =

= - =

i i i 1

i i 1
m m

j j j

(Pos) (Pos)

ᾮ ổ ᾮ ổᾮ Ế ᾮ Ế

m ᾫ ᾫ

maxᾍ ỦỞ ủ ỘỌợᾍ ỦỞ ủ ẔỔ ẙẔẚẔẖẖẔỗẖ (22) 

() ( ) ()
Æ

= =

è ø
é ù
é ù= Ö " Í
é ù
é ùê ú

ä ä
j

j

A Aq
0 S

j
j 1 i 1

g A m A w i ,.... A 2  (23) 
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is the plausibility measure Pl . If all 
j

0W  are selected such that
j

0

j
w ( A ) 1= , then this results in the belief 

measure Bel . 

We have the following important proposition concerning all associated monotone measures with a belief 

structure. 

Proposition 8. [56]. If g  is any monotone measure generated from a collection of allocation vectors, 

then 

(a)  () () SBel( A) g A Pl A   A 2¢ ¢ " Í; 

(b)  The Shapley Entropy of generated monotone measures coincide 

( ) () ( )Shapley Shapley Shapley
E Bel E g E Pl .= =  

i.e. generated monotone measures have the same information but codified in a different way. 

Now, we shall compute the associated probabilities of a monotone measure g  associated with the belief 

structure: 
m

ᾮ Ế Ẕ Ổ ẙẔẚẔẖẖẖẔỘ" Í " = . 

 

   

 

2.5| Sugeno ᾦ-Additive Monotone Measure and Its Associated Probabilities 

Definition 6. [45]. A monotone measure ( )S

ᾦ
g : 2 0 ,1 ᾦ ẙ

è ø
é ù
Ý >-é ù
é ùé ùê ú

 is called a ᾦ-additive monotone 

measure if for any SA,B 2 , A BÍ =ÅI , 

It is easy to verify that for any SA 2Í  

where {}( )i i
0 g g s , i 1,...,m;ᾦ ẙ< ¹ = >- is the parameter with following normalization condition? 

Note, that ( )0
g ᾦ ẘ=  is a probability measure if 

i

i
s S

g 1.
Í

=ä It is easy to prove that the ᾦ-additive 

monotone measure 
ᾦ

g  is a capacity of order two and *

ᾦ ᾦẗẐẙ ᾦẑ
g g

- +
= .   

( ) { }( ) { }( )

( ) ()
{ }

()
{ }

{ }( )
{ }

-

-

Æ Æ

= = =

Í Æ ¸

= - =

è ø
é ù
é ù= - =é ù
é ù
ê ú

= Æ

ä ä ä

ä

j ᾮẐẙẑ ᾮẐỔẑ ổ ᾮẐẙẑ ᾮẐỔ ẙẑ

j j

j

j S j ᾮẐỔẑ

ᾮ ᾮẐỔẑ ᾮẐẙẑ ᾮẐỔẑ ᾮẐẙẑ ᾮẐỔ ẙẑ

A s ,...,s A s ,...,sq
0 0

j
j 1 ᾨ ẙ ᾨ ẙ

0

j j ᾮẐẙẑ ᾮẐỔẑ
A F :A s 0

P s g s ,...,s g s ,...,s

m A w ᾨ Ợ ᾨ

m(A )w A s ,...,s .

 (24) 

( ) () () () ()= + + ÖU
ᾦ ᾦ ᾦ ᾦ ᾦ

g A B g A g B ᾦỒ Ậ Ồ ậ ẖ (25) 

() ( )
i

ᾦ Ổ
s A

1
g A 1 ᾦỒ ẙ Ẕ

ᾦ Í

ë û
î î

= + -ì ü
î î
í ý
Ô  (26) 

( )
Í

ë û
î î

+ - =ì ü
î î
í ý
Ô
i

i
s S

1
1 ᾦỒ ẙ ẙẖ

ᾦ
 (19) 
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Due to Eqs. (26), (27), and (3), we can write the class of associated probabilities for the ᾦ-additive 

monotone measure 
ᾦ

g  for any 
m

ᾮ ẾÍ  as  

 or, more exactly, as 

where 
m

i 1, 2,...,m,ᾮ Ế Ầ ỔẐᾮẑ= Í  is the location of 
i

s  in the permutation ᾮ(if  i(ᾮẑ ẙ= , then  0
 j 1 1).= ¹Ô  

3| Associated Probabilities’ Aggregations in the POWA Operator 

Different approaches were developed by the authors, which constructed aggregation operators with respect 

to a monotone measure, where I1-I6 and other levels of Information Structure (Definition 7, Part I) were 

considered ([1]-[4], [6], [9], [10], [13], [14], [16], [17], [20], [21], [24]-[34], [36]-[44], [46]-[55], [57]-[61], [63] 

and others). But for the POWA or FPOWA-type operators (definitions 4 and 5, Part I) Information 

Structures on the levels I5 and I6 (or weighted OWA operators constructed on the basis of a monotone 

measure) were not investigated. So, we leave the Information Structures I1-I4 and go to the levels of I5 

and I6. In this paper we consider the level I5 and we will consider the level I6 in the Part III of this work. 

It is important that in the aggregation operators POWA and FPOWA the both nature of incomplete 

information: 1. An uncertain measure (probability distribution { }ip ) and 2. An imprecision variable 

(random variable ( a ) or fuzzy variable ( a%)) are condensed in the outcome values, which gives us more 

credibility to use these aggregation operators in applications. 

In this Section we define new generalization of the POWA operator where more general measure of 

uncertainty – monotone measure (fuzzy measure) is used instead of probability measure in the role of 

uncertainty measure. 

3.1| AsPOWA operators induced by the ME 

Let on the states of nature 1 2 m
S s ,s ,..., s
ë û
î îî î
=ì ü
î îî îí ý

 be given some monotone measure Sg : 2   0 , 1
è ø
é ù

Ý é ù
é ùé ùê ú

 instead 

of probability measure ()1 2 m i i
P p , p ,..., p , p ᾍ Ở ẖ
ë û
î îî î
= =ì ü
î îî îí ý

 There exist  many aggregations in the decision 

making systems when we use monotone measure g as a measure of fuzzy uncertainty ([10], [15], [18], [19], 

[24]-[26], [36], [37], [39], [40]-[43] and others)  the definition of which was given in Section 2. In Section 2 

the FEV and ME were defined along with their probability representations by associated probability class 

(APC) { }
m

ᾮ ᾮ Ế
ᾍ

Í
, where the number of probability distributions on S  is equal to k m!=  . We have k  

values of mathematical expectations for random or fuzzy-random variable a - (){ }
ᾮ

m
ᾍ

ᾮ Ế
ᾁ Ọ Ẕ

Í

 where 

 

( ) { }( ) { }( )( )
-

=

= +Ô
i 1

ᾮ ᾮẐỔẑ ᾦ ᾮẐỔẑ ᾦ ᾮẐổẑ
j 1

ᾍ Ở Ồ Ở ẙ ᾦỒ Ở Ẕ (28) 

() {}( ) { }( )( )
-

=

= +Ô
i(ᾮẑ ẙ

ᾮ Ổ ᾦ Ổ ᾦ ᾮẐổẑ
j 1

ᾍ Ở Ồ Ở ẙ ᾦỒ Ở Ẕ (29) 

() ()
=

= Íä
ᾮ

m

ᾍ Ổ ᾮ Ổ Ộ
i 1

ᾁ Ọ Ọẻ Ở Ẕ ᾮ Ế ẖ (30) 
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So, we will focus on the use of m!  mathematical expectations in the POWA operator, instead of one 

expectation ()ᾍ Ổ Ổ
ᾁ Ọ Ọớ=ä ,  as a more usual extension of this operator.  

Let k 1M :R R , k m!Ý =  be some deterministic mean aggregation function with symmetricity, 

boundedness, monotonicity and idempodency properties (see the definition in the Section 2, Part I). Let 

0
a : S R+Ý  be some variable. 

Definition 7. An associated POWA operator-AsPOWA of dimension m is a mapping  
m 1AsPOWA :R R ,Ý that has an associated objective weighted vector W  of dimension m  such that 

j
w 0 , 1

è ø
é ù
Íé ù
é ùé ùê ú

 and 
m

j
i 1

w 1,
=

=ä  some  uncertainty measure - monotone measure  Sg : 2  0 , 1
è ø
é ù

Ýé ù
é ùé ùê ú

 with 

associated probability class { }
m

ᾮ ᾮ Ế
ᾍ

Í
, and is defined according the following formula: 

                                               

where 
j

b  is the jth largest of the  
i

{a }, i 1,...,m.=    

It is easy to prove that in general cases of operator M  the AsPOWA operator is induced by the ME:  

Proposition 9.  Let M  be the Min  operator, then AsPOWA operator may be written as: 

 

and if monotone measure g  is a lower capacity of order two, then in the AsPOWAmin operator the 

second addend coincides with 
g

ME : 

 Proposition 10. Let M be the Max  operator, then AsPOWA operator may be written as:         

()

() () ()

=

=

=

å õ
æ ö

= +æ ö
æ öæ ö
ç ÷

å õ
æ ö

+ - Ö Í =æ ö
æ öæ ö
ç ÷

å õ
æ ö

= + - Öæ ö
æ öæ ö
ç ÷

ä

ä

ä
ᾮ ᾮ ᾮ1 2 k

m

1 2 m j j
j 1

m

i ᾮ Ổ Ộ
i 1

m

j j P P P
j 1

AsPOWA a ,a ,...,a ᾝ Ợọ

(1 ᾝẑ Ẹ Ọᾍ Ở ᾮ Ế

ᾝ Ợọ Ẑẙ ᾝẑ Ẹ Ằ Ọ ẔẰ Ọ ẔẖẖẖẔẰ Ọ Ẕ

 (31) 

()
Í= =

å õ
æ ö

=æ ö
æ öæ ö
ç ÷

å õ
æ ö

= + - Ö Íæ ö
æ öæ ö
ç ÷

ä ä
m

1 2 m

m m

j j i ᾮ Ổ Ộᾮ Ếj 1 i 1

AsPOWAmin a ,a ,...,a

ᾝ Ợọ Ẑẙ ᾝẑ ỘỔộ Ọᾍ Ở ᾮ Ế Ẕ

 
(32) 

å õ
æ ö

=æ ö
æ öæ ö
ç ÷

å õ å õ
æ ö æ ö

= Ö + - Öæ ö æ ö
æ ö æ öæ ö æ ö
ç ÷ ç ÷

1 2 m

1 2 m g 1 2 m

AsPOWAmin a ,a ,...,a

ᾝ ẺỂẬ Ọ ẔỌ ẔẖẖẖẔỌ Ẑẙ ᾝẑ ẸẰ Ọ ẔỌ ẔẖẖẖẔỌ

 (33) 
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 and if monotone measure g  is an upper capacity of order two, then in the AsPOWAmax operator the 

second addend coincides with 
g

ME :  

These proofs are easy if we use the results of Proposition 5 (Eq. (6)). 

Proposition 11. Let M  be any mean aggregation operator and in AsPOWA operator monotone measure

g is a probability measure. Then AsPOWA and POWA operators coincide. 

Proof. As known the associated probabilities of probability measure coincide (see Proposition 1).  Using 

the property of idempotency of operator M
2 mP 1 P P P

M E ,E ,...,E E ,
å õå õæ öæ ö
æ öæ ö¹
æ öæ öæ öæ ö
ç ÷ç ÷

because 

ii p p
p p, i 1,..., k; E E¹ = =  and   

p p p p
M(E ,E ,...,E ) E ,=  then AsPOWA removes to the POWA (Eq. (9), Part I).  

Proposition 12.  If 
*

g  and  g* are dual monotone measures on S2 , then AsPOWA operators constructed 

on basis  
*

g  and  *g  coincide: 

Proof. Using symmetricity of operator M and results of Proposition 2 it is easy to prove this proposition: 

consider AsPOWA operator for the lower monotone measure
*

g  

() () ()

() () ()

* * *

* * *

=

=
*

=

å õ
æ ö

= + - =æ ö
æ öæ ö
ç ÷å õ
æ ö

= + - =æ ö
æ öæ ö
ç ÷=

ä

ä

1 2 k

ᾮ ᾮ ᾮ1 2 k

* 1 2 m

m

j j P ᾮ ẻ ᾮ ẻ ᾮ
j 1

m

j j P P P
j 1

1 2 m

AsPOWA (a ,a ,...,a )

ᾝ Ợọ Ẑẙ ᾝẑẸ Ằ Ọ ẔẰ Ọ ẔẖẖẖẔẰ Ọ

ᾝ Ợọ Ẑẙ ᾝẑẸ Ằ Ọ ẔẰ Ọ ẔẖẖẖẔẰ Ọ

AsPOWA (a ,a ,...,a ) ,

 

where { }
i

k

*ᾮ
i 1

P
=

is the associated probability class for the measure
*

g and { }
ᾮi

k
*

i 1

P
=

is the associated probability 

class for the measure g*.  

Now we consider different variants of the AsPOWA operator induced by the ME with respect to different 

classes of monotone measures. Following the Section 2 associated probabilities’ formulas were presented 

for different classes of monotone measures. For example: a) possibility measure (Subsection 2.3); b) 

å õ
æ ö

=æ ö
æ öæ ö
ç ÷

å õ å õ
æ ö æ ö

= Ö + - Öæ ö æ ö
æ ö æ öæ ö æ ö
ç ÷ ç ÷

1 2 m

1 2 m g 1 2 m

AsPOWAmax a ,a ,...,a

ᾝ ẺỂẬ Ọ ẔỌ ẔẖẖẖẔỌ Ẑẙ ᾝẑ ẸẰ Ọ ẔỌ ẔẖẖẖẔỌ ẖ

 (35) 

()
Í= =

å õ
æ ö

=æ ö
æ öæ ö
ç ÷å õ

æ ö
= + - Ö æ öæ ö

ç ÷
ä ä

m

1 2 m

m m

j j i ᾮ Ổᾮ Ếj 1 i 1

AsPOWAmax a ,a ,...,a

ᾝ Ợọ Ẑẙ ᾝẑ ỘỌợ Ọᾍ Ở Ẕ
 (34) 

å õ å õ
æ ö æ ö

=æ ö æ ö
æ ö æ öæ ö æ ö
ç ÷ ç ÷

1 2 m 1 2 m
AsPOWA a ,a ,...,a POWA a ,a ,...,a . (36) 



 

 

20

4 

S
ir

b
il

ad
ze

 |
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 2

(3
) 

(2
0
2
1)

 1
9
1-

2
11

 

 

monotone measure associated with a belief structure (Subsection 2.4); c) Sugeno ᾦ-additive monotone 

measure (Subsection 2.5). Therefore, there exist many combinatorial possibilities for the analytical 

construction   of concrete faces of the AsPOWA operator for concrete classes of a monotone measure 

and concrete operator M induced by the ME. But this procedure is omitted here. We will consider some 

of them: 

1) Consider AsPOWAmax for the Sugenoᾦ-additive monotone measure
ᾦ

g . Using Eq. (34) and (28), we 

receive: 

2) Analogously we may construct the face of  AsPOWAmin: 

3)  Following Subsection 2.4 we consider the AsPOWAmin and AsPOWAmax operators for the monotone 

measure associated with the belief structure. Using Eqs. (32), (33), and (24) we construct new variants 

of the AsPOWA operator: 

 

 

 

 

 

 

 

 

 

 

3.2| AsPOWA operators induced by the FEV 

In this Subsection we define new generalizations of the POWA operator induced by the Sugeno 

Averaging Operator - Fuzzy Expected Value (FEV) with respect to probability measure- P . 

Analogously Definition 7 (Eq. (31)) but difference is that Mathematical Expectation operator 
p

E (.)  is 

changed by the ()P
FEV . . 

Definition 8. A Sugeno Averaging POWA operator SA-POWA of dimension m  is a mapping  
m

0
SA POWA :R R+- Ý   that has an associated weighting vector W  of dimension m  such that 

j
w 0 , 1

è ø
é ù
Íé ù
é ùé ùê ú

 and  
m

j
j 1

w 1
=

=ä  according to the following formula: 

=
-

Í = =

å õ
æ ö

=æ ö
æ öæ ö
ç ÷

= Ö + - Ö

ë ûè ø
î îé ùÖ Ö + Öì üé ù
î îé ùê úí ý

ä

ä Ô
m

1 2 m

m

j j
j 1

m i 1

ᾦ ᾮẐỔẑ ᾦ ᾮẐổẑ ᾮẐỔẑᾮ Ế i 1 j 1

AsPOWAmax a ,a ,...,a

ᾝ ọỢ Ẑẙ ᾝẑ

max g ({s })) (1 ᾦỒ ẐỦỞ ủẑẑ Ọ

 (37) 

=
-

= =
Í

å õ
æ ö

= Ö +æ ö
æ öæ ö
ç ÷ë ûè ø
î îé ùÖ + Öî îé ùî î
é ù+ - Ö ì üê úî îÖ

î î
î îí ý

ä

ä Ô
m

m

1 2 m j j
j 1

m i 1

ᾦ ᾮẐỔẑ ᾦ ᾮẐổẑ
i 1 j 1

ᾮ Ế
ᾮẐỔẑ

AsPOWAmin a ,a ,...,a ᾝ ọỢ

g ({s })) (1 ᾦỒ ẐỦỞ ủẑẑ
(1 ᾝẑ ỘỔộ

a

 (38) 

()
{ }( ){ }

=

Í = Í ¸Å

å õ
æ ö

= Ö + - Öæ ö
æ öæ ö
ç ÷ë ûè ø

î îé ù
î îé ùî î

Ö Öé ùì ü
é ùî î
é ùî îé ùî îê úí ý

ä

ä ä
I

I
m

j S j ᾮẐỔẑ

m

1 2 m j j
j 1

0
m j j

ᾮẐỔẑᾮ Ế i 1 j ᾮẐẙẑ ᾮẐỔẑF F :F s

AsPOWAmax a ,a ,...,a ᾝ ọỢ Ẑẙ ᾝẑ

m F w
max a

| F s ,...,s |

 (39) 

() { }( )
{ }

=

Í = ÍÀ ¸Å

å õ
æ ö

= Ö + - Öæ ö
æ öæ ö
ç ÷ë ûè ø

î îé ùî îé ùÖ Öì üé ùî îé ùî îê úí ý

ä

ä ä
I

I
m

j j ᾮẐỔẑ

m

1 2 m j j
j 1

m
0

j j j ᾮẐẙẑ ᾮẐỔẑ ᾮẐỔẑᾮ Ế i 1 F :F s

AsPOWAmin a ,a ,...,a ᾝ ọỢ Ẑẙ ᾝẑ

min m F w | F S ,...,S | a
(40) 
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where 
j i( j )

b a=  is the  j-th largest of the (){ }i i
a a s 0 , i 1, 2,...,m= ² = ; on S  there exists probability 

distribution (){ }i i
p P s=  with 

m

i
j 1

p 1,
=

=ä i
0 p 1¢ ¢; 

j
P

j i( 1) i( 2 ) i( j ) i( l )
l 1

w P s ,s ,..., s p
=

å õë ûæ öî îî îæ ö= =ì üæ öî îæ öî îí ýç ÷
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On the basis of the Definitions 2b and 8 analogously to the Definition 7 we may generalize the POWA operator 

induced by the FEV with respect to some monotone measure g . 

Definition 9. A Sugeno Averaging AsPOWA operator SA-AsPOWA of dimension m  is mapping  
m

0
SA AsPOWA :R R+- Ý , that has an associated objective weighted vector W of dimension m such that 
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,  according the following formula: 

where  

Now we consider SA-AsPOWA operators induced by the FEV with respect to M Max=  and M Min=  

averaging operators: 
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It is easy to prove the propositions analogously to Propositions 9-12.  But these propositions are omitted 

here.  

3.3| Information Measures of the AsPOWA and SA-AsPOWA Operators 

Analogously to [28] (see Section 3, Part I) now we extend the definitions of the information measures 

for the AsPOWA and SA-AsPOWA operators: 

Definition 10.  The Orness measure of the AsPOWA operator is the extension of the Eq. (13), Part I: 

 

 

For AsPOWAmax we receive: 

 but for AsPOWAmin we have: 

Constructing the Orness measure of the SA-AsPOWA operator induced by the FEV we receive the 

analogous extension. 

Definition 11.  The Orness measure of the SA-AsPOWA operator is the extension of the Eq. (13), Part 

I: 
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For example, for the AsPOWAmax operator we have: 

and for AsPOWAmin: 

Definition 12. The entropy (the dispersion) H of the AsPOWA  operator of the  amount  of information 

is defined as: 

 

     

 

 

 

For example, if we have AsPOWAmax operator, then 
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Definition  13. The divergence measure Div has the following face: 

 

                                                                        

where ᾜẐỂẑ  is an Orness measure of the OWA operator 
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æ ö-ç ÷
ä
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j
j 1

m j
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and ᾜẐẻẑ  is an Orness measure of associated probabilities’ aggregations: 

Analogously to Definition 13 we may construct the concrete analytical forms of the measure Div for 

AsPOWAmax and AsOWAmin and other operators with respect to different monotone measures (Here 

these formulas are omitted). 

 Definition 14. The Balance parameter of the AsPOWA operator has the following extension 

The Bal of the AsPOWAmax and AsPOWAmin operators and the H, Div, Bal parameters of the SA-

AsPOWA operator may be written analogously Definitions 10-14, but are omitted here. 

3| Conclusion 

New generalizations of the POWA operator were presented with respect to monotone measure’s APC 

and induced by the Choquet or Sugeno integrals (finite cases). There exist many combinatorial variants 

to construct faces or expressions of generalized operators: AsPOWA, and SA-AsPOWA for concrete 

mean operators (Mean, Max, Min and so on) and concrete monotone measures (Choquet capacity of 

order two, monotone measures associated with belief structure, possibility measure and Sugeno ᾦ-

additive measure). Some properties of new operators and their information measures (Orness, Enropy, 

Divergence and Balance) are proved. But only some variants (AsPOWAmax, AsPOWAmin and others) are 
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presented, the list of which may be longer that it is presented in the paper. So, other presentations of new 

operators and properties of information measures will be considered in our future research. The new 

generalizations of the FPOWA operator in the fuzzy environment with respect to monotone measures will 

be considered in the Part III of this work, where a practical example will be constructed for the illustration 

of the properties of generalized operators. 
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