Document Type : Research Paper


1 Department of Computer Science, University of Uyo, Uyo, Akwa Ibom State, Nigeria.

2 School of Electrical, Electronics and Systems Engineering, AVRRC, Loughborough University, Loughborough, UK.



This paper presents a time series analysis of a novel coronavirus, COVID-19, discovered in China in December 2019 using intuitionistic fuzzy logic system with neural network learning capability. Fuzzy logic systems are known to be universal approximation tools that can estimate a nonlinear function as closely as possible to the actual values. The main idea in this study is to use intuitionistic fuzzy logic system that enables hesitation and has membership and non-membership functions that are optimized to predict COVID-19 outbreak cases. Intuitionistic fuzzy logic systems are known to provide good results with improved prediction accuracy and are excellent tools for uncertainty modelling. The hesitation-enabled fuzzy logic system is evaluated using COVID-19 pandemic cases for Nigeria, being part of the COVID-19 data for African countries obtained from Kaggle data repository. The hesitation-enabled fuzzy logic model is compared with the classical fuzzy logic system and artificial neural network and shown to offer improved performance in terms of root mean squared error, mean absolute error and mean absolute percentage error. Intuitionistic fuzzy logic system however incurs a setback in terms of the high computing time compared to the classical fuzzy logic system.


Main Subjects

[1]       World Health Organization, Coronavirus disease (COVID-19) outbreak. Retrieved July 1, 2020, from
[2]       Patra, G. R., Das, A., & Mohanty, M. N. (2020). A time-series prediction model using long-short term memory networks for prediction of Covid – 19 data. International journal of advanced science and technology, 29(12), 2179-2183.
[3]       Pandey, G., Chaudhary, P., Gupta, R., & Pal, S. (2020). SEIR and regression model based COVID-19 outbreak predictions in India. arXiv preprint arXiv:2004.00958.
[4]       Melin, P., Monica, J. C., Sanchez, D., & Castillo, O. (2020, June). Multiple ensemble neural network models with fuzzy response aggregation for predicting COVID-19 time series: the case of Mexico. In healthcare, 8(2), 181, multidisciplinary digital publishing institute.
[5]       Bastos, S. B., & Cajueiro, D. O. (2020). Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil. Scientific reports10(1), 1-10.
[6]       Zhao, S., & Chen, H. (2020). Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quantitative biology, 8, 11-19.
[7]       Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., Yan, P., & Chowell, G. B. (2020). Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020. Infectious disease modelling5, 256-263.
[8]       Anastassopoulou, C., Russo, L., Tsakris, A., & Siettos, C. (2020). Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PloS one15(3), e0230405.
[9]       Chimmula, V. K. R., & Zhang, L. (2020). Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons & Fractals135, 109864.
[10]    Alboaneen, D., Pranggono, B., Alshammari, D., Alqahtani, N., & Alyaffer, R. (2020). Predicting the epidemiological outbreak of the coronavirus disease 2019 (COVID-19) in Saudi Arabia. International journal of environmental research and public health17(12), 4568.
[11]    Ceylan, Z. (2020). Estimation of COVID-19 prevalence in Italy, Spain, and France. Science of the total environment729, 138817.
[12]    Ribeiro, M. H. D. M., da Silva, R. G., Mariani, V. C., & dos Santos Coelho, L. (2020). Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, solitons and fractals135, 109853.
[13]    Pinter, G., Felde, I., Mosavi, A., Ghamisi, P., & Gloaguen, R. (2020). COVID-19 pandemic prediction for Hungary; a hybrid machine learning approach. Mathematics8(6), 890.
[14]    Remuzzi, A., & Remuzzi, G. (2020). COVID-19 and Italy: what next?. The lancet395(10231), 1225-1228.
[15]    Rovetta, A., Bhagavathula, A. S., & Castaldo, L. (2020). Modeling the epidemiological trend and behavior of COVID-19 in Italy. Cureus12(8), e9884. DOI: 10.7759/cureus.9884
[16]    Alsayed, A., Sadir, H., Kamil, R., & Sari, H. (2020). Prediction of epidemic peak and infected cases for COVID-19 disease in Malaysia, 2020. International journal of environmental research and public health17(11), 4076.
[17]    Kuniya, T. (2020). Prediction of the epidemic peak of coronavirus disease in Japan, 2020. Journal of clinical medicine9(3), 789.
[18]    Olfatifar, M., Houri, H., Shojaee, S., Pourhoseingholi, M. A., Alali, W. Q., Busani, L., ... & Asadzadeh Aghdaei, H. (2020). The required confronting approaches efficacy and time to control COVID-19 outbreak in Iran. Archives of clinical infectious diseases15(COVID-19).
DOI: 10.5812/archcid.102633
[19]    Petropoulos, F., & Makridakis, S. (2020). Forecasting the novel coronavirus COVID-19. PloS one15(3), e0231236.
[20]    Eyoh, I., John, R., & De Maere, G. (2017, July). Time series forecasting with interval type-2 intuitionistic fuzzy logic systems. 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 1-6). IEEE.DOI: 10.1109/FUZZ-IEEE.2017.8015463
[21]    Al-Qaness, M. A., Ewees, A. A., Fan, H., & Abd El Aziz, M. (2020). Optimization method for forecasting confirmed cases of COVID-19 in China. Journal of clinical medicine9(3), 674.
[22]    Dhiman, N., & Sharma, M. (2020). Fuzzy logic inference system for identification and prevention of Coronavirus (COVID-19). International journal of innovative technology and exploring engineering9(6).
[23]    Fong, S. J., Li, G., Dey, N., Crespo, R. G., & Herrera-Viedma, E. (2020). Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Applied soft computing93, 106282.
[24]    Fatima, S. A., Hussain, N., Balouch, A., Rustam, I., Saleem, M., & Asif, M. (2020). IoT enabled smart monitoring of coronavirus empowered with fuzzy inference system. International journal of advance research, ideas and innovations in technology6(1), 188-194.
[25]    Verma, P., Khetan, M., Dwivedi, S., & Dixit, S. (2020). Forecasting the covid-19 outbreak: an application of arima and fuzzy time series models. DOI: 10.21203/
[26]    Van Tinh, N. (2020). Forecasting of COVID-19 Confirmed cases in Vietnam using fuzzy time series model combined with particle swarm optimization. Comput. Res. Progr. Appl. Sci. Eng.6(2), 114-120.
[27]    Kumar, M. (2019). Evaluation of the intuitionistic fuzzy importance of attributes based on the correlation coefficient under weakest triangular norm and application to the hotel services. Journal of intelligent & fuzzy systems36(4), 3211-3223.DOI: 10.3233/JIFS-18485
[28]    Atanassov, K. T. (1999). Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets (pp. 1-137). Physica, Heidelberg.
[29]    Wang, Y. N., Lei, Y., Fan, X., & Wang, Y. (2016). Intuitionistic fuzzy time series forecasting model based on intuitionistic fuzzy reasoning. Mathematical problems in engineering.
[30]    Bisht, K., Joshi, D. K., & Kumar, S. (2018). Dual hesitant fuzzy set-based intuitionistic fuzzy time series forecasting. In Ambient communications and computer systems (pp. 317-329). Singapore: Springer.
[31]    Bas, E., Yolcu, U., & Egrioglu, E. (2020). Intuitionistic fuzzy time series functions approach for time series forecasting. Granular computing, 1-11.
[32]    Abhishekh, Gautam, S. S., & Singh, S. R. (2020). A new method of time series forecasting using intuitionistic fuzzy set based on average-length. Journal of industrial and production engineering37(4), 175-185.
[33]    Tak, N. (2020). Type-1 recurrent intuitionistic fuzzy functions for forecasting. Expert systems with applications140, 112913.
[34]    Fan, X., Wang, Y., & Zhang, M. (2020). Network traffic forecasting model based on long-term intuitionistic fuzzy time series. Information sciences506, 131-147.
[35]    Eyoh, I., John, R., De Maere, G., & Kayacan, E. (2018). Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems. IEEE Transactions on fuzzy systems26(5), 2672-2685.DOI: 10.1109/TFUZZ.2018.2803751
[36]    Imtiaz, M., Saqlain, M., & Saeed, M. (2020). TOPSIS for multi criteria decision making in octagonal intuitionistic fuzzy environment by using accuracy function. Journal of new theory, (31), 32-40.
[37]    Castillo, O., Kutlu, F., & Atan, Ö. (2020). Intuitionistic fuzzy control of twin rotor multiple input multiple output systems. Journal of intelligent and fuzzy systems38(1), 821-833.doi: 10.3233/JIFS-179451
[38]    Kabir, S., Geok, T. K., Kumar, M., Yazdi, M., & Hossain, F. (2019). A method for temporal fault tree analysis using intuitionistic fuzzy set and expert elicitation. IEEE access8, 980-996.DOI: 10.1109/ACCESS.2019.2961953
[39]    Kumar, M., & Kaushik, M. (2020). System failure probability evaluation using fault tree analysis and expert opinions in intuitionistic fuzzy environment. Journal of loss prevention in the process industries67, 104236.
[40]    Edalatpanah, S. A. (2019). A data envelopment analysis model with triangular intuitionistic fuzzy numbers. International journal of data envelopment analysis7(4), 47-58.
[41]    Ejegwa, P. A., & Onyeke, I. C. (2020). Medical diagnostic analysis on some selected patients based on modified Thao et al.’s correlation coefficient of intuitionistic fuzzy sets via an algorithmic approach. Journal of fuzzy extension and applications1(2), 130-141.
[42]    Khatibi, V., & Montazer, G. A. (2009). Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition. Artificial intelligence in medicine47(1), 43-52.
[43]    Rahman, A. U., Ahmad, M. R., Saeed, M., Ahsan, M., Arshad, M., & Ihsan, M. (2020). A study on fundamentals of refined intuitionistic fuzzy set with some properties. Journal of fuzzy extension and applications1(4), 300-314.
[44]    Zadeth, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.
[45]    Radhika, C., & Parvathi, R. (2016). Intuitionistic fuzzification functions. Global Journal of pure and applied mathematics12(2), 1211-1227.
[46]    Hájek, P., & Olej, V. (2015, September). Intuitionistic fuzzy neural network: The case of credit scoring using text information. International conference on engineering applications of neural networks (pp. 337-346). Cham Springer.
[47]    Mahapatra, G. S., & Roy, T. K. (2013). Intuitionistic fuzzy number and its arithmetic operation with application on system failure. Journal of uncertain systems7(2), 92-107.
[48]    Imo Jeremiah, E. Y. O. H. (2018). Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling (Doctoral dissertation, University of Nottingham), PhD thesis, University of Nottingham. Retrieved from
[49]    Hájek, P., & Olej, V. (2014, August). Defuzzification methods in intuitionistic fuzzy inference systems of Takagi-Sugeno type: the case of corporate bankruptcy prediction. 11th international conference on fuzzy systems and knowledge discovery (FSKD) (pp. 232-236). IEEE.DOI: 10.1109/FSKD.2014.6980838
[50]    Africa COVID-19 Daily Cases. (2020). Retrieved June 27, 2020 from
[51]    Elmousalami, H. H., & Hassanien, A. E. (2020). Day level forecasting for Coronavirus Disease (COVID-19) spread: analysis, modeling and recommendations. arXiv preprint arXiv:2003.07778