Document Type : Research Paper


Department of Computer Engineering, Sirnak University, Turkey.


Due to developments in printing technology, the number of counterfeit banknotes is increasing every year. Finding an effective method to detect counterfeit banknotes is an important task in business. Finding a reliable method to detect counterfeit banknotes is a crucial challenge in the world of economic transactions. Due to technological development, counterfeit banknotes may pass through the counterfeit banknote detection system based on physical and chemical properties undetected. In this study, an intelligent counterfeit banknote detection system based on a Genetic Fuzzy System (GFS) is proposed to detect counterfeit banknotes efficiently. GFS is a hybrid system that uses a network architecture to fine-tune the membership functions of a fuzzy inference system. The learning algorithms Fuzzy Classification, Genetic Fuzzy Classification, ANFIS Classification, and Genetic ANFIS Classification were applied to the dataset in the UCI machine learning repository to detect the authenticity of banknotes. The developed model was evaluated based on Accuracy (ACC), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Error Mean, Error STD, and confusion matrix. The experimental results and statistical analysis showed that the classification performance of the proposed model was evaluated as follows: Fuzzy = 97.64%, GA_Fuzzy = 98.60%, ANFIS = 80.83%, GA_ANFIS = 97.72% accuracy (ACC). This shows the significant potential of the proposed GFS models for fraud detection.


Main Subjects

  1. Lundblad, L. J., Vedin, L., & Bjorkman, C. (2015). S. Patent No. 8,942,461. Washington, DC: U.S. Patent and Trademark Office.
  2. Lee, S. H., & Lee, H. Y. (2018). Counterfeit bill detection algorithm using deep learning. International journal of applied engineering research13(1), 304-310.
  3. Kasie, F. M., & Bright, G. (2021). Integrating fuzzy case-based reasoning, parametric and feature-based cost estimation methods for machining process. Journal of modelling in management, 16(3), 825–847. DOI: 1108/JM2-05-2020-0123/FULL/HTML
  4. Al-Gawda, M., Beiji, Z., & Mohammed, N. (2016). Yemeni mobile counterfeit detection system using support vector machines, fuzzy logic and image processing techniques. Journal of computational and theoretical nanoscience13(5), 2965-2977. DOI:
  5. Pham, T. D., Lee, D. E., & Park, K. R. (2017). Multi-national banknote classification based on visible-light line sensor and convolutional neural network. Sensors17(7), 1595.
  6. Takeda, F., Sakoobunthu, L., & Satou, H. (2003). Thai banknote recognition using neural network and continues learning by DSP unit. International conference on knowledge-based and intelligent information and engineering systems(pp. 1169-1177). Springer, Berlin, Heidelberg.
  7. Youn, S., Choi, E., Baek, Y., & Lee, C. (2015). Efficient multi-currency classification of CIS banknotes. Neurocomputing156, 22-32.
  8. Yan, W. Q., Chambers, J., & Garhwal, A. (2015). An empirical approach for currency identification. Multimedia tools and applications74(13), 4723-4733.
  9. Zhang, E. H., Jiang, B., Duan, J. H., & Bian, Z. Z. (2003). Research on paper currency recognition by neural networks. Proceedings of the 2003 international conference on machine learning and cybernetics (IEEE Cat. No. 03EX693)(Vol. 4, pp. 2193-2197). IEEE. DOI: 1109/ICMLC.2003.1259870
  10. Cao, B. Q., & Liu, J. X. (2010). Currency recognition modeling research based on BP neural network improved by gene algorithm. 2010 second international conference on computer modeling and simulation(Vol. 2, pp. 246-250). IEEE. DOI: 1109/ICCMS.2010.270
  11. Al-Gawda, M., Beiji, Z., & Mohammed, N. (2016). Yemeni mobile counterfeit detection system using support vector machines, fuzzy logic and image processing techniques. Journal of computational and theoretical nanoscience13(5), 2965-2977. DOI:
  12. Alnowaini, G., Alabsi, A., & Ali, H. (2019). Yemeni paper currency detection system. 2019 first international conference of intelligent computing and engineering (ICOICE)(pp. 1-7). IEEE. DOI: 1109/ICOICE48418.2019.9035192
  13. Lee, J. W., Hong, H. G., Kim, K. W., & Park, K. R. (2017). A survey on banknote recognition methods by various sensors. Sensors17(2), 313.
  14. Frosini, A., Gori, M., & Priami, P. (1996). A neural network-based model for paper currency recognition and verification. IEEE transactions on neural networks7(6), 1482-1490. DOI:1109/72.548175
  15. Yeh, C. Y., Su, W. P., & Lee, S. J. (2011). Employing multiple-kernel support vector machines for counterfeit banknote recognition. Applied soft computing11(1), 1439-1447.
  16. Takeda, F., Nishikage, T., & Omatu, S. (1999). Banknote recognition by means of optimized masks, neural networks and genetic algorithms. Engineering applications of artificial intelligence12(2), 175-184.
  17. Kaburlasos, V. G., & Kehagias, A. (2013). Fuzzy inference system (FIS) extensions based on the lattice theory. IEEE transactions on fuzzy systems22(3), 531-546. DOI:1109/TFUZZ.2013.2263807
  18. Basturk, A., Basturk, N. S., Degbedzui, D. K., & Yuksel, M. E. (2021). Efficient detection of counterfeit banknotes using adaptive network based fuzzy inference systems. 2021 13th international conference on electrical and electronics engineering (ELECO)(pp. 575-579). IEEE. DOI: 23919/ELECO54474.2021.9677736
  19. Rashidpour, M., Abdali-Mohammadi, F., & Fathi, A. (2016). Fall detection using adaptive neuro-fuzzy inference system.  J. Multimed. Ubiquitous Eng11, 91-106.
  20. Chhabra, A., Kim, D., & Cohen, K. (2020). Enhanced cascaded genetic fuzzy system for counterfeit banknote detection. North american fuzzy information processing society annual conference(pp. 277-287). Springer, Cham.
  21. Forrest, S. (1996). Genetic algorithms. ACM computing surveys (CSUR)28(1), 77-80.
  22. Arnett, T., Ernest, N., Kunkel, B., & Boronat, H. (2020). Formal verification of a genetic fuzzy system for unmanned aerial vehicle navigation and target capture in a safety corridor. North american fuzzy information processing society annual conference(pp. 361-372). Springer, Cham.
  23. Ernest, N., Cohen, K., Kivelevitch, E., Schumacher, C., & Casbeer, D. (2015). Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles. Unmanned systems3(03), 185-204.
  24. Buckles, B. P., Petry, F. E., Prabhu, D., George, R., & Srikanth, R. (1994). Fuzzy clustering with genetic search. Proceedings of the first IEEE conference on evolutionary computation. IEEE world congress on computational intelligence(pp. 46-50). IEEE. DOI: 1109/ICEC.1994.350044
  25. Carse, B., Fogarty, T. C., & Munro, A. (1996). Evolving fuzzy rule based controllers using genetic algorithms. Fuzzy sets and systems80(3), 273-293.
  26. Cordón, O., Herrera, F., Gomide, F., Hoffmann, F., & Magdalena, L. (2001). Ten years of genetic fuzzy systems: current framework and new trends. Proceedings joint 9th IFSA world congress and 20th NAFIPS international conference (Cat. No. 01TH8569)(Vol. 3, pp. 1241-1246). IEEE. DOI: 1109/NAFIPS.2001.943725
  27. Cordón, O., Herrera, F., Hoffmann, F., & Magdalena, L. (2001). Genetic fuzzy systems. World Scientific.
  29. Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.
  30. Taylor, E. (1994). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. complex adaptive systems. John H. Holland. The quarterly review of biology, 69(1), 88-89.
  31. Heiss-Czedik, D. (1997). An introduction to genetic algorithms. Artificial life3(1), 63-65.
  32. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Longman Publishing Co., Inc.
  33. Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics23(3), 665-685. DOI:1109/21.256541
  34. Armaghani, D. J., & Asteris, P. G. (2021). A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural computing and applications33(9), 4501-4532.
  35. Milan, S. G., Roozbahani, A., Azar, N. A., & Javadi, S. (2021). Development of adaptive neuro fuzzy inference system–Evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation. Journal of hydrology598, 126258.
  36. Kardani, N., Bardhan, A., Kim, D., Samui, P., & Zhou, A. (2021). Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM, GMDH, ANFIS-BBO and ANFIS-IPSO. Journal of building engineering35, 102105.
  37. Dirik, M. (2022). Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA. Fuel321, 124037.
  38. Siddique, N. (2014). Intelligent control: a hybrid approach based on fuzzy logic, neural networks and genetic algorithms (Vol. 517). Springer.
  39. Ahmad, F., Mat Isa, N. A., Hussain, Z., Osman, M. K., & Sulaiman, S. N. (2015). A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern analysis and applications18(4), 861-870.
  40. Harandizadeh, H., & Armaghani, D. J. (2021). Prediction of air-overpressure induced by blasting using an ANFIS-PNN model optimized by GA. Applied soft computing99, 106904.
  41. Martínez-Soto, R., Castillo, O., & Aguilar, L. T. (2014). Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO–GA optimization method. Information sciences285, 35-49.
  42. Le, L. T., Nguyen, H., Dou, J., & Zhou, J. (2019). A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning. Applied sciences9(13), 2630.
  43. Kardani, N., Bardhan, A., Kim, D., Samui, P., & Zhou, A. (2021). Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM, GMDH, ANFIS-BBO and ANFIS-IPSO. Journal of building engineering35, 102105.
  44. Zanganeh, M. (2020). Improvement of the ANFIS-based wave predictor models by the particle swarm optimization. Journal of ocean engineering and science5(1), 84-99.
  45. Basser, H., Karami, H., Shamshirband, S., Akib, S., Amirmojahedi, M., Ahmad, R., ... & Javidnia, H. (2015). Hybrid ANFIS–PSO approach for predicting optimum parameters of a protective spur dike. Applied soft computing30, 642-649.
  46. Mostafaei, M., Javadikia, H., & Naderloo, L. (2016). Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy115, 626-636.
  47. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ computer science7, e623.
  48. Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding RMSE in the literature. Geoscientific model development7(3), 1247-1250., 2014
  49. Biau, D. J. (2011). In brief: standard deviation and standard error. Clinical orthopaedics and related research, 469, 2661–2664.
  50. Mostafaei, M. (2018). ANFIS models for prediction of biodiesel fuels cetane number using desirability function. Fuel216, 665-672.
  51. Makhtar, M., Neagu, D. C., & Ridley, M. J. (2011). Comparing multi-class classifiers: on the similarity of confusion matrices for predictive toxicology applications. International conference on intelligent data engineering and automated learning(pp. 252-261). Springer, Berlin, Heidelberg.
  52. Catal, C. (2012). Performance evaluation metrics for software fault prediction studies. Acta polytechnica hungarica9(4), 193-206.