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Abstract 
Sambathkumar introduces the notion of global domination in graphs. 

Nagoorgani and Jahir Hussain introduced the concept of global domination in 
fuzzy graphs using effective arcs. This paper presents global domination in 
fuzzy graphs using strong arcs. The strong global domination number of different 
classes of fuzzy graphs is obtained. An upper bound for the strong global 
domination number of fuzzy graphs is obtained. Strong global domination in 
fuzzy trees is studied. It is established that every node of a strong global 
dominating set of a fuzzy tree is either a fuzzy cut node or a fuzzy end 
node. It is proved that in a fuzzy tree, each node of a strong global dominating set 
is incident on a fuzzy bridge. Also, the characteristic properties of the 
existence of a strong global dominating set for a fuzzy graph and its complement 
are established. 
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strong global domination. 
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1 Introduction 

Fuzzy graphs were introduced by Rosenfeld [26]. Rosenfeld has described the 
fuzzy analog of several graph theoretic concepts like paths, cycles, trees, and 
connectedness and established some of their properties [26]. Bhutani and 
Rosenfeld have introduced the concept of strong arcs [9]. Akram also does 
several works on fuzzy graphs, Dudek, Davvaz, Sunitha R.A. Borzooei, Hossein 
Rashmanlou, and Pal [1, 2, 16, 5, 32, 28]. Global domination in graphs was 
discussed by Sampathkumar [7]. Somasundaram and Somasundaram dis- 
cussed domination in fuzzy graphs. They defined domination using effective 
edges in fuzzy graphs [29, 30]. Nagoorgani and Chandrasekharan explained 
domination in fuzzy graphs using strong arcs [21]. Manjusha and Sunitha 
discussed some concepts of domination and total domination in fuzzy graphs 
using strong arcs [15, 16]. Akram did related works on bipolar fuzzy graphs, 
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Waseem and Madhumangal Pal [4, 3, 22]. This paper discusses global 
domination in fuzzy graphs using strong arcs. 

 

 

2 Preliminaries 

It is pretty well-known that graphs are simply models of relations. A graph 
is a convenient way of representing information involving the relationship 
between objects. Vertices and relations by edges represent the objects. When 
there is vagueness in the description of the objects, their relationships, or 
both, it is natural that we must design a 'fuzzy graph model.' It briefly 
summarises some basic definitions in fuzzy graphs presented in [8, 9, 15, 20, 
21, 23, 26, 12, 29, 31]. 

 
A fuzzy graph is denoted by ),,(: VG , where V  is a node- set,   

and      are mappings defined as ]1,0[: →V  and ]1,0[: →VV , where   

and   represent the membership values of a node and an arc respectively. 

For any fuzzy  graph,  )()(),( yxyx   .   We  consider  fuzzy  graph G  

with no loops and assume that V  is finite and nonempty,   is reflexive 

(i.e., )(),( xxx   , for all x) and symmetric (i.e., ),(),( xyyx  = , for 

all (x, y)). In all the examples,   is chosen suitably. Also, we denote the 

underlying crisp graph by G∗ : (σ∗, µ∗) where σ∗ =  0)(:  uVu   and 

 0),(:),(  vuVVvu  .  Throughout, we assume that V= . The fuzzy 

graph ),(: H  is said to be a partial fuzzy subgraph of ),,(: VG  if 

   and   .  In particular, we call ),(: H  a fuzzy subgraph of 

),,(: VG  if )()( uu  =  for all u  and ),(),( vuvu  =  for all ),( vu . 

A fuzzy graph ),,(: VG  is called trivial if 1=


 .  Two nodes u  and v  in a 

fuzzy graph G  are said to be adjacent (neighbors) if 0),( vu . The set of all 

neighbors of u  is denoted by )(uN . 

An arc ),( vu  of a fuzzy graph ),,(: VG  with 0),( vu  is called a 
the weakest arc of G  if ),( vu  is an arc with a  minimum ),( vu . 

A path P  of length n  is a sequence of distinct nodes no uuu ,........,, 1  

such that niuu ii ,......2,1,0),( 1 =− and the degree of membership of the 

weakest arc is defined as its strength. If nuu =0 , and 3n , then P  is called 

a cycle, and P  is called a fuzzy cycle if it contains more than one weakest 
arc. A cycle's strength is the strength of its weakest arc. The strength of 
connectedness between two nodes, x  and y , is defined as the maximum of 

the strengths of all paths between x  and y  and is denoted by 

),( yxCONN G . 

A fuzzy graph ),,(: VG  is connected if for every x , y  in 


 , 
0),( yxCONN G  

 

An arc ),( vu  of a fuzzy graph is called an effective arc if )()(),( vuvu  = .   

Then u  and v  are called effective neighbors.   The set of all effective 
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 neighbors of u  are called t h e  effective neighborhood of u  and are denoted 
by 

)(uEN . 
A fuzzy graph ),,(: VG  is said to be complete if µ )()(),( vuvu  = , 

for all u, v ∈ σ∗. 

The order p  and size q  of a fuzzy graph ),,(: VG  is defined to be 




=
Vx

xp )(  and 


=
VVyx

yxq
),(

),( . 
 
Let ),,(: VG  be a fuzzy graph and VS  . Then the scalar cardinality 

of S is defined to be
Sv

v)( , and it is denoted by 
s

S . Let p  denotes the 

scalar cardinality of V , also called the order of G . 

The complement of a fuzzy graph ),,(: VG , denoted by G , is 

defined   to be G = (V, σ, µ) where ),()()(),( yxyxyx  −=  for all x, y ∈ 

V [33].  An arc of a fuzzy graph  G  :  (V, σ, µ)  is called strong if its weight is at 
least as great as the strength of connectedness of its end nodes when it is 
deleted. A fuzzy graph G is called a strong fuzzy graph if each arc in G is  

a strong arc. Depending on CONNG(x, y) of an arc (x, y) in a fuzzy graph 
G,  Mathew, and Sunitha [31] defined three different types of arcs. Note 

that  CONNG−(x,y)(x, y) is the strength of connectedness between x and y in 
the fuzzy graph obtained from G by deleting the arc (x, y).  An arc (x, y) 

in G is α− strong if µ(x, y) > CONNG−(x,y)(x, y).   An arc (x, y) in G is 

β− strong if µ(x, y) = CONNG−(x,y)(x, y). An arc (x, y) in G is δ− arc if 
µ(x, y) < CONNG−(x,y)(x, y). 
Thus, an arc (x, y)  is strong if it is either α strong or β strong. Also, y is 
called a  strong neighbor of x if t h e  arc (x,y) is strong. The set of all 
strong neighbors of x is called the strong neighborhood of x and is 
denoted by Ns(x). The closed strong  neighborhood Ns[x] is defined as 

 xxNxN ss = )(][  A path P  is called a strong path if P contains only 

strong arcs. 

A fuzzy graph G : (V, σ, µ) is said to be bipartite [29] if the vertex set V 
can be partitioned into two non- empty sets V1 and V2 such that µ(v1, v2) = 0 

if v1, v2 ∈ V1 or v1, v2 ∈ V2. Further if )()(),( yxyx  =  for all u ∈ V1 

and v ∈ V2, then G is called a complete bipartite graph and is denoted by 
Kσ1,σ2, where σ1 and σ2 are respectively the restrictions of σ to V1 and V2. 

 

A node u is said to be isolated if µ(u, v) = 0 for all uv   

 
3 Strong Global Domination in Fuzzy Graphs 

This section introduces the concept of global domination in fuzzy graphs 
using strong arcs. Recall the notion of global domination in graphs introduced 
by Sambathkumar [7]. According to him, a dominating set S of G is a global 
dominating set of G if S is also a dominating set of the complement of G. 
The minimum number of vertices in a global dominating set of G is the global 
domination number γg(G) of G. 
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Nagoorgani and Jahir Hussain [24] introduced the concept of global 
domination in fuzzy graphs using effective arcs. According to then a set 

VD   is a dominating set of a fuzzy graph G if every vertex in V\ D is 

effective adjacent to some vertex in D. A fuzzy dominating set D of an 
effective fuzzy graph G is a global fuzzy dominating set if D is also a fuzzy 
dominating set of the complement of a fuzzy graph G. The global fuzzy 
domination number is the minimum fuzzy cardinality of a fuzzy global 
dominating set. These concepts have motivated researchers to reformulate 
the concept of global domination more effectively. The studies in [24] are 
the main motivation of this article,  and it is introduced the definition of 
global domination of a fuzzy graph using strong arcs. This introduction is 
essential because the parameter 'global domination number' defined by 
Nagoor gani and Jahir Hussain [24] is inclined more towards graphs than 
fuzzy graphs. Using the new definition of global domination number, it is 
possible to reduce the value of the old global domination number and 
extract classic results in a fuzzy graph. 

Definition 3.1 [21] A node v in a fuzzy graph G :  (V, σ, µ)  is said to strongly 
dominate itself and each of its strong neighbors ; that is, v strongly 
dominates the nodes in Ns[v].  A set D of nodes of G is a strong dominating 

G set if every node of V (G) − D is a strong neighbor of some node in D. 

Definition 3.2 A strong dominating set D of a fuzzy graph G : (V, σ, µ) is 
called a strong global dominating set of G if D is also a strong dominating set 
of the complement of the fuzzy graph G. 

 

Definition 3.3 The weight of a strong global dominating set D is defined 
as W (D) =   u∈D µ(u, v),  where µ(u, v) is the minimum of the membership 
values (weights) of the strong arcs incident on u. The strong global domination 
number of a fuzzy graph G is defined as the minimum weight of strong global 
dominating sets of G, and it is denoted by )(Gsg  or simply sg . A 

minimum strong global dominating set in a fuzzy graph G is a strong global 
dominating set of minimum weight. 

 

Let γsg(G) or γsg denote the strong global domination number of the 
complement of a fuzzy graph G. 

 

Remark 3.4 Note that in any undirected fuzzy graph G : (V, σ, µ),  for any 
x, y V, if (x, y) is a strong arc in G, then (x, y) need not be a strong arc in 

G . That is, if x strongly dominates y in G, then x need not strongly 

dominate y in G . 
 

Remark 3.5 If all the nodes are isolated, then V is the only strong global 
dominating set of G of order p and γsg = 0. That is, Ns(u) = ϕ for each u ∈ V. 
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Example 3.6 Consider the fuzzy graph given in Fig. 1. 

 

u(0.6) 
. 

0.1 v(0.7) 
. 

 

 

0.2 0.4 
 

 
w(0.8) 

 
0.3 

. 

x(0.9) 

Fig. 1 Illustration of strong global domination in fuzzy graphs 
 
 

In this fuzzy graph, strong arcs are (u, w), (w, x), and (x, v). The strong 
global dominating sets are D1 = {u, x}, D2 = {u, v}, D3 = {w, x},and D4 = 

{v, w}. Among these, the minimum strong global dominating sets are D1 and 
D3 where 

 

 
 

Hence 

W (D1) = 0.2 + 0.3 = 0.5 and W (D3) = 0.2 + 0.3 = 0.5. 

 

 
γsg = 0.5. 

 

4 Strong Global Domination number for classes 

of Fuzzy graphs 

This section determines the strong global domination number of a complete 
fuzzy graph, complete bipartite fuzzy graphs, and fuzzy cycles. 

Proposition 4.1  If G : (V, σ, µ) is a complete fuzzy graph, then 

γsg(G) = nµ(u, v), 

where n is the number of nodes in G and µ(u, v) is the weight of the weakest 
arc in G. 

Proof: Since G is a complete fuzzy graph, all arcs are strong [29] and each 
node is adjacent to all other nodes. Also, all  nodes  in  Ḡ are isolated nodes 
Hence the set of all nodes of G is the strong global dominating set of G. Hence 
the result follows. 

 

Proposition 4.2 In any fuzzy graph G : (V, σ, µ), the number of elements 
in any minimum strong global dominating set of both  G  and  Ḡ  are the  same. 
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Proof: By,  def in it ion,  a  st rong g lobal  dominat ing set  i s  a dominat ing 

set  of  both   G and  Ḡ  .  Hence the proposition .  

Proposition 4.3 γsg(Kσ1,σ2 ) = 2µ(u, v), where µ(u, v) is the weight of the 
weakest arc in Kσ1,σ2 and u ∈ V1, v ∈ V2. 

Proof: In Kσ1,σ2 , all arcs are strong. Also, each node in V1 is adjacent to all 
nodes in V2. Hence in Kσ1,σ2 , the strong global dominating set is any set 
containing precisely two nodes, one in V1 and t h e  other in V2. The end 
nodes say 
{u, v} of any weakest arc (u, v) in Kσ1,σ2 forms the minimum strong global 
dominating set of G. Hence γsg(Kσ1,σ2 ) = µ(u, v) + µ(u, v) = 2µ(u, v). So the 
proposition is proved. 

Theorem 4.4 Let G : (V, σ, µ) be a fuzzy cycle where G∗ is a cycle. Then, 

γsg(G) =  W (D) : D  is  a  strong  global  dominating  set  in  G  with |D| ≥ 








3

n
 , 

where n is the number of nodes in G. 

Proof: In a fuzzy cycle, every arc is strong. Also, the number of nodes in a 
strong global dominating set of both G and G∗ are the same because each arc 
in both graphs is strong. In graph G∗, the strong global domination number 
of 
G∗ is obtained as ⌊ n ⌋ [27]. Hence the minimum number of nodes in a strong 
global dominating set of G is ⌊ n ⌋. Therefore the result follows. 

Proposition 4.5 Let G : (V, σ, µ) be a non trivial fuzzy graph of size q. Then 
γsg(G) = q if and only if all arcs are strong and each node is either isolated or 
has a unique, strong neighbor. 

Proof: If all arcs are strong and each node is either an isolated node or has a 
unique, strong neighbor, then the minimum strong global dominating set of 
G      is a set D containing nodes, each of which is either an isolated node or an 
end node of each unique, strong arc. Hence the weight of D is exactly 

 

 

 
Hence γsg = q. 

W (D) = 
u∈D 

µ(u, v) = q. 

Conversely, suppose that γsg = q. To prove that all arcs are strong and each 
node is either isolated or has a unique, strong neighbor. If possible, let (u, v) 
be an arc of G, which is not strong. Then the weight of this arc is not 
counted for getting γsg. Hence γsg < q, a contradiction. Hence all arcs are 
strong. 

Let x be any node of G. If x is an isolated node, then clearly, x is contained 
in the minimum strong global dominating set. If possible, suppose x has two 
strong neighbors say v and w. Then exactly one of the weights of the arcs (x, v) 
and (x, w) contribute to the weight of the minimum strong global dominating 
set. Hence γsg < q, a contradiction. Hence each node has a unique, strong 
neighbor. 
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Remark 4.6 In Proposition 4.5, G is exactly S ∪ N where S is a set of 
isolated nodes, may be empty, and N is a union of K2 s. 

Remark 4.7  In any fuzzy graph G : (V, σ, µ),  sg   < p always holds since 

µ(x, y) ≤ σ(x)   σ(y) for all x, y ∈ σ∗.  [p is the scalar cardinality of G, 

which is obtained by using the node weights, and sg  is the weight of the 

minimum strong global dominating set, which is obtained by using the arc 
weights]. 

For the strong global domination number sg , the following theorem gives a 

Nordhaus-Gaddum type result. 

Theorem 4.8  For any fuzzy graph G : (V, σ, µ), γsg + γsg < 2p. 

Proof: Since γsg < p and γsg < p by Remark 4.7, we have γsg +γsg < p+p = 2p. 

Definition 4.9 A strong global dominating set D of a fuzzy graph  G  : (V, σ, 
µ) is called a minimal strong global dominating set if no proper subset of  D is 
a strong global dominating set. 

Example 4.10  In Fig.1 of Example 3.6,   D =    vu,   is a minimal strong 

global dominating set. 

Definition 4.11 [18] A strong dominating set D of a fuzzy graph G : 
(V, σ, µ) is a strongly connected dominating set of G if the induced fuzzy 
sub graph < D > is connected. 

Remark 4.12 [18] Note that a fuzzy graph G : (V, σ, µ) contains a strong, 
connected dominating set if and only if G is connected. 

Definition 4.13 [18] The weight of a strong, connected dominating set 
D is defined as W (D) = u∈D µ(u, v), where µ(u, v) is the minimum of the 

membership values(weights) of strong arcs incident on u. The strong connected  
domination number of a fuzzy graph G is defined as the minimum weight of 
strong, connected dominating sets of G, and it is denoted by γsc(G) or 
simply γsc. A minimum strong, connected dominating set in a fuzzy graph G is a 
strong, connected dominating set of minimum weight. 

Let γsc(G) or γsc denote the strong connected domination number of the 
complement of a fuzzy graph G. 

Remark 4.14 Let D be a minimum strong global dominating set of a fuzzy 
graph G : (V, σ, µ). Then D induces a connected subgraph in  G  or Gc.  Hence D 
is a strongly connected dominating set of G or Gc. Thus the following 
proposition is established. 

Proposition 4.15 For any fuzzy graph G : (V, σ, µ), at least one of the 
following holds. 

(i)γsc ≤γsg (ii)γsc ≤γsg . 
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5 Strong Global Domination in Complement 

of Fuzzy Graphs 

Sunitha and Vijayakumar [33] have defined the present notion of the 
complement of a fuzzy graph. Sandeep and Sunitha have studied the 
connectivity concepts in a fuzzy graph and its complement [28]. The 

complement of a  fuzzy graph G, denoted by G  or cG  is defined to be 

),,( VG =  where ),()()(),( yxyxyx  −= for all Vyx ,  [33]. 

Bhutani has defined the isomorphism between fuzzy graphs [8]. 
Consider  the fuzzy graphs  G1  : (V1, σ1, µ1)  and  G2  : (V2, σ2, µ2)  with  σ1

∗   = V1 
and σ2

∗  = V2.  An isomorphism [8] between two fuzzy graphs G1  and G2  is a 
bijective map h: V1 → V2 that satisfies 

 
σ1(u) = σ2(h(u)) for all u ∈ V1. 

µ1(u, v) = µ2(h(u), h(v)) for all u, v ∈ V1 and we write G1 ≈ G2. 

A fuzzy graph G is self- complementary [33] if G ≈ G. 

Theorem 5.1 [33] If G is an M-strong fuzzy graph, then cG  is also an M-
strong fuzzy graph. 

 

Theorem 5.2 If G is an M-strong fuzzy graph, then G and cG  have the 
same  strong global dominating set. 

 

Proof: By Theorem 5.1, if G is an M-strong fuzzy graph, then Gc is also an M- 
strong fuzzy graph. Then the end nodes of the M-strong arcs in G are isolated 
nodes in Gc, and isolated nodes in G are the end nodes of M-strong arcs in Gc. 
Hence every strong global dominating set of G is a strong global dominating 
set of Gc and vice-versa. Thus the theorem follows. 

Theorem  5.3  Every non-trivial self-complementary connected fuzzy graph 
G has a strong global dominating set D whose complement DV \ is also a 
strong global dominating set. 

 

Proof: Every non- trivial connected fuzzy graph G has a strong dominating 
set D whose complement V − D is also a strong dominating set [16]. Since G 
is self-complementary, G  ∼=  Gc.   Hence  G  and  Gc are connected.   Hence  the 
theorem follows by using the result in [16]. 

 
Theorem 5.4 For any self-complementary connected fuzzy graph G : (V, σ, µ), 

γsg ≤ p/2. 
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Proof: Let D be a minimal strong global dominating set of G. Then, by 
Theorem 5.3, V − D is a strong global dominating set of G. Then γsg ≤ W (D) 

and γsg ≤ W (V − D). 

Therefore 2γsg     W (D) + W (V     D)     p implies 2/psg  . Hence the 

proof. 

 
Corollary 5.5 Let G be a self complimentary connected fuzzy graph. Then 

γsg + γsg ≤ p. Further equality holds if and only if γsg = γsg = p/2. 

Proof: By Theorem 5.4, γsg ≤ p/2, γsg ≤ p/2 

⇒ γsg + γsg ≤ p/2 + p/2 = p, 

that is γsg + γsg ≤ p. 

If 2/psgsg ==  , then obviously psgsg =+ .  Conversely, suppose 

psgsg =+ .  Then, by Theorem 5.4, we have γsg  ≤ p/2, γsg  ≤ p/2. If either 

γsg < p/2 or γsg < p/2, then psgsg + , which is a contradiction.  Hence 

the only possibility is that 2/psgsg ==  . 

 
Theorem 5.6 In any fuzzy graph, G : (V, σ, µ), γsg = p/2 if and only if the 

following conditions hold. 
 

1) The graph is a self-complementary fuzzy graph. 
 

2) All nodes have the same weight. 
 

3) All arcs are M-strong arcs. 
 

4) For every minimum strong global dominating set D of G, 2/nD = , where 
n is the number of nodes of G, and n is even. 

 

Proof: If all the conditions 1), 2), 3),4) hold, then obviously γsg = p/2. 

Conversely, suppose γsg = p/2. If the graph is not self-complementary, 
then clearly γsg < p/2. If some nodes say u and v have different weights, then 

the arc weight corresponding to these nodes is µ(x, y) ≤ σ(x)   σ(y). 
If µ(x, y) < σ(x)   σ(y), then obviously γsg < p/2, a contradiction. 
 
If µ(x, y) = σ(x)   σ(y), then (x,y) is a M-strong arc. 

If |D| < n/2, then clearly γsg < p/2, a contradiction. 

Hence all the conditions are sufficient. 
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6 Strong Global Domination in Fuzzy trees 

A fuzzy subgraph H : (τ, ν) spans the fuzzy graph G : (V, σ, µ) if τ = σ [20]. 
A connected fuzzy graph G = (V, σ, µ) is called a fuzzy tree(f-tree) if it has a 
fuzzy spanning subgraph F : (σ, ν), which is a tree, where for all arcs (x, y) not 
in F there exists a path from x to y in F whose strength is more than µ(x, y) 
[26]. Note that here F is a tree that contains all nodes of G and hence is a 
spanning tree of G. Also, note that F is the unique maximum spanning tree 
(MST) of G [34], where a maximum spanning tree of a connected fuzzy graph 
G : (V, σ, µ) is a fuzzy spanning subgraph T : (σ, ν), such that T ∗ is a tree, 
and for which u̸=v ν(u, v) is maximum [20]. 
An arc is called a fuzzy bridge(f-bridge) of a fuzzy graph G : (V, σ, µ) if its 
removal reduces the strength of connectedness between some pair of nodes in 
G [26]. 
Similarly, a fuzzy cut node(f-cut node) w is a node in G whose removal from G 
reduces the strength of connectedness between some pair of nodes other than 
w [26]. 
A node z is called a fuzzy end node (f-end node) if it has precisely one strong 
neighbor in G [10]. 
A non-trivial fuzzy tree G contains at least two fuzzy end nodes, and every 
node in G is either a fuzzy cut node or a fuzzy end node [10]. 
In an f-tree G, an arc is strong if and only if it is an arc of F, where F is the 
associated unique maximum spanning tree of G [9, 34]. Note that these strong 
arcs are α-strong, and there are no β-strong arcs in an f-tree [31]. Also, note 
that in an f-tree G, an arc (x, y) is α-strong if and only if (x, y) is an f-
bridge of G [31]. 

 

Theorem 6.1 [12]. The strong arc incident with a fuzzy end node is a fuzzy 
bridge in any non- trivial fuzzy graph G : (V, σ, µ). 

 
Corollary 6.2 [12]. In a non- trivial fuzzy tree G : (V, σ, µ) except K2, the 

strong neighbor of a fuzzy end node is a fuzzy cut node of G. 

 
Theorem 6.3 In a non-trivial fuzzy tree G : (V, σ, µ), every node of a strong 

global dominating set is either a fuzzy cut node or a fuzzy end node. 

 
Proof: A non-trivial fuzzy tree G contains at least two fuzzy end nodes, and 
every node in G is either a fuzzy cut node or a fuzzy end node [10]. Hence the 
theorem. 

 

Theorem 6.4 In a non-trivial fuzzy tree G : (V, σ, µ), each node of a strong 
global dominating set is incident on a fuzzy bridge of G. 
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Proof:  Let D be a strong global dominating set of G. Let Du . Since D 
is a strong global dominating set, there exists DVv \  such that (u, v) is a strong 
arc. Also, D  is a strong global dominating set of Ḡ. Then (u, v) is an arc of the 
unique MST F of G [9, 34]. Hence (u, v) is an f-bridge of G [26]. Since  u is 
arbitrary,  this is true for every node of the strong global dominating set of G. 
This completes the proof. 

 
7 Practical Application 

Let G be a graph that represents the road network connecting various hospitals. 
Let the vertices denote the hospitals, and the edges denote the roads connecting 
the hospitals. Suppose we need to navigate patients in between hospitals during 
busy hours. The membership functions σ and µ on the vertex set and the 
edge set of G's can be constructed from the statistical data that represents the 
number of ambulances going to various hospitals and the number of ambulances 
passing through multiple roads during a busy hour. Now the term'  busy' is 
vague in nature. It depends on t h e  availability of ambulances, time  of 
journey, hospital's demands, special requirements of patients, etc. Thus, we get a 
fuzzy graph model. Some of the roads may be too traffic during the busy hour. 
So, we must think of taking patients to various hospitals through secret roads. In 
this fuzzy graph, a strong global dominating set D can be interpreted as a set of 
busy hospitals in the sense that every hospital not in D is connected to a 
hospital in D by a road or a secret road in which the traffic flow is full. 

 

8 Conclusion 

Global fuzzy domination yields specific, adaptable, and conformable results 
compared to classical domination and fuzzy domination. Hence it introduced 
global domination in fuzzy graphs using strong arcs and found some results 
using the newly defined parameter' global domination number.' It is 
established  that every node of a strong global dominating set of a fuzzy tree 
is either a fuzzy cut node or a fuzzy end node.   It is proved that in a fuzzy 
tree, each node of a strong global dominating set is incident on a fuzzy 
bridge. Also, the characteristic properties of the existence of a strong global 
dominating set for a fuzzy graph and its complement are established. 
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