
 Corresponding Author: iniumoeka@uniuyo.edu.ng

 https://doi.org/10.22105/jfea.2023.379363.1241

E-ISSN: 2717-3453 | P-ISSN: 2783-1442 |

Abstract

1 | Introduction

Till date, software has become the fundamental part of various domains of human endeavour. These

domains include education, defense, transportation, medical and industries which are directly or

indirectly benefiting from software. Diverse historical reports show the impact of software failures

experienced round the globe [1]. Such software failures may lead to property, monetary and human

losses. Therefore, the reliability of software cannot be ignored. The reliability of software at the early

phase of software life cycle is very important [2]. Hence, it is necessary to guarantee the reliability of

software systems by fixing the faults early during software development process and this will

significantly minimize the cost of testing in later stages. Software reliability and quality has become a

fundamental focus for both designers and developers during software development process. Software

reliability is the probability to perform failure free operation and produce correct output for a specified

time under specified conditions [3], while software quality is defined as the degree to which a system

 Journal of Fuzzy Extension and Applications

 www.journal-fea.com

J. Fuzzy. Ext. Appl. Vol. 4, No. 3 (2023) 188–206.

Paper Type: Research Paper

Interval Type-2 Fuzzy Logic System for Early Software

Reliability Prediction

Ini John Umoeka1,* , Veronica Neekay Akwukwuma2

1 Department of Computer Science, Faculty of Science, University of Uyo, Uyo, Akwa Ibom State, Nigeria; iniumoeka@uniuyo.edu.ng.
2 Department of Computer Science, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria; nakwukwuma@uniben.edu.ng.

Citation:

 Umoeka, I. J., & Akwukwuma, V. N. (2023). Interval type-2 fuzzy logic system for early software

reliability prediction. Journal of fuzzy extension and applications, 4(3), 188-206.

Accepted: 11/05/2023 Revised: 19/04/2023 Reviewed: 05/02/2023 Received: 02/01/2023

The reliability of software product is seen as critical quality factor that cannot be overemphasized. Since real world

application is loaded with high amount of uncertainty, such as applicable to software reliability, there should be a

technique of dealing with such uncertainty. This paper presents a reliability model to effectively handle uncertainty in

software data to enhance reliability prediction of software at the early (requirements and design) stages of Software

Development Life Cycle (SDLC). In this paper, a hybrid methodology of Takagi Sugeno Kang (TSK)-based Interval

Type-2 Fuzzy Logic System (IT2FLS) with Artificial Neural Network (ANN) learning is employed for the prediction of

software reliability. The parameters of the model are optimized using Gradient Descent (GD) back-propagation method.

Relevant reliability software requirement and design metrics and software size metrics are utilized as inputs. The proposed

approach uses twenty-eight real software project data. The performance of the model is evaluated using five performance

metrics and found to provide output values that are very close to the actual output showing better predictive accuracy.

Keywords: Software reliability, Software metrics, Software fault prediction, ANN, Fuzzy logic, Interval type-2 fuzzy

Logic system, Gradient descent algorithm.

Licensee Journal

of Fuzzy Extension and

Applications. This

article is an open access

article distributed under

the terms and conditions

of the Creative Commons

Attribution (CC BY)

license

(http://creativecommons.

org/licenses/by/4.0).

mailto:dastam66@gmail.com
https://doi.org/10.22105/jfea.2023.379363.1241
http://www.journal-fea.com/
https://www.orcid.org/0000-0003-4500-768X

189

In
te

rv
a
l

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 s

y
st

e
m

 f
o

r
e
a
rl

y
 s

o
ft

w
a
re

 r
e
li

a
b

il
it

y
 p

re
d

ic
ti

o
n

component or process meets customer requirement [4]. According to Arasteh [5], reliable software is a

software that is void of defects and one approach of enhancing reliability of software is predicting defects

before testing phase. Since reliability has become a principal factor in software systems, its prediction is

very paramount. Most software are difficult and complicated in nature, thus making its reliability analyses

and predictions also difficult and complicated. This makes it difficult for software developers to determine

the level of reliability. Many Software Reliability Prediction (SRP) models exist in literature; however,

practitioners find it very hard to employ these methods in software development process since they have

to decide on the amount of data to collect and suitable software reliability model and techniques to

implement. Since the nature of software engineering involves making of measurements, reliability

prediction methods continue to be identified so as to assist software developers; and in order to express

software product reliability, reliability relevant metrics are needed.

A general technique to measure the quality of software product is to identify the presence of defects in it,

and usually the metric used for it is software reliability. As opined by Kaur and Sharma [6] that all software

has the propensity of containing defects (product anomaly) since it is very difficult to develop fault free

software product [7]. Software defect prediction is a method of building machine learning classifiers to

predict defective code snippets using historical information in software repositories [8]. The predicted

results can therefore aid developers in locating and fixing possible defects thereby enhancing the reliability

of software [9]. Software defect prediction therefore, is an important feature of preventive maintenance,

which involves applying various computing methods to predict potential defects in software product before

the software fails [8]. Software maintenance is a process that continuously takes place throughout the entire

activity of software development so as to guarantee the performance of the software as expected.

SRP can take place in the later or in the early phase of Software Development Life Cycle (SDLC) [10]–

[15]. The accuracy of software reliability using software reliability models is mostly possible at the later

stage of [13]. However, the prediction of reliability in the early phase of SDLC is cost effective [13]. Most

of SRP models depend on failure or fault data for prediction. But, in the early phases of SDLC, failure or

fault data are unavailable which forms a major challenge. However, in the early phases of SDLC, qualitative

values of software metrics are available and this could be employed in predicting residual defects in

software. The metrics which have impact on software reliability in SDLC are indicated in [16]–[19]. In fact,

most of these software metrics have high amount of uncertainty resulting either from unrealistic

assumptions and some measures that cannot be specifically defined in the process of software

development. According to Debnath [20], uncertainty is everyday, everywhere and in different forms, there

should therefore be a technique of dealing with the uncertainty. Hence, the idea of Fuzzy Logic System

(FLS), that forms a fulcrum in uncertainty modeling, is of utmost importance

In order to guarantee the development of quality software, various software defects prediction models

have presented based on different methods including software metrics, statistical approaches, machine

learning approaches, classification methods and other traditional approaches. For instance, Khoshgoftaar

et al. [21] presented a neural network for predicting the number of faults and introduced an approach for

static reliability modeling. The authors trained two neural networks; one with the complete set of principal

components and the other one with the set of components selected by multiple regression model selection.

Comparison of their models showed a better understanding of neural network software quality models.

Karunanithi [22], [23] designed neural network based software reliability model to predict cumulative

number of failures. Their model used feed-forward neural network, recurrent neural network and Elman

neural network and also used execution time as the input of the network. Tian and Noore [24] and Tian

and Noore [25] proposed a genetic algorithm to optimize the number of delayed input neurons and the

number of neurons in the hidden layer of the neural network for the prediction of software reliability and

software failure time. Oliveira et al. [26] used boosting techniques to improve software reliability models

based on genetic programming. Boosting technique combines several hypotheses of the training set to get

better results. Sharma et al. [27] investigated the applicability of the modified artificial bee colony algorithm

to estimate the parameters of Software Reliability Growth Models (SRGMs). The estimated model

parameters were then used to predict the faults in a software system during the testing process.

190

U
m

o
e
k

a
 a

n
d

 A
k

w
u

k
w

u
m

a
 |

J.
 F

u
z
z
y
.

E
x

t.
 A

p
p

l.
 4

(3
)

(2
0
2
3
)

18
8
-2

0
6

Khoshgoftaar et al. [28] presented a neural network model to predict software quality using large

telecommunication system to classify modules as fault prone or not fault-prone; Khoshgoftaar et al. [29]

made use of regression trees with classification rule to classify fault-prone software modules using data

from a very large telecommunications system. In [30], genetic algorithm is applied for early detection of

defect in software modules. Kanmani et al. [31] predicted software defect in object-oriented software

using neural network. In [32] different techniques have employed in the prediction of software fault

which include soft computing, data mining and machine learning methods with their accuracy rates

based on Random Forest, Decision Tree Regression, Neural Network, Genetic Algorithm, SVM,

Artificial Neural Network (ANN) and fuzzy logic. Defect Prediction framework using Attention-based

Recurrent Neural Network (DP-ARNN) is presented in [9]. This model automatically learned syntactic

and semantic features for accurate defect prediction. The framework employed seven Java projects in

Apache for its validation using F1 measure and Area Under Curve (AUC) as evaluation criteria.

Many other research works on software fault prediction have been presented in the literature using

alternative modeling and ensemble approaches. For example, Singh et al. [7] proposed an integrated

system with ability of finding functional software metrics (features) and concurrently producing a set of

human interpretable fuzzy rules for software fault prediction. Erturk and Sezer [33] presented a model

to predict software fault based on fuzzy logic and ANN. Arasteh [5] presented a hybrid prediction model

of neural network and naïve bayes algorithm to build software fault prediction model. This model used

five traditional fault datasets to develop and assess the prediction model. According to Adark [34], all

these authors applied various performance measures; including Matthews Correlation Coefficient

(MCC), precision, recall, Receiver Operating Characteristic (ROC), Root Mean Squared Error (RMSE),

ROC-AUC, Accuracy, Balance, Geometric Mean (GM), showing that defection prediction procedure

does not have a standard approach of assessing the proposed models. Fenton et al. [10] presented a

causal model using Bayesian Nets for early life cycle defect prediction. Their model predicted the

number of residual defects that are likely to be found during independent testing or operational usage.

Their model was used to analyze several evaluation measures on a dataset, extracted from 31 completed

software projects in the consumer electronics industry, which was obtained by means of a questionnaire

distributed to managers of projects. Their model validation also authenticated the necessity for using

the qualitative data in the model. Nevertheless, these models proposed for early software defects

prediction are insufficient to provide reliable results because of presence of vague and imprecise data.

The fuzzy set theory presents a method of dealing with uncertainty, vagueness and imprecision found

in data. Hence the use of fuzzy logic is more suitable for the prediction of software defects in early phase

of software development process, where failure data is unavailable. Some research works have been

proposed based on FLSs to predict software defects because of the presence of vagueness or fuzziness

in software data. For instance, [12]–[17] and [33]–[38] made use of Type-1 Fuzzy Logic Systems

(T1FLSs) for early software defects prediction. Although T1FLSs have been widely used, literatures

show that T1FLSs only handle uncertainty to some degree in many applications and may not reduce

their effects in some real world applications [39]. T1FLSs also use Membership Functions (MFs) that

are precise, thus making it inadequate to deal with uncertainty associated with the inputs and outputs of

FLS [40]–[42]. Also, the uncertainty in Type-1 Fuzzy Sets (T1FSs) disappears the moment its MFs are

specified [43], leaving crisp numerical values. Because of this, a higher fuzzy set(s), known as Type-2

Fuzzy Set (T2FS) was introduced by Zadeh [44] as an extension of T1FS having T1FSs as MFSs with

third dimension. T2FSs can be General (GTFSs) or Interval (IT2FSs). GT2FS representation is three

dimensional with different weights on the third dimension. Working with GT2FS is computationally

expensive because its representation. Thus, many researchers prefer the use of IT2FS since its third

dimension takes the value of 1 and does not carry any information [45] and can easily be represented on

a 2-D plane. These make the use of IT2FS computationally effective. An Interval Type-2 Fuzzy Logic

System (IT2FLS) uses T2FSs, that are upper order fuzzy sets with the capacity to sufficiently deal with

the uncertainty in the linguistic information [41]–[43]. As stated in Chatterjee et al. [46], type-2 fuzzy

systems handle uncertainties that type-1 lacks the ability to handle because their membership grades are

fuzzy and can be used to reduce uncertainties in the vague linguistic values of software attributes. Hence,

191

In
te

rv
a
l

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 s

y
st

e
m

 f
o

r
e
a
rl

y
 s

o
ft

w
a
re

 r
e
li

a
b

il
it

y
 p

re
d

ic
ti

o
n

this paper presents an IT2–Takagi Sugeno Kang (TSK)-FLS-based software defects prediction with ANN

learning at the early phases (requirement and design) of SDLC.

Chatterjee et al. [46] developed a fuzzy-rule based generation algorithm using Mamdani fuzzy inference

IT2FLS and Gaussian MFs with uncertain mean to predict fault in early phase of software development.

Although quite a number of research works have been proposed using T1FLS; [46] applied IT2FLS to

present a model in the area of early software fault prediction. Sadly, the accuracies of the developed models

are not adequate, therefore more works need to be done particularly as there are emergence of new

modeling methods sporadically being developed, taking cognizance of the weaknesses of the previous

works [47]. As far as software engineering is concerned, various methods to software defect prediction are

still emerging as potential fields of research [48].

This paper therefore, presents for the first time an enhanced early software defect prediction at the

requirement and design phases of SDLC based on IT2 FLS with optimized parameters using TSK fuzzy

inference. The intention is to minimize uncertainty thereby increasing the performance of the IT2FLS

software defects prediction in terms of accuracy with minimal computational cost. These (optimization

and TSK inferencing) present the novelty of this work with respect to early software defects prediction.

The proposed IT2FLS-SRP makes use of Gaussian MF with uncertain standard deviations. As stated in

Kayacan and Khanasar [49] the Gaussian MF with uncertain standard deviations is the only known MF

that is continuous at all points and well suited for optimization problem undertaken in this work.

1.1 | Main Contributios

The contributions of this paper therefore are as follows: 1) optimization of the parameters of IT2FLS-

SRP for the first time using Gradient Descent (GD) back-propagation algorithm, and 2) managing the

varying degrees of uncertainties in the rule base using a user-defined parameter, 𝛽 in the requirements and

design phases of early SRP.

1.2 | Paper Organization

The rest of this paper is arranged as follows: Section 2 shows the preliminaries presenting definition of

terms. Section 3 describes the methodology. The parameter update rule is presented in Section 4. Section

5 has the experimental set while Section 6 describes the performance evaluation and Section 7 discusses

the findings and conclusion.

2 | Preliminaries

An IT2FS is characterized by a FOU defined by a Lower Membership Function (LMF), 𝜇𝐴̃ (𝑥, 𝑢) and an

Upper Membership Function (UMF) 𝜇
𝐴̃
(𝑥, 𝑢) for all 𝑥 ∈ 𝑋 where 𝜇𝐴̃(𝑥, 𝑢) = 1 and 𝜇

𝐴̃
(𝑥, 𝑢) = 1. Hence, the

IT2FS can also be represented as:

 Or

Ã = {((x, u),μÃ(x, u), μ
Ã
(x, u)) | for all x ∈ X, for all u ∈ Jx.

Ã = ∫ ∫ 1/(x, u)
u∈Jxx∈X

Jx ∈ [0,1].

Ã = {((x, u), μÃ(x, u), μ
Ã
(x, u)) | for all x ∈ X, for all u ∈ Jx ⊆ [0,1] },

Ã = ∑ ∑ 1/(x, u)u∈Jxx∈X Jx ∈ [0,1],

192

U
m

o
e
k

a
 a

n
d

 A
k

w
u

k
w

u
m

a
 |

J.
 F

u
z
z
y
.

E
x

t.
 A

p
p

l.
 4

(3
)

(2
0
2
3
)

18
8
-2

0
6

where and∫ and∑ represent the union of all admissible points in a continuous and discrete Universe

of Discourse (UoD) respectively [45]. A finite UoD is assumed in this study. In this research, the IT2FS

is defined using interval type-2 Gaussian function with a fixed mean and uncertain standard deviation

as shown in Fig. 1.

Fig. 1. A Gaussian interval T2FS.

 Thus, for IT2FSs, the FOUs are generated namely LMF and UMF FOUs defined as in Eq. (1).

The FLS that makes use of IT2FSs is called an and is shown in Fig. 2.

Fig. 2. Architecture of the proposed IT2FLS for software defects prediction.

3 | Proposed Model for Early Software Defects Prediction

The proposed model predicts number of defects in the early phases (requirements and design) of SDLC

based on interval type-2 TSK-Fuzzy Logic System (IT2-TSK-FLS). The model prediction follows from

the fact that the reliability of software is dependent on the number of defects in the software product

[50]. Inputs for the model are Relevant-Reliability Software Metrics (RRSMs) of each phase and software

size (thousand lines of codes-KLOC) which are fed into the IT2-TSK-FLS for processing and

generation of the model outputs. The output for the model is the number of defects predicted at the

end of requirements phase known as Requirements Phase Number of Defects (RPND) which serves as

one of the inputs to the design phase whose output is called Design Phase Number of Defects (DPND).

The proposed model architecture is shown in Fig. 3.

𝐹𝑂𝑈𝜇(�̃�) =∪∀∈𝑋 [𝜇�̃�(𝑥), 𝜇
�̃�
(𝑥)]. (1)

193

In
te

rv
a
l

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 s

y
st

e
m

 f
o

r
e
a
rl

y
 s

o
ft

w
a
re

 r
e
li

a
b

il
it

y
 p

re
d

ic
ti

o
n

Fig. 3. Proposed model architecture.

The proposed model made use of the software metrics in subsections 3.1 and 3.2 respectively.

3.1 | Software Metrics for Requirements Phase

I. Requirement Complexity (RC): An increase in RC increases the number of defects, thereby decreasing the

reliability of the software at the requirement phase [2], [46], [51].

II. Requirement Stability (RS): Low RS which can result in increased number of defects in software and that

a higher value of RS, results in higher reliability [2].

III. Review, Inspection and Walkthrough (RIW): A high level of RIW results in more defects identified and

removed leaving fewer defects in the requirement phase [2], [15].

3.2 | Software Metrics for Design Phase

I. Design Team Experience (DTE): More of this metric means lesser number of defects in the design stage

resulting in high reliability.

II. Process Maturity (PM): Increasing the PM, results in lesser number of defects, thereby improving the

reliability of software. The impact of this metric on software defect is ranked as [10], [16], [46].

4 | Model Implementation

The IT2-TSK-FLS is implemented using the architectural design model as in Fig. 4.

Fig. 4. Design specification of TSK-IT2FLS for the model [52].

The architectural design consists of six layers. Input layer (Layer 1): This is where the external input signals

are distributed. Membership function layer (Layer 2): translates the external inputs into IT2FSs. IT2FS

194

U
m

o
e
k

a
 a

n
d

 A
k

w
u

k
w

u
m

a
 |

J.
 F

u
z
z
y
.

E
x

t.
 A

p
p

l.
 4

(3
)

(2
0
2
3
)

18
8
-2

0
6

(LMF and UMF) are obtained using IT2 Gaussian MF with a fixed mean and uncertain standard

deviation and is computed as in [2] by a process called fuzzification and are indicated in Eqs. (2) and (3).

𝑥′𝑖𝑠 are the input vectors while the parameters, 𝑚, 𝜎1,, 𝜎2 are the antecedents parameters for MFs of

IT2FSs.

In this paper, the UoD (range) of the membership grades of all input metrics (linguistic variables) is

presented in a normalized form to lie between 0 and 1. The input metrics, with their ranges and linguistic

terms, Very Low (VL), Low (L), Medium (M), High (H) and Very High (VH) for the two phases are as

shown in Tables 1 and 2.

Table 1. Requirements phase metrics with their linguistic terms and fuzzy range.

Table 2. Requirements phase metrics with their linguistic terms and fuzzy range.

The IT2FLS MF graphical representation for all the software input metrics that are partitioned into five

linguistic terms is depicted in Fig. 5, for the purpose of visualization.

Fig. 5. IT2 Gaussian membership functions for requirement

and design metrics input variables.

The parameters of the functions mean and standard deviations for each of the MFs were obtained as

follows:

The mean or centre of IT2 Gaussian MFs, the data is partitioned into five sets. The centre of each set

is the mean value of each MF. For instance, the mean of VL is 0, L is 0.25, M is 0.5, H is 0.75 and VH

is 1. The standard deviations (width of the MFs) are assigned arbitrarily as 0.3 for UMF and 0.2 for

LMF.

 𝜇�̃�𝑖𝑘
(𝑥𝑖) = 𝑒𝑥𝑝 [−

(𝑥𝑖 − 𝑚𝑖𝑘)
2

2𝜎1,𝑖𝑘
2]. (2)

𝜇
�̃�𝑖𝑘

(𝑥𝑖) = 𝑒𝑥𝑝 [−
(𝑥𝑖−𝑚𝑖𝑘)

2

2𝜎2,𝑖𝑘
2]. (3)

Input Metrics (Linguistic Variable) Linguistic Terms Fuzzy Range

RC {VL, L, M, H, VH} {0, 1}
RS {VL, L, M, H, VH} {0, 1}
RIW {VL, L, M, H, VH} {0, 1}
KLOC {VL, L, M, H, VH} {0, 1}

Input Metrics (Linguistic Variable) Linguistic Terms Fuzzy Range

DTE {VL, L, M, H, VH} {0, 1}
PM {VL, L, M, H, VH} {0, 1}
KLOC {VL, L, M, H, VH} {0, 1}
RPTND {VL, L, M, H, VH} {0, 1}

195

In
te

rv
a
l

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 s

y
st

e
m

 f
o

r
e
a
rl

y
 s

o
ft

w
a
re

 r
e
li

a
b

il
it

y
 p

re
d

ic
ti

o
n

In layer 3 (Rule layer), the inputs are combined to form fuzzy rules in the rule base. Eq. (4) shows the IF-

THEN IT2-TKS fuzzy rule formation adopted in this study.

where 𝐴̃
𝑖𝑘 are IT2FSs (𝑖 = 1, 2, . . , 𝑛), 𝑦𝑘(𝑘 = 1, 2, … , 𝐾) are the output of the 𝑘𝑡ℎ rule, 𝑤𝑖𝑘and 𝑏𝑘 are the

consequents parameters.

This study employs a TSK-based inferencing known as A2-C0 where the antecedent part (A2) is IT2FSs

and the consequent (C0) parts are crisp values. The total number of rules used is obtained using the

formula.

Number of fuzzy rules = PI, where 𝑃 is the number of MFs, 𝐼 is the number of input variables. In this study,

𝐼 is 4 and P is 5 giving a total number of 625 rules for the rule base in each of the phases. The subset of

the fuzzy rules used in this study is presented in Table 3.

From the proposed model architecture in Fig. 3, the two phases are clearly indicated. Therefore, assigning

rules for the metrics in each of the phases is done one after the other.

Table 3. Fuzzy rules for requirement and design input metrics.

For each range of input variables, a set of firing strength are calculated using algebraic product (t-norm

operator) operation denoted as * and defined as in Eqs. (5) and (6).

where 𝑓𝑘 and 𝑓
𝑘
are firing strengths for lower and upper MFs of the rules respectively.

In layer 4 (normalization layer) the output of layer 3 are normalized to have normalized outputs (𝑁)𝑘using

Eqs. (7) and (8):

where 𝑁𝑘 and 𝑁𝑘 are lower and upper firing strengths normalized outputs.

In layer 5 (consequent layer) outputs are obtained using Eq. (9).

Layer 6 (summation layer) gives the final crisp output (f) of the model. Existing works in the literature

employ Karnik-Mendel iterative type-reduction procedure to reduce a T2FS to (T1FS) which is very

tedious and has high computational cost [53]. In the literature various approaches have been developed to

directly compute the output of a T2FL thereby circumventing the time wastage type-reduction procedure

[54]–[56]. In this study, the Bergian-Melek-Mendel (BMM) algorithm [54] is used to directly compute the

IT2FLS outputs as a weighted average of the crisp rule consequents as expressed in Eq (10).

Rk: IFx1isÃ 1kANDx2 is Ã 2k AND… AND xn is Ã nk THEN yk = w1kx1 +

w2kx2 + wnkxn + bk,
(4)

Rule No. Fuzzy Rules for Requirement Phase Fuzzy Rules for Rules for Design Phase
RC RS RIW KLOC RPND DTE PM KLOC

1 VL VL VL VL VL VL VL VL
2 VL VL VL L VL VL VL L
3 VL VL VL M VL VL VL M
4 VL VL VL H VL VL VL H
5 VL VL VL VH VL VL VL VH

fk = ∏ μÃik

n
i=1 = fk(x) = μÃ1k

(x1) ∗ μÃ2k
(x2) ∗ … ∗ μÃnk

(xn). (5)

fk = ∏μ
Ãik

= fk(x) = μ
Ã1k

n

i=1

(x1) ∗ μ
Ã2k

(x2) ∗ … ∗ μ
Ãnk

(xn), (6)

Nk =
fk

∑ fk
M
k=1

. (7)

Nk =
fk

∑ fk
M
k=1

, (8)

ykTSK = ∑ wikxi + bki=1 . (9)

196

U
m

o
e
k

a
 a

n
d

 A
k

w
u

k
w

u
m

a
 |

J.
 F

u
z
z
y
.

E
x

t.
 A

p
p

l.
 4

(3
)

(2
0
2
3
)

18
8
-2

0
6

The parameter 𝛼 is user defined parameter that weighs the contributions of LMF and UMF to the final

output and lies within the range of 0 and 1. If 𝛼 = 0, the LMF alone contributes to the final output and

if 𝛼 = 1, UMF only contributes to the final output. If 0 ≤ 𝛼 ≤ 1, then contribution is from both the LMF

and UMF.

5 | Parameter Update

In this study, the antecedent and consequent parameters of the IT2FLS are updated using GD back-

propagation method so as to reduce the cost function. Eq. (11) shows the cost function for a single

output:

where 𝑦𝑎 is the actual output and 𝑦 is the expected output of the proposed model. The GD update rules

are represented as shown in Eq. (12) to (16):

where 𝑤 and 𝑏 are the consequent parameters, m, 𝜎1, and 𝜎2 are the antecedent parameters while 𝜑 is

the learning rate (step size) that must be carefully chosen as a large value may lead to instability, and

small value on the other hand may lead to a slow learning process. For this work, the learning rate chosen

provided stable learning as shown in the smooth convergence of the error (Figs. 10 and 11).

The consequent parameters of IT2FLS are adjusted as in Eqs. (17) and (18):

where 𝑦𝑘 is the output of the kth rule. The adjustments of the antecedent parameters are shown in Eqs.

(19) to (28):

where

y = (1 − α) ∗
∑ fkyk

M
k=1

∑ fk
M
k=1

+ α ∗
∑ fkyk

M
k=1

∑ fk
M
k=1

. (10)

E =
1

2
 (y a − y)2, (11)

wik(t + 1) = wik(t) − φ
∂E

∂wik
. (12)

bk(t + 1) = bk(t) − φ
∂E

∂bk
. (13)

mik(t + 1) = mik(t) − φ
∂E

∂mik
. (14)

σ1,ik(t + 1) = σ1,ik(t) − φ
∂E

∂σ1,ik
. (15)

σ2,ik(t + 1) = σ2,ik(t) − φ
∂E

∂σ2,ik
, (16)

∂E

∂wik
=

∂E

∂y

∂y

∂yk

∂yk

∂wik
 = (y(t) − y a(t)) ∗ [

(

(1 − α) ∗
fk

∑ fk
M
k=1

+ α ∗
fk

∑ fk
M
k=1

)

]

∗ xi. (17)

∂E

∂bk
=

∂E

∂y

∂y

∂yk

∂yk

∂bk
 = = (y(t) − y a(t)) ∗ [

(

(1 − α) ∗
fk

∑ fk
M
k=1

+ α ∗
fk

∑ fk
M
k=1

)

]

∗ 1, (18)

∂E

∂mik
=

∂E

∂y [

∂y

∂ fk

∂fk
∂μik

∂μik

∂mik
+

∂y

∂fk

∂fk
∂μ

ik

∂μ
ik

∂mik
]

. (19)

∂E

∂σ1,ik
=

∂E

∂y

∂y

∂fk

∂fk
∂μik

∂μik

∂σ1,ik
. (20)

∂E

∂σ2,ik
=

∂E

∂y

∂y

∂fk

∂fk
∂μ

ik

∂μ
ik

∂σ2,ik
, (21)

197

In
te

rv
a
l

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 s

y
st

e
m

 f
o

r
e
a
rl

y
 s

o
ft

w
a
re

 r
e
li

a
b

il
it

y
 p

re
d

ic
ti

o
n

Using the product t-norm (*) operation, then,

The value of 𝛼 is adjusted using Eq. (29).

6 | Model Implementation

The proposed model is implemented using the project datasets in PROMISE repository [57]. The software

defects dataset in [56] is a benchmark dataset and has been adopted in many literature [10]–[13], [46], [50]

made publicly available to promote repeatable, verifiable, refutable and/or improvable predictive models

of software engineering. The datasets contain twenty eight real software projects obtained from an

electronics consumer’s company as reproduced in Table 4:

Table 4. Twenty-eight software project with metric inputs.

∂E

∂y
= y(t) − y a(t),

∂y

∂ fk
= (1 − α) ∗

yk−y

∑ fk
n
k=1

, y =
∑ fkyk

n
k=1

∑ fk
n
k=1

. (22)

∂y

∂fk
= α ∗

yk − y

∑ fk
n
k=1

, y =
∑ fkyk

n
k=1

∑ fk
n
k=1

. (23)

∂μk(xi)

∂mik
= (xi − mik) ∗

exp (−
(xi − mik)

2

2 ∗ σ1,ik
2)

σ1,ik
2

.
(24)

∂μ
k
(xi)

∂mik
= (xi − mik) ∗

exp (−
(xi − mik)

2

2 ∗ σ2,ik
2)

σ2,ik
2

.
(25)

∂μk(xi)

∂σ1,ik
= (xi − mik)

2 ∗

exp (−
(xi − mik)

2

2 ∗ σ1,ik
2)

σ1,ik
3

.
(26)

∂μk(xi)

∂σ2,ik
= (xi − mik)

2 ∗

exp (−
(xi − mik)

2

2 ∗ σ2,ik
2)

σ2,ik
3

.
(27)

∂fk
∂μik

= ∏μpk,

N1

p=1
p≠i

∂fk
∂μ

ik

= ∏μ
pk

N1

p=1
p≠i

.
(28)

α(t + 1) = α(t) − φ
∂E

∂α
,

∂E

∂α
=

∂E

∂y

∂y

∂α
= (y − y a) (

fk ∗ yk

∑ fk
M
k=1

+
fk ∗ yk

∑ fk
M
k=1

)

. (29)

SN Project Number RC RS RIW DTE DPF SIZE (KLOC) Actual Defect

1 1 M L VH L H 6 148
2 2 L H VH L H 0.9 31
3 3 H H VH H H 53.9 209
4 5 H M H L H 14 373
5 6 M H VH M M 14 167
6 7 L M VH M H 21 204
7 8 M H H H M 5.8 53
8 9 L H VH VH VH 2.5 17
9 10 M H H H H 4.8 29
10 11 H H H H H 4.4 71
11 12 H L H VH M 19 90
12 13 H L M H H 49.1 129
13 14 VH H H H H 58.3 672
14 15 H VL H H H 54 1768
15 16 L M H H H 26.7 109

198

U
m

o
e
k

a
 a

n
d

 A
k

w
u

k
w

u
m

a
 |

J.
 F

u
z
z
y
.

E
x

t.
 A

p
p

l.
 4

(3
)

(2
0
2
3
)

18
8
-2

0
6

Table 4. Continued.

The inputs into the system comprise software metrics of requirements and design phases of SDLC with

software size. In designing the system, five MFs (VL, L, M, H, and VH) are utilized. The experiment is

run on MATLAB© 2015a.

The number of parameters in the network to be optimized includes: 𝑚 = 𝑛 ∗ 𝑑; 𝜎1 = 𝑛 ∗ 𝑑; 𝜎2 = 𝑛 ∗

𝑑; 𝑤 = 𝑛 ∗ 𝑀; 𝑏 = 1 ∗ 𝑀.

Thus, the total number of parameters to be optimized in each phase is 3(𝑛 ∗ 𝑑) + 𝑀(𝑛 + 1), where n =

number of inputs, d = number of MF and M is the number of rules.

Hence, the total number of parameters to be optimized in the proposed model is 3(4 ∗ 5) + 625(4 + 1) =

3185 parameters. During learning the initial values of consequent parameters, 𝑤 and 𝑏 were randomly

selected in the interval [0, 1]. The optimized IT2FLS-based model is executed for 100 epochs in each

phase with learning rate, 𝜑 = 0.8, for both requirements and design phases respectively. The

parameter, 𝛼, value is initialized to 0.5 to guarantee equal initial lower and upper membership

contributions to the final output.

7 | Performance Evaluation

To determine the performance accuracy of the proposed model, the results of the proposed model are

compared with the results in the previous works in the literature adopting five performance metrics in

[45] model as shown in Eqs. (30) to (34):

Smaller values of RMSE, NRMSE, MMRE and BMMRE denote better prediction accuracy [13], [45].

where 𝑦 is the mean of the actual values, 𝑦𝑖
𝑎. Better prediction accuracy is achieved as result of R2 is

closer to 1. In Eqs. (29) to (34), 𝑦𝑖
𝑎 is the actual value, 𝑦𝑖is the predicted value and 𝑛 is the number of

testing data points. The metrics in Eqs. (29) to (34) are chosen because they give better prediction

accuracy. For effective learning, the KLOC values are normalized to lie between 0 and 1. After

SN Project Number RC RS RIW DTE DPF SIZE (KLOC) Actual Defect

16 17 L M M M H 33 688
17 18 VH VL H M H 155.2 1906
18 19 H M H H H 87 476
19 20 VH VL M VL L 50 928
20 21 L M H H H 22 196
21 22 M L M H L 44 184
22 23 H M VH L H 61 680
23 24 M L M M H 99 1597
24 27 H M VH M M 52 412
25 28 VH L VH M M 36 881
26 29 M VH VH VH H 11 95
27 30 L VH VH H H 1 5
28 31 M M H H H 33 653

Normalized Root Mean Square Error (NRMSE) =
RMSE

ymax
− ymin. (30)

Mean Magnitude of Relative Error(MMRE):MMRE =
1

n
∑

|yi
a − yi|

yi

n

i=1

. (31)

Balanced Mean Magnitude of Relative Error(BMMRE) =
1

n
∑

|yi
a − yi|

Min(yi
a, yi)

.

n

i=1

 (32)

Coefficient of Determination(R2) = 1 −
∑ (yi

a − yi)
2n

i=1

∑ (yi
a − y)2n

i=1

, (33)

199

In
te

rv
a
l

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 s

y
st

e
m

 f
o

r
e
a
rl

y
 s

o
ft

w
a
re

 r
e
li

a
b

il
it

y
 p

re
d

ic
ti

o
n

prediction, the final results are de-normalized to obtain the predicted values in their original states. The

predicted result of the proposed study is compared with [45] as shown in Table 5.

Table 5. Predicted no. of defects at requirements and designphases.

As seen in Table 5, it is generally observed that the proposed model predicted numbers of defects are closer

to the actual number of defects than the predicted number of defects for nine software projects in

Chatterjee et al. [46] model. The negative number (-21) is one of the predicted values of the proposed

system. This shows that the prediction result of that particular project number is below zero.

Table 6 shows the total number of defects predicted and absolute errors for nine projects at the

requirements and design phases undertaken by the proposed work and model of [46].

Table 6. The total number of defects predicted and absolute errors for nine projects.

SN Project
No.

Actual
No. of
Defect

Predicted No. of Defects
Chatterjee et al. [46]

Predicted No. of Defects
Proposed Model

Requirements
Phase

Design
Phase

Requirements
Phase

Design
Phase

1 1 148 85 72 145.9 148.8
2 2 31 37 12 29 116.3
3 3 209 - - 157.6 246.9
4 5 373 - - 308.4 451.8
5 6 167 - - 164.3 217
6 7 204 139 168 299.1 249.7
7 8 53 - - 55.8 59.1
8 9 17 41 18 62.3 -8.3
9 10 29 64 43 -21 72.3
10 11 71 - - 79.9 57.5
11 12 90 219 155 73.2 111.3
12 13 129 - - 174.6 134.5
13 14 672 - - 680.5 758.3
14 15 1768 1946 1549 1766.3 1764.5
15 16 109 - - 138 166.4
16 17 688 371 286 762 701.7
17 18 1906 - - 1905.7 1905.4
18 19 476 - - 472.3 483.2
19 20 928 - - 913.7 930.2
20 21 196 - - 193.5 319.8
21 22 184 - - 199 196.1
22 23 680 - - 680.9 697.3
23 24 1597 - - 1581 1544.6
24 27 412 - - 431.1 531.2
25 28 881 - - 747.7 878.7
26 29 91 82 68 103.8 122.2
27 30 5 - - 9.5 6.1
28 31 653 - - 656.6 665.8

Project
No.

Actual
No. of
Defects

Predicted No. of Defects
by Chatterjee et al. [46]

Predicted No. of Defects by Proposed Model

Requirement
Phase

Design
Phase

Requirement Phase Design Phase

Pv Absolute
Error

Pv Absolute
Error

Pv Absolute
Error

Pv Absolute
Error

1 148 85 63 72 76 145.9 2.1 148.8 0.8
2 31 37 6 12 19 29 2 116.3 85.3
7 204 139 65 168 36 299.1 95.1 249.7 45.7
9 17 41 24 18 1 62.3 45.3 -8.3 25.3
10 29 64 35 43 14 -29 58 72.3 43.3
12 90 219 129 155 65 73.2 16.8 111.3 21.3
15 1768 1946 178 1549 219 1766.3 1.7 1764.5 3.5
17 688 371 317 286 402 762 74 701.7 13.7
29 91 82 9 68 23 103.8 12.8 122.8 31.8
Total 826 855 307.8 270.7

200

U
m

o
e
k

a
 a

n
d

 A
k

w
u

k
w

u
m

a
 |

J.
 F

u
z
z
y
.

E
x

t.
 A

p
p

l.
 4

(3
)

(2
0
2
3
)

18
8
-2

0
6

From Table 6, PV stands for predicted value.

Table 6 indicates the actual and predicted values together with the absolute error for the nine projects

undertaken by the proposed model and model of [46]. This is done to ascertain the accuracy level of

each model. From Table 6, the total absolute error for [46] is 826 at the requirement and 855 at the

design phases while the proposed model provides the least total absolute errors of 307.8 at the

requirement and 270.7 at the design phases which show better and accurate predictions. Figs. 6 and 7

show the plots of the predicted defects values of the study and that of [46] model with the actual defects

values for the nine projects considered.

Fig. 6. Plot of total number of defects at the requirements phase for the nine software.

 Fig. 7. Plot of total number of defects at the design phase for the nine software projects.

From Figs. 6 and 7, it is observed that the proposed model predicted defect values are in close agreement

with the actual defect values than [46] predicted defect values, showing a superior prediction. Table 7

presents the accuracy of the models based on performance measures.

 Table 7. Performance comparison of proposed model with Chatterjee et al. [46] model.

Table 7 presents the accuracy of the models based on performance measures. Table 7 depicts that the

proposed model has the smallest errors in terms RMSE, NRMSE, MMRE and BMMRE. Table 7 also

Model RMSE NRMSE MMRE BMMRE R2

Chatterjee et al. [46]
Prediction at requirement phase 132.8230 0.0758 0.6280 0.7247 0.9398
Prediction at design phase 157.0951 0.0897 0.3883 0.6568 0.9158
Proposed model
Prediction at requirement phase 71.7201 0.0377 0.2465 0.3680 0.9933
Prediction at design phase 41.4476 0.0218 0.1132 0.3580 0.9983

201

In
te

rv
a
l

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 s

y
st

e
m

 f
o

r
e
a
rl

y
 s

o
ft

w
a
re

 r
e
li

a
b

il
it

y
 p

re
d

ic
ti

o
n

provides the R2 values for the models. R2 for [46] is 0.9398 (93.98%) at the requirement and 0.9158

(91.58%) at the design phases while the proposed model has R2 values that are closer to 1; 0.9933 (99.33%)

at the requirement and 0.9983 (99.83%) at the design phases respectively, showing superior prediction

accuracy.

Figs. 8 and 9 present the learning of the optimized IT2FLS showing the relationship between the actual

and predicted outputs at the requirements and design phases of the model.

Fig. 8. Actual and predicted outputs of early SRP at the requirements phase.

Fig. 9. Actual and predicted outputs of early SRP at the design phase.

Figs. 10 and 11 present the convergence graphs of optimized IT2FLS showing a smooth convergence at

the requirement and design phases of the study.

202

U
m

o
e
k

a
 a

n
d

 A
k

w
u

k
w

u
m

a
 |

J.
 F

u
z
z
y
.

E
x

t.
 A

p
p

l.
 4

(3
)

(2
0
2
3
)

18
8
-2

0
6

Fig. 10. Convergence graph of optimized IT2FLS-based model at

requirements phase.

Fig. 11. Convergence graph of optimized IT2FLS-based model

at design phase.

Shown in Figs. 12 and 13 are the graphical views of the different prediction errors with optimized

IT2FLS having the least errors.

Fig. 12. RMSE of early software defect prediction.

203

In
te

rv
a
l

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 s

y
st

e
m

 f
o

r
e
a
rl

y
 s

o
ft

w
a
re

 r
e
li

a
b

il
it

y
 p

re
d

ic
ti

o
n

a. Chatterjee et al. [46].

b. Proposed model.

Fig. 13. Early software defect prediction errors (NRMSE, MMRE and BMMRE).

As shown in Figs. 12 and 13, the proposed model has the least prediction errors showing a superior

performance over the model of [46].

8 | Conclusion

This work develops a model to predict software reliability (number of defects) at the early phase

(requirements and design) of software development process. In this work, a-TSK-based interval type 2

fuzzy logic systems, with ANN is employed to handle uncertainty in the prediction of software reliability.

The degree of membership grades of the IT2FSs are obtained using interval type 2 gaussian membership

function with fixed mean and uncertain standard deviation. The parameters of the IT2FLS membership

functions are optimized using GD back-propagation algorithm. Inputs to the system are the top significant

reliability relevant software metrics of the early phase and the software size. The model takes into account

the uncertainty associated over the assessment of three reliability relevant metrics of requirements phase,

namely, RC, RS and RIW; and two reliability relevant metrics of design phase, viz, DTE and PM and

software size metric to predict the defect of software. The proposed model made use of real software

projects to validate its predictive ability. The performance of the model was evaluated using five

performance metrics which include RMSE, NRMSE, MMRE, BMMRE and R2 and comparison was made

with [46] models. The proposed model showed a superior performance over [46] model in terms of

prediction accuracy. The model’s predicted defects for twenty-eight software projects are found very close

to the actual software defect outputs. The proposed model will be useful to the software engineers,

designers, stakeholders and researchers with an idea about software reliability in early phase where

204

U
m

o
e
k

a
 a

n
d

 A
k

w
u

k
w

u
m

a
 |

J.
 F

u
z
z
y
.

E
x

t.
 A

p
p

l.
 4

(3
)

(2
0
2
3
)

18
8
-2

0
6

sufficient data are not available. Precisely, the proposed model will assist software engineers, designers

and developers in making informed and useful decisions in the face of uncertainty. In the future, we

intend to explore other prediction approaches such as extreme learning machine, extended Kalman

filter, support vector machine and hybrid methods in early software defect prediction. We also intend

to adopt the generalized interval type-2 fuzzy logic in SRP.

Acknowledgments

The autohors wish to thank Tertiatiary Education Trust Fund (TETFUND) through the establishment

of TETFUND centre of excellence in computational intelligence research, university of Uyo and the

management of the university of Uyo for providing supports for this research.

Funding

This research is funded by the TETFUND.

Conflicts of Interest

The co-author has seen and agree with the contents of the manuscript and there is no financial interest

to report. We certify that the submission is original work and is not under review at any other

publication.

References

[1] Lyu, M. R.. (1996). Handbook of software reliability engineering (Vol. 222). IEEE computer society press

Los Alamitos.

[2] Umoeka, I., Imo Eyoh, E. U., & Akwukwuma, V. (2020). Optimization of Interval Type-2 Fuzzy Logic

System for Software Reliability Prediction‖ . International journal of engineering research and advanced

technology, 6(11), 1–12.

[3] Kumar, R., Khatter, K., & Kalia, A. (2011). Measuring software reliability: a fuzzy model. ACM sigsoft

software engineering notes, 36(6), 1–6.

[4] Board, I. S. (1990). IEEE Standard Glossary of Software Engineering Terminology.

https://www.informatik.htw-

dresden.de/~hauptman/SEI/IEEE_Standard_Glossary_of_Software_Engineering_Terminology .pdf

[5] Arasteh, B. (2018). Software fault-prediction using combination of neural network and Naive Bayes

algorithm. Journal of networking technology, 9(3), 94-101.

[6] Kaur, R., & Sharma, E. S. (2018). Various techniques to detect and predict faults in software system:

survey. International journal on future revolution in computer science & communication engineering

(IJFRSCE), 4(2), 330–336.

[7] Singh, P., Pal, N. R., Verma, S., & Vyas, O. P. (2016). Fuzzy rule-based approach for software fault

prediction. IEEE transactions on systems, man, and cybernetics: systems, 47(5), 826–837.

[8] Eyoh, I. J., Udo, E. N., & Umoeka, I. J. (2021). Software fault prediction based on interval type-2

intuitionistic fuzzy logic system. international journal of advances in scientific research and engineering,

7(5). https://www.researchgate.net/publication/352647945

[9] Fan, G., Diao, X., Yu, H., Yang, K., Chen, L., & others. (2019). Software defect prediction via attention-

based recurrent neural network. Scientific programming, 2019. https://doi.org/10.1155/2019/6230953

[10] Fenton, N., Neil, M., Marsh, W., Hearty, P., Radliński, Ł., & Krause, P. (2008). On the effectiveness of

early life cycle defect prediction with Bayesian nets. Empirical software engineering, 13, 499–537.

https://doi.org/10.1007/s10664-008-9072-x

[11] Pandey, A. K., & Goyal, N. K. (2009). A fuzzy model for early software fault prediction using process

maturity and software metrics. International journal of electronics engineering, 1(2), 239–245.

205

In
te

rv
a
l

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 s

y
st

e
m

 f
o

r
e
a
rl

y
 s

o
ft

w
a
re

 r
e
li

a
b

il
it

y
 p

re
d

ic
ti

o
n

[12] Yadav, D. K., Chaturvedi, S. K., & Misra, R. B. (2012). Early Software defects prediction using fuzzy logic.

International journal of performability engineering, 8(4). http://www.ijpe-

online.com/EN/10.23940/ijpe.12.4.p399.mag

[13] Yadav, H. B., & Yadav, D. K. (2017). Early software reliability analysis using reliability relevant software

metrics. International journal of system assurance engineering and management, 8, 2097–2108.

https://doi.org/10.1007/s13198-014-0325-3

[14] Rizvi, S. W. A., Khan, R. A., & Singh, V. K. (2016). Software reliability prediction using fuzzy inference

system: early stage perspective. International journal of computer applications, 145(10), 16–23.

[15] Rizvi, S. W. A., Singh, V. K., & Khan, R. A. (2017). Early stage software reliability modeling using

requirements and object-oriented design metrics: fuzzy logic perspective. International journal of computer

applications, 162(2), 44–59.

[16] Zhang, X., & Pham, H. (2000). An analysis of factors affecting software reliability. Journal of systems and

software, 50(1), 43–56.

[17] Li, M., Smidts, C., & Brill, R. W. (2000). Ranking software engineering measures related to reliability using

expert opinion. Proceedings 11th international symposium on software reliability engineering (pp. 246–258). IEEE.

https://doi.org/10.1109/ISSRE.2000.885876

[18] Li, M., & Smidts, C. S. (2003). A ranking of software engineering measures based on expert opinion. IEEE

transactions on software engineering, 29(9), 811–824.

[19] Kumar, T. R., Rao, T. S., & Hari, CH. V. M. K. (n.d.). A predictive approach to estimate software defects

density using probabilistic neural networks for the given software metrics. Ravi kumar journal of engineering

research and application ISSN, 8(7), 2248–9622.

[20] Debnath, S. (2021). Fuzzy hypersoft sets and its weightage operator for decision making. Journal of fuzzy

extension and applications, 2(2), 163–170.

[21] Khoshgoftaar, T. M., Szabo, R. M., & Guasti, P. J. (1995). Exploring the behaviour of neural network software

quality models. Software engineering journal, 10(3), 89–96.

[22] Karunanithi, N., Malaiya, Y. K., & Whitley, L. D. (1991). Prediction of software reliability using neural

networks. In ISSRE (pp. 124–130). IEEE Computer Society.

https://www.researchgate.net/publication/3507480

[23] Karunanithi, N., Whitley, D., & Malaiya, Y. K. (1992). Using neural networks in reliability prediction. IEEE

software, 9(4), 53–59.

[24] Tian, L., & Noore, A. (2005). Evolutionary neural network modeling for software cumulative failure time

prediction. Reliability engineering & system safety, 87(1), 45–51.

[25] Tian, L., & Noore, A. (2005). On-line prediction of software reliability using an evolutionary connectionist

model. Journal of systems and software, 77(2), 173–180.

[26] Oliveira, E., Pozo, A., & Vergilio, S. R. (2006). Using boosting techniques to improve software reliability

models based on genetic programming. 2006 18th IEEE international conference on tools with artificial

intelligence (ICTAI’06) (pp. 643–650). IEEE. https://doi.org/10.1109/ICTAI.2006.117

[27] Sharma, T. K., Pant, M., & Abraham, A. (2011). Dichotomous search in abc and its application in parameter

estimation of software reliability growth models. 2011 third world congress on nature and biologically inspired

computing (pp. 207–212). IEEE. https://doi.org/10.1109/NaBIC.2011.6089460

[28] Khoshgoftaar, T. M., Allen, E. B., Hudepohl, J. P., & Aud, S. J. (1997). Application of neural networks to

software quality modeling of a very large telecommunications system. IEEE transactions on neural networks,

8(4), 902–909.

[29] Khoshgoftaar, T. M., Allen, E. B., & Deng, J. (2002). Using regression trees to classify fault-prone software

modules. IEEE transactions on reliability, 51(4), 455–462.

[30] Sandhu, P. S., Khullar, S., Singh, S., Bains, S. K., Kaur, M., & Singh, G. (2010). A study on early prediction of

fault proneness in software modules using genetic algorithm. International journal of computer and information

engineering, 4(12), 1891–1896.

[31] Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., & Thambidurai, P. (2007). Object-oriented software

fault prediction using neural networks. Information and software technology, 49(5), 483–492.

[32] Ranjan, P., Kumar, S., & Kumar, U. (2017). Software fault prediction using computational intelligence

techniques: A survey. Indian journal of science and technology, 10(18), 1–9.

[33] Erturk, E., & Sezer, E. A. (2016). Iterative software fault prediction with a hybrid approach. Applied soft

computing, 49, 1020–1033.

206

U
m

o
e
k

a
 a

n
d

 A
k

w
u

k
w

u
m

a
 |

J.
 F

u
z
z
y
.

E
x

t.
 A

p
p

l.
 4

(3
)

(2
0
2
3
)

18
8
-2

0
6

[34] Pandey, A. K., Goyal, N. K., Pandey, A. K., & Goyal, N. K. (2013). Multistage model for residual fault

prediction. Early software reliability prediction: a fuzzy logic approach, 59–80. https://doi.org/10.1007/978-81-

322-1176-1_4

[35] Adak, M. F. (2018). Software defect detection by using data mining based fuzzy logic. 2018 sixth

international conference on digital information, networking, and wireless communications (DINWC) (pp. 65–69).

IEEE. https://doi.org/10.1109/DINWC.2018.8356997

[36] Chatterjee, S., & Maji, B. (2016). A new fuzzy rule based algorithm for estimating software faults in early

phase of development. Soft computing, 20, 4023–4035.

[37] Kakkar, M., Jain, S., Bansal, A., & Grover, P. S. (2019). Fuzzy logic based model to predict per phase

software defect. International journal of innovative technology and exploring engineering, 8(Spec. Issue), 36–

41. DOI:10.35940/ijitee.I1006.0789S19

[38] Shankar, K., & Kumar, M. (2020). Software defect prediction using fuzzy logic. International journal of

innovations & advancement in computer science, 6(3), 118–124.

[39] Eyoh, I., John, R., & De Maere, G. (2016). Interval type-2 intuitionistic fuzzy logic system for non-linear

system prediction. 2016 ieee international conference on systems, man, and cybernetics (SMC) (pp. 1063–1068).

IEEE. https://doi.org/10.1109/SMC.2016.7844383

[40] Mendel, J. M. (2001). On the importance of interval sets in type-2 fuzzy logic systems. Proceedings joint 9th

ifsa world congress and 20th nafips international conference (Vol. 3, pp. 1647–1652). IEEE.

[41] Hagras, H. A. (2004). A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots.

IEEE transactions on fuzzy systems, 12(4), 524–539. DOI:10.1109/TFUZZ.2004.832538

[42] Hagras, H. (2007). Type-2 FLCs: A new generation of fuzzy controllers. IEEE computational intelligence

magazine, 2(1), 30–43.

[43] Mendel, J. M., & John, R. I. B. (2002). Type-2 fuzzy sets made simple. IEEE transactions on fuzzy systems,

10(2), 117–127.

[44] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. DOI:10.1016/S0019-9958(65)90241-X

[45] Mendel, J. M., John, R. I., & Liu, F. (2006). Interval type-2 fuzzy logic systems made simple. IEEE

transactions on fuzzy systems, 14(6), 808–821.

[46] Chatterjee, S., Maji, B., & Pham, H. (2019). A fuzzy rule-based generation algorithm in interval type-2

fuzzy logic system for fault prediction in the early phase of software development. Journal of experimental

& theoretical artificial intelligence, 31(3), 369–391.

[47] Atanassov, K. T., & Atanassov, K. T. (1999). Intuitionistic fuzzy sets. Springer.

[48] Moeyersoms, J., de Fortuny, E. J., Dejaeger, K., Baesens, B., & Martens, D. (2015). Comprehensible

software fault and effort prediction: A data mining approach. Journal of systems and software, 100, 80–90.

[49] Kayacan, E., & Khanesar, M. A. (2015). Fuzzy neural networks for real time control applications: concepts,

modeling and algorithms for fast learning. Butterworth-Heinemann.

[50] Yadav, H. B., & Yadav, D. K. (2015). A fuzzy logic based approach for phase-wise software defects

prediction using software metrics. Information and software technology, 63, 44–57.

[51] Ibraigheeth, M., & Fadzli, S. A. (2018). Software reliability prediction in various software development

stages. Journal of theoretical and applied information technology, 96(7).

http://www.jatit.org/volumes/Vol96No7/5Vol96No7.pdf

[52] Kececioglu, O. F., Gani, A., & Sekkeli, M. (2020). Design and hardware implementation based on hybrid

structure for MPPT of PV system using an interval type-2 TSK fuzzy logic controller. Energies, 13(7), 1842.

https://doi.org/10.3390/en13071842

[53] Tai, K., El Sayed, A. R., Biglarbegian, M., Gonzalez, C. I., Castillo, O., & Mahmud, S. (2016). Review of

recent type-2 fuzzy controller applications. Algorithms, 9(2), 1-39.

[54] Begian, M. B., Melek, W. W., & Mendel, J. M. (2008). Parametric design of stable type-2 tsk fuzzy systems.

NAFIPS 2008-2008 annual meeting of the north american fuzzy information processing society (pp. 1–6). IEEE.

[55] Nie, M., & Tan, W. W. (2008). Towards an efficient type-reduction method for interval type-2 fuzzy logic

systems. 2008 IEEE international conference on fuzzy systems (IEEE world congress on computational

intelligence) (pp. 1425–1432). IEEE. https://doi.org/10.1109/FUZZY.2008.4630559

[56] Wu, D., & Tan, W. W. (2005). Computationally efficient type-reduction strategies for a type-2 fuzzy logic

controller. The 14th ieee international conference on fuzzy systems (pp. 353–358). IEEE.

[57] Menzies, T. (2007). Promise datasets page. http://promise.site.uottawa.ca/SERepository/datasets-page.html

