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Abstract 

 

1 | Introduction 

Till date, software has become the fundamental part of various domains of human endeavour. These 

domains include education, defense, transportation, medical and industries which are directly or 

indirectly benefiting from software. Diverse historical reports show the impact of software failures 

experienced round the globe [1]. Such software failures may lead to property, monetary and human 

losses. Therefore, the reliability of software cannot be ignored. The reliability of software at the early 

phase of software life cycle is very important [2]. Hence, it is necessary to guarantee the reliability of 

software systems by fixing the faults early during software development process and this will 

significantly minimize the cost of testing in later stages. Software reliability and quality has become a 

fundamental focus for both designers and developers during software development process. Software 

reliability is the probability to perform failure free operation and produce correct output for a specified 

time under specified conditions [3], while software quality is defined as the degree to which a system 

           Journal of Fuzzy Extension and Applications 

    www.journal-fea.com 

J. Fuzzy. Ext. Appl. Vol. 4, No. 3 (2023) 188–206. 

Paper Type: Research Paper 

Interval Type-2 Fuzzy Logic System for Early Software 

Reliability Prediction 

Ini John Umoeka1,* , Veronica Neekay Akwukwuma2 
 

1 Department of Computer Science, Faculty of Science, University of Uyo, Uyo, Akwa Ibom State, Nigeria; iniumoeka@uniuyo.edu.ng. 
2 Department of Computer Science, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria; nakwukwuma@uniben.edu.ng. 
 

Citation: 

 Umoeka, I. J., & Akwukwuma, V. N. (2023). Interval type-2 fuzzy logic system for early software 

reliability prediction. Journal of fuzzy extension and applications, 4(3), 188-206. 

Accepted: 11/05/2023 Revised: 19/04/2023 Reviewed: 05/02/2023 Received: 02/01/2023 
 

                                       

The reliability of software product is seen as critical quality factor that cannot be overemphasized. Since real world 

application is loaded with high amount of uncertainty, such as applicable to software reliability, there should be a 

technique of dealing with such uncertainty. This paper presents a reliability model to effectively handle uncertainty in 

software data to enhance reliability prediction of software at the early (requirements and design) stages of Software 

Development Life Cycle (SDLC). In this paper, a hybrid methodology of Takagi Sugeno Kang (TSK)-based Interval 

Type-2 Fuzzy Logic System (IT2FLS) with Artificial Neural Network (ANN) learning is employed for the prediction of 

software reliability. The parameters of the model are optimized using Gradient Descent (GD) back-propagation method. 

Relevant reliability software requirement and design metrics and software size metrics are utilized as inputs. The proposed 

approach uses twenty-eight real software project data. The performance of the model is evaluated using five performance 

metrics and found to provide output values that are very close to the actual output showing better predictive accuracy. 

Keywords: Software reliability, Software metrics, Software fault prediction, ANN, Fuzzy logic, Interval type-2 fuzzy 

Logic system, Gradient descent algorithm. 

Licensee Journal 

of Fuzzy Extension and 

Applications. This  

article is an open access 

article distributed under 

the terms and conditions 

of the Creative Commons 

Attribution (CC BY) 

license 

(http://creativecommons.

org/licenses/by/4.0). 

mailto:dastam66@gmail.com
https://doi.org/10.22105/jfea.2023.379363.1241
http://www.journal-fea.com/
https://www.orcid.org/0000-0003-4500-768X


189 

 

In
te

rv
a
l 

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 s

y
st

e
m

 f
o

r 
e
a
rl

y
 s

o
ft

w
a
re

 r
e
li

a
b

il
it

y
 p

re
d

ic
ti

o
n

 

 
component or process meets customer requirement [4]. According to Arasteh [5], reliable software is a 

software that is void of defects and one approach of enhancing reliability of software is predicting defects 

before testing phase. Since reliability has become a principal factor in software systems, its prediction is 

very paramount. Most software are difficult and complicated in nature, thus making its reliability analyses 

and predictions also difficult and complicated. This makes it difficult for software developers to determine 

the level of reliability. Many Software Reliability Prediction (SRP) models exist in literature; however, 

practitioners find it very hard to employ these methods in software development process since they have 

to decide on the amount of data to collect and suitable software reliability model and techniques to 

implement. Since the nature of software engineering involves making of measurements, reliability 

prediction methods continue to be identified so as to assist software developers; and in order to express 

software product reliability, reliability relevant metrics are needed. 

A general technique to measure the quality of software product is to identify the presence of defects in it, 

and usually the metric used for it is software reliability. As opined by Kaur and Sharma [6] that all software 

has the propensity of containing defects (product anomaly) since it is very difficult to develop fault free 

software product [7]. Software defect prediction is a method of building machine learning classifiers to 

predict defective code snippets using historical information in software repositories [8]. The predicted 

results can therefore aid developers in locating and fixing possible defects thereby enhancing the reliability 

of software [9]. Software defect prediction therefore, is an important feature of preventive maintenance, 

which involves applying various computing methods to predict potential defects in software product before 

the software fails [8]. Software maintenance is a process that continuously takes place throughout the entire 

activity of software development so as to guarantee the performance of the software as expected. 

SRP can take place in the later or in the early phase of Software Development Life Cycle (SDLC) [10]–

[15]. The accuracy of software reliability using software reliability models is mostly possible at the later 

stage of [13]. However, the prediction of reliability in the early phase of SDLC is cost effective [13]. Most 

of SRP models depend on failure or fault data for prediction. But, in the early phases of SDLC, failure or 

fault data are unavailable which forms a major challenge. However, in the early phases of SDLC, qualitative 

values of software metrics are available and this could be employed in predicting residual defects in 

software. The metrics which have impact on software reliability in SDLC are indicated in [16]–[19]. In fact, 

most of these software metrics have high amount of uncertainty resulting either from unrealistic 

assumptions and some measures that cannot be specifically defined in the process of software 

development. According to Debnath [20], uncertainty is everyday, everywhere and in different forms, there 

should therefore be a technique of dealing with the uncertainty. Hence, the idea of Fuzzy Logic System 

(FLS), that forms a fulcrum in uncertainty modeling, is of utmost importance 

In order to guarantee the development of quality software, various software defects prediction models 

have presented based on different methods including software metrics, statistical approaches, machine 

learning approaches, classification methods and other traditional approaches. For instance, Khoshgoftaar 

et al. [21] presented a neural network for predicting the number of faults and introduced an approach for 

static reliability modeling. The authors trained two neural networks; one with the complete set of principal 

components and the other one with the set of components selected by multiple regression model selection. 

Comparison of their models showed a better understanding of neural network software quality models. 

Karunanithi [22], [23] designed neural network based software reliability model to predict cumulative 

number of failures. Their model used feed-forward neural network, recurrent neural network and Elman 

neural network and also used execution time as the input of the network. Tian and Noore [24] and Tian 

and Noore [25] proposed a genetic algorithm to optimize the number of delayed input neurons and the 

number of neurons in the hidden layer of the neural network for the prediction of software reliability and 

software failure time. Oliveira et al. [26] used boosting techniques to improve software reliability models 

based on genetic programming. Boosting technique combines several hypotheses of the training set to get 

better results. Sharma et al. [27] investigated the applicability of the modified artificial bee colony algorithm 

to estimate the parameters of Software Reliability Growth Models (SRGMs). The estimated model 

parameters were then used to predict the faults in a software system during the testing process. 
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Khoshgoftaar et al. [28] presented a neural network model to predict software quality using large 

telecommunication system to classify modules as fault prone or not fault-prone; Khoshgoftaar et al. [29] 

made use of regression trees with classification rule to classify fault-prone software modules using data 

from a very large telecommunications system. In [30], genetic algorithm is applied for early detection of 

defect in software modules. Kanmani et al. [31] predicted software defect in object-oriented software 

using neural network. In [32] different techniques have employed in the prediction of software fault 

which include soft computing, data mining and machine learning methods with their accuracy rates 

based on Random Forest, Decision Tree Regression, Neural Network, Genetic Algorithm, SVM, 

Artificial Neural Network (ANN) and fuzzy logic. Defect Prediction framework using Attention-based 

Recurrent Neural Network (DP-ARNN) is presented in [9]. This model automatically learned syntactic 

and semantic features for accurate defect prediction. The framework employed seven Java projects in 

Apache for its validation using F1 measure and Area Under Curve (AUC) as evaluation criteria. 

Many other research works on software fault prediction have been presented in the literature using 

alternative modeling and ensemble approaches. For example, Singh et al. [7] proposed an integrated 

system with ability of finding functional software metrics (features) and concurrently producing a set of 

human interpretable fuzzy rules for software fault prediction. Erturk and Sezer [33] presented a model 

to predict software fault based on fuzzy logic and ANN. Arasteh [5] presented a hybrid prediction model 

of neural network and naïve bayes algorithm to build software fault prediction model. This model used 

five traditional fault datasets to develop and assess the prediction model. According to Adark [34], all 

these authors applied various performance measures; including Matthews Correlation Coefficient 

(MCC), precision, recall, Receiver Operating Characteristic (ROC), Root Mean Squared Error (RMSE), 

ROC-AUC, Accuracy, Balance, Geometric Mean (GM), showing that defection prediction procedure 

does not have a standard approach of assessing the proposed models. Fenton et al. [10] presented a 

causal model using Bayesian Nets for early life cycle defect prediction. Their model predicted the 

number of residual defects that are likely to be found during independent testing or operational usage. 

Their model was used to analyze several evaluation measures on a dataset, extracted from 31 completed 

software projects in the consumer electronics industry, which was obtained by means of a questionnaire 

distributed to managers of projects. Their model validation also authenticated the necessity for using 

the qualitative data in the model. Nevertheless, these models proposed for early software defects 

prediction are insufficient to provide reliable results because of presence of vague and imprecise data. 

The fuzzy set theory presents a method of dealing with uncertainty, vagueness and imprecision found 

in data. Hence the use of fuzzy logic is more suitable for the prediction of software defects in early phase 

of software development process, where failure data is unavailable. Some research works have been 

proposed based on FLSs to predict software defects because of the presence of vagueness or fuzziness 

in software data. For instance, [12]–[17] and [33]–[38] made use of Type-1 Fuzzy Logic Systems 

(T1FLSs) for early software defects prediction. Although T1FLSs have been widely used, literatures 

show that T1FLSs only handle uncertainty to some degree in many applications and may not reduce 

their effects in some real world applications [39]. T1FLSs also use Membership Functions (MFs) that 

are precise, thus making it inadequate to deal with uncertainty associated with the inputs and outputs of 

FLS [40]–[42]. Also, the uncertainty in Type-1 Fuzzy Sets (T1FSs) disappears the moment its MFs are 

specified [43], leaving crisp numerical values. Because of this, a higher fuzzy set(s), known as Type-2 

Fuzzy Set (T2FS) was introduced by Zadeh [44] as an extension of T1FS having T1FSs as MFSs with 

third dimension. T2FSs can be General (GTFSs) or Interval (IT2FSs). GT2FS representation is three 

dimensional with different weights on the third dimension. Working with GT2FS is computationally 

expensive because its representation. Thus, many researchers prefer the use of IT2FS since its third 

dimension takes the value of 1 and does not carry any information [45] and can easily be represented on 

a 2-D plane. These make the use of IT2FS computationally effective. An Interval Type-2 Fuzzy Logic 

System (IT2FLS) uses T2FSs, that are upper order fuzzy sets with the capacity to sufficiently deal with 

the uncertainty in the linguistic information [41]–[43]. As stated in Chatterjee et al. [46], type-2 fuzzy 

systems handle uncertainties that type-1 lacks the ability to handle because their membership grades are 

fuzzy and can be used to reduce uncertainties in the vague linguistic values of software attributes. Hence, 
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this paper presents an IT2–Takagi Sugeno Kang (TSK)-FLS-based software defects prediction with ANN 

learning at the early phases (requirement and design) of SDLC. 

Chatterjee et al. [46] developed a fuzzy-rule based generation algorithm using Mamdani fuzzy inference 

IT2FLS and Gaussian MFs with uncertain mean to predict fault in early phase of software development. 

Although quite a number of research works have been proposed using T1FLS; [46] applied IT2FLS to 

present a model in the area of early software fault prediction. Sadly, the accuracies of the developed models 

are not adequate, therefore more works need to be done particularly as there are emergence of new 

modeling methods sporadically being developed, taking cognizance of the weaknesses of the previous 

works [47]. As far as software engineering is concerned, various methods to software defect prediction are 

still emerging as potential fields of research [48]. 

This paper therefore, presents for the first time an enhanced early software defect prediction at the 

requirement and design phases of SDLC based on IT2 FLS with optimized parameters using TSK fuzzy 

inference. The intention is to minimize uncertainty thereby increasing the performance of the IT2FLS 

software defects prediction in terms of accuracy with minimal computational cost. These (optimization 

and TSK inferencing) present the novelty of this work with respect to early software defects prediction. 

The proposed IT2FLS-SRP makes use of Gaussian MF with uncertain standard deviations. As stated in 

Kayacan and Khanasar [49] the Gaussian MF with uncertain standard deviations is the only known MF 

that is continuous at all points and well suited for optimization problem undertaken in this work. 

1.1 | Main Contributios 

The contributions of this paper therefore are as follows: 1) optimization of the parameters of IT2FLS-

SRP for the first time using Gradient Descent (GD) back-propagation algorithm, and 2) managing the 

varying degrees of uncertainties in the rule base using a user-defined parameter, 𝛽 in the requirements and 

design phases of early SRP. 

1.2 | Paper Organization 

The rest of this paper is arranged as follows: Section 2 shows the preliminaries presenting definition of 

terms. Section 3 describes the methodology. The parameter update rule is presented in Section 4. Section 

5 has the experimental set while Section 6 describes the performance evaluation and Section 7 discusses 

the findings and conclusion. 

2 | Preliminaries 

An IT2FS is characterized by a FOU defined by a Lower Membership Function (LMF), 𝜇𝐴̃ (𝑥, 𝑢)  and an 

Upper Membership Function (UMF) 𝜇
𝐴̃
(𝑥, 𝑢) for all 𝑥 ∈ 𝑋 where 𝜇𝐴̃(𝑥, 𝑢) = 1 and 𝜇

𝐴̃
(𝑥, 𝑢) = 1. Hence, the 

IT2FS can also be represented as: 

 Or 

 

Ã = {((x, u),μÃ(x, u), μ
Ã
(x, u)) | for all x ∈ X, for all u ∈ Jx.  

Ã = ∫ ∫ 1/(x, u) 
u∈Jxx∈X

Jx ∈ [0,1].  

Ã = {((x, u), μÃ(x, u), μ
Ã
(x, u)) | for all x ∈ X, for all u ∈ Jx ⊆ [0,1] },  

Ã = ∑ ∑ 1/(x, u)u∈Jxx∈X Jx ∈ [0,1],  
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where and∫  and∑ represent the union of all admissible points in a continuous and discrete Universe 

of Discourse (UoD) respectively [45]. A finite UoD is assumed in this study. In this research, the IT2FS 

is defined using interval type-2 Gaussian function with a fixed mean and uncertain standard deviation 

as shown in Fig. 1. 

Fig. 1. A Gaussian interval T2FS. 

 Thus, for IT2FSs, the FOUs are generated namely LMF and UMF FOUs defined as in Eq. (1). 

The FLS that makes use of IT2FSs is called an and is shown in Fig. 2. 

Fig. 2. Architecture of the proposed IT2FLS for software defects prediction. 

3 | Proposed Model for Early Software Defects Prediction 

The proposed model predicts number of defects in the early phases (requirements and design) of SDLC 

based on interval type-2 TSK-Fuzzy Logic System (IT2-TSK-FLS). The model prediction follows from 

the fact that the reliability of software is dependent on the number of defects in the software product 

[50]. Inputs for the model are Relevant-Reliability Software Metrics (RRSMs) of each phase and software 

size (thousand lines of codes-KLOC) which are fed into the IT2-TSK-FLS for processing and 

generation of the model outputs. The output for the model is the number of defects predicted at the 

end of requirements phase known as Requirements Phase Number of Defects (RPND) which serves as 

one of the inputs to the design phase whose output is called Design Phase Number of Defects (DPND). 

The proposed model architecture is shown in Fig. 3. 

𝐹𝑂𝑈𝜇(�̃�) =∪∀∈𝑋 [𝜇�̃�(𝑥), 𝜇
�̃�
(𝑥)]. (1) 
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Fig. 3. Proposed model architecture. 

The proposed model made use of the software metrics in subsections 3.1 and 3.2 respectively. 

3.1 | Software Metrics for Requirements Phase 

I. Requirement Complexity (RC): An increase in RC increases the number of defects, thereby decreasing the 

reliability of the software at the requirement phase [2], [46], [51]. 

II. Requirement Stability (RS): Low RS which can result in increased number of defects in software and that 

a higher value of RS, results in higher reliability [2]. 

III. Review, Inspection and Walkthrough (RIW): A high level of RIW results in more defects identified and 

removed leaving fewer defects in the requirement phase [2], [15]. 

3.2 | Software Metrics for Design Phase 

I. Design Team Experience (DTE): More of this metric means lesser number of defects in the design stage 

resulting in high reliability. 

II. Process Maturity (PM): Increasing the PM, results in lesser number of defects, thereby improving the 

reliability of software. The impact of this metric on software defect is ranked as [10], [16], [46]. 

4 | Model Implementation 

The IT2-TSK-FLS is implemented using the architectural design model as in Fig. 4. 

 

Fig. 4. Design specification of TSK-IT2FLS for the model [52]. 

The architectural design consists of six layers. Input layer (Layer 1): This is where the external input signals 

are distributed. Membership function layer (Layer 2): translates the external inputs into IT2FSs. IT2FS 



 

 

194 

U
m

o
e
k

a
 a

n
d

 A
k

w
u

k
w

u
m

a
 |

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 4

(3
) 

(2
0
2
3
) 

18
8
-2

0
6

 

 

(LMF and UMF) are obtained using IT2 Gaussian MF with a fixed mean and uncertain standard 

deviation and is computed as in [2] by a process called fuzzification and are indicated in Eqs. (2) and (3). 

 

 

𝑥′𝑖𝑠 are the input vectors while the parameters, 𝑚, 𝜎1,, 𝜎2 are the antecedents parameters for MFs of 

IT2FSs.  

In this paper, the UoD (range) of the membership grades of all input metrics (linguistic variables) is 

presented in a normalized form to lie between 0 and 1. The input metrics, with their ranges and linguistic 

terms, Very Low (VL), Low (L), Medium (M), High (H) and Very High (VH) for the two phases are as 

shown in Tables 1 and 2. 

Table 1. Requirements phase metrics with their linguistic terms and fuzzy range. 

 

 

Table 2. Requirements phase metrics with their linguistic terms and fuzzy range. 

 

 

The IT2FLS MF graphical representation for all the software input metrics that are partitioned into five 

linguistic terms is depicted in Fig. 5, for the purpose of visualization. 

Fig. 5. IT2 Gaussian membership functions for requirement 

and design metrics input variables. 

The parameters of the functions mean and standard deviations for each of the MFs were obtained as 

follows: 

The mean or centre of IT2 Gaussian MFs, the data is partitioned into five sets. The centre of each set 

is the mean value of each MF. For instance, the mean of VL is 0, L is 0.25, M is 0.5, H is 0.75 and VH 

is 1. The standard deviations (width of the MFs) are assigned arbitrarily as 0.3 for UMF and 0.2 for 

LMF. 

 𝜇�̃�𝑖𝑘
(𝑥𝑖) =  𝑒𝑥𝑝 [−

(𝑥𝑖 − 𝑚𝑖𝑘)
2

2𝜎1,𝑖𝑘
2 ]. (2) 

𝜇
�̃�𝑖𝑘

(𝑥𝑖) =  𝑒𝑥𝑝 [−
(𝑥𝑖−𝑚𝑖𝑘)

2

2𝜎2,𝑖𝑘
2 ]. (3) 

Input Metrics (Linguistic Variable) Linguistic Terms Fuzzy Range 

RC {VL, L, M, H, VH} {0, 1} 
RS {VL, L, M, H, VH} {0, 1} 
RIW {VL, L, M, H, VH} {0, 1} 
KLOC {VL, L, M, H, VH} {0, 1} 

Input Metrics (Linguistic Variable) Linguistic Terms Fuzzy Range 

DTE {VL, L, M, H, VH} {0, 1} 
PM {VL, L, M, H, VH} {0, 1} 
KLOC {VL, L, M, H, VH} {0, 1} 
RPTND {VL, L, M, H, VH} {0, 1} 
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In layer 3 (Rule layer), the inputs are combined to form fuzzy rules in the rule base. Eq. (4) shows the IF-

THEN IT2-TKS fuzzy rule formation adopted in this study. 

where 𝐴̃
𝑖𝑘 are IT2FSs (𝑖 = 1, 2, . . , 𝑛), 𝑦𝑘(𝑘 = 1, 2, … , 𝐾) are the output of the 𝑘𝑡ℎ rule, 𝑤𝑖𝑘and 𝑏𝑘 are the 

consequents parameters. 

This study employs a TSK-based inferencing known as A2-C0 where the antecedent part (A2) is IT2FSs 

and the consequent (C0) parts are crisp values. The total number of rules used is obtained using the 

formula. 

Number of fuzzy rules = PI, where 𝑃 is the number of MFs, 𝐼 is the number of input variables. In this study, 

𝐼 is 4 and P is 5 giving a total number of 625 rules for the rule base in each of the phases. The subset of 

the fuzzy rules used in this study is presented in Table 3. 

From the proposed model architecture in Fig. 3, the two phases are clearly indicated. Therefore, assigning 

rules for the metrics in each of the phases is done one after the other. 

Table 3. Fuzzy rules for requirement and design input metrics. 

 

 

 

For each range of input variables, a set of firing strength are calculated using algebraic product (t-norm 

operator) operation denoted as * and defined as in Eqs. (5) and (6). 

where 𝑓𝑘 and 𝑓
𝑘
are firing strengths for lower and upper MFs of the rules respectively.  

In layer 4 (normalization layer) the output of layer 3 are normalized to have normalized outputs (𝑁)𝑘using 

Eqs. (7) and (8): 

where 𝑁𝑘 and 𝑁𝑘 are lower and upper firing strengths normalized outputs.  

In layer 5 (consequent layer) outputs are obtained using Eq. (9). 

Layer 6 (summation layer) gives the final crisp output (f) of the model. Existing works in the literature 

employ Karnik-Mendel iterative type-reduction procedure to reduce a T2FS to (T1FS) which is very 

tedious and has high computational cost [53]. In the literature various approaches have been developed to 

directly compute the output of a T2FL thereby circumventing the time wastage type-reduction procedure 

[54]–[56]. In this study, the Bergian-Melek-Mendel (BMM) algorithm [54] is used to directly compute the 

IT2FLS outputs as a weighted average of the crisp rule consequents as expressed in Eq (10). 

Rk: IFx1isÃ 1kANDx2 is Ã 2k AND…  AND xn is Ã nk THEN yk = w1kx1 +

w2kx2 + wnkxn + bk,  
(4) 

Rule No. Fuzzy Rules for Requirement Phase Fuzzy Rules for Rules for Design Phase 
RC RS RIW KLOC RPND DTE PM KLOC 

1 VL VL VL VL VL VL VL VL 
2 VL VL VL L VL VL VL L 
3 VL VL VL M VL VL VL M 
4 VL VL VL H VL VL VL H 
5 VL VL VL VH VL VL VL VH 

fk = ∏ μÃik

n
i=1 = fk(x) = μÃ1k

(x1) ∗ μÃ2k
(x2) ∗ … ∗ μÃnk

(xn). (5) 

fk = ∏μ
Ãik

= fk(x) = μ
Ã1k

n

i=1

(x1) ∗ μ
Ã2k

(x2) ∗ … ∗ μ
Ãnk

(xn), (6) 

Nk =
fk

∑ fk
M
k=1

. (7) 

Nk =
fk

∑ fk
M
k=1

, (8) 

ykTSK = ∑ wikxi + bki=1 . (9) 
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The parameter 𝛼 is user defined parameter that weighs the contributions of LMF and UMF to the final 

output and lies within the range of 0 and 1. If 𝛼 = 0, the LMF alone contributes to the final output and 

if 𝛼 = 1, UMF only contributes to the final output. If 0 ≤ 𝛼 ≤ 1, then contribution is from both the LMF 

and UMF. 

5 | Parameter Update 

In this study, the antecedent and consequent parameters of the IT2FLS are updated using GD back-

propagation method so as to reduce the cost function. Eq. (11) shows the cost function for a single 

output: 

 

where 𝑦𝑎 is the actual output and 𝑦 is the expected output of the proposed model. The GD update rules 

are represented as shown in Eq. (12) to (16): 

 

 

 

 

 

where 𝑤 and 𝑏 are the consequent parameters, m, 𝜎1, and 𝜎2 are the antecedent parameters while 𝜑 is 

the learning rate (step size) that must be carefully chosen as a large value may lead to instability, and 

small value on the other hand may lead to a slow learning process. For this work, the learning rate chosen 

provided stable learning as shown in the smooth convergence of the error (Figs. 10 and 11). 

The consequent parameters of IT2FLS are adjusted as in Eqs. (17) and (18): 

 

 

where 𝑦𝑘 is the output of the kth rule. The adjustments of the antecedent parameters are shown in Eqs. 

(19) to (28): 

 

where 

y = (1 − α) ∗
∑ fkyk

M
k=1

∑ fk
M
k=1

+ α ∗
∑ fkyk

M
k=1

∑ fk
M
k=1

. (10) 

E =
1

2
 (y a − y)2, (11) 

wik(t + 1) = wik(t) − φ
∂E

∂wik
. (12) 

bk(t + 1) = bk(t) − φ
∂E

∂bk
. (13) 

mik(t + 1) = mik(t) − φ
∂E

∂mik
. (14) 

σ1,ik(t + 1) = σ1,ik(t) − φ
∂E

∂σ1,ik
. (15) 

σ2,ik(t + 1) = σ2,ik(t) − φ
∂E

∂σ2,ik
, (16) 

∂E

∂wik
=

∂E

∂y

∂y

∂yk

∂yk

∂wik
 = (y(t) − y a(t)) ∗ [  

   
  
 

(  
   
   
 

(1 − α) ∗
fk

∑ fk
M
k=1

+  α ∗
fk

∑ fk
M
k=1

)  
   
   
 

]  
   
  
 

∗ xi. (17) 

∂E

∂bk
=

∂E

∂y

∂y

∂yk

∂yk

∂bk
 = = (y(t) − y a(t)) ∗ [  

   
  
 

(  
   
   
 

(1 − α) ∗
fk

∑ fk
M
k=1

+  α ∗
fk

∑ fk
M
k=1

)  
   
   
 

]  
   
  
 

∗ 1, (18) 

∂E

∂mik
=

∂E

∂y [  
   
 
∂y

∂ fk

∂fk
∂μik

∂μik

∂mik
+

∂y

∂fk

∂fk
∂μ

ik

∂μ
ik

∂mik
]  
   
 

. (19) 

∂E

∂σ1,ik
=

∂E

∂y

∂y

∂fk

∂fk
∂μik

∂μik

∂σ1,ik
. (20) 

∂E

∂σ2,ik
=

∂E

∂y

∂y

∂fk

∂fk
∂μ

ik

∂μ
ik

∂σ2,ik
, (21) 
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Using the product t-norm (*) operation, then, 

The value of 𝛼 is adjusted using Eq. (29). 

 

6 | Model Implementation 

The proposed model is implemented using the project datasets in PROMISE repository [57]. The software 

defects dataset in [56] is a benchmark dataset and has been adopted in many literature [10]–[13], [46], [50] 

made publicly available to promote repeatable, verifiable, refutable and/or improvable predictive models 

of software engineering. The datasets contain twenty eight real software projects obtained from an 

electronics consumer’s company as reproduced in Table 4: 

Table 4. Twenty-eight software project with metric inputs. 

 

 

 

 

 

 

 

∂E

∂y
= y(t) − y a(t),

∂y

∂ fk
= (1 − α) ∗

yk−y

∑ fk
n
k=1

, y =
∑ fkyk

n
k=1

∑ fk
n
k=1

. (22) 

∂y

∂fk
= α ∗

yk − y

∑ fk
n
k=1

, y =
∑ fkyk

n
k=1

∑ fk
n
k=1

. (23) 

∂μk(xi)

∂mik
= (xi − mik) ∗

exp (−
(xi − mik)

2

2 ∗ σ1,ik
2 )

σ1,ik
2

. 
(24) 

∂μ
k
(xi)

∂mik
= (xi − mik) ∗

exp (−
(xi − mik)

2

2 ∗ σ2,ik
2 )

σ2,ik
2

.
(25) 

∂μk(xi)

∂σ1,ik
= (xi − mik)

2 ∗

exp (−
(xi − mik)

2

2 ∗ σ1,ik
2 )

σ1,ik
3

.
(26) 

∂μk(xi)

∂σ2,ik
= (xi − mik)

2 ∗

exp (−
(xi − mik)

2

2 ∗ σ2,ik
2 )

σ2,ik
3

.
(27) 

∂fk
∂μik

= ∏μpk,

N1

p=1
p≠i

∂fk
∂μ

ik

= ∏μ
pk

N1

p=1
p≠i

. 
(28) 

α(t + 1) = α(t) − φ
∂E

∂α
,

∂E

∂α
=

∂E

∂y

∂y

∂α
= (y − y a) (  

   
 
fk ∗ yk

∑ fk
M
k=1

+
fk ∗ yk

∑ fk
M
k=1

)  
   
 

. (29) 

SN Project Number RC RS RIW DTE DPF SIZE (KLOC) Actual Defect 

1 1 M L VH L H 6 148 
2 2 L H VH L H 0.9 31 
3 3 H H VH H H 53.9 209 
4 5 H M H L H 14 373 
5 6 M H VH M M 14 167 
6 7 L M VH M H 21 204 
7 8 M H H H M 5.8 53 
8 9 L H VH VH VH 2.5 17 
9 10 M H H H H 4.8 29 
10 11 H H H H H 4.4 71 
11 12 H L H VH M 19 90 
12 13 H L M H H 49.1 129 
13 14 VH H H H H 58.3 672 
14 15 H VL H H H 54 1768 
15 16 L M H H H 26.7 109 
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Table 4. Continued. 

 

 

 

 

 

 

The inputs into the system comprise software metrics of requirements and design phases of SDLC with 

software size. In designing the system, five MFs (VL, L, M, H, and VH) are utilized. The experiment is 

run on MATLAB© 2015a. 

The number of parameters in the network to be optimized includes: 𝑚 = 𝑛 ∗ 𝑑; 𝜎1 = 𝑛 ∗ 𝑑;  𝜎2 = 𝑛 ∗

𝑑;  𝑤 = 𝑛 ∗ 𝑀; 𝑏 = 1 ∗ 𝑀. 

Thus, the total number of parameters to be optimized in each phase is 3(𝑛 ∗ 𝑑) + 𝑀(𝑛 + 1), where n = 

number of inputs, d = number of MF and M is the number of rules. 

Hence, the total number of parameters to be optimized in the proposed model is 3(4 ∗ 5) + 625(4 + 1) =

3185 parameters. During learning the initial values of consequent parameters, 𝑤 and 𝑏 were randomly 

selected in the interval [0, 1]. The optimized IT2FLS-based model is executed for 100 epochs in each 

phase with learning rate, 𝜑 = 0.8, for both requirements and design phases respectively. The 

parameter, 𝛼, value is initialized to 0.5 to guarantee equal initial lower and upper membership 

contributions to the final output. 

7 | Performance Evaluation 

To determine the performance accuracy of the proposed model, the results of the proposed model are 

compared with the results in the previous works in the literature adopting five performance metrics in 

[45] model as shown in Eqs. (30) to (34): 

 

 

 

 

Smaller values of RMSE, NRMSE, MMRE and BMMRE denote better prediction accuracy [13], [45]. 

 

where 𝑦 is the mean of the actual values, 𝑦𝑖
𝑎. Better prediction accuracy is achieved as result of R2 is 

closer to 1. In Eqs. (29) to (34), 𝑦𝑖
𝑎 is the actual value, 𝑦𝑖is the predicted value and 𝑛 is the number of 

testing data points. The metrics in Eqs. (29) to (34) are chosen because they give better prediction 

accuracy. For effective learning, the KLOC values are normalized to lie between 0 and 1. After 

SN Project Number RC RS RIW DTE DPF SIZE (KLOC) Actual Defect 

16 17 L M M M H 33 688 
17 18 VH VL H M H 155.2 1906 
18 19 H M H H H 87 476 
19 20 VH VL M VL L 50 928 
20 21 L M H H H 22 196 
21 22 M L M H L 44 184 
22 23 H M VH L H 61 680 
23 24 M L M M H 99 1597 
24 27 H M VH M M 52 412 
25 28 VH L VH M M 36 881 
26 29 M VH VH VH H 11 95 
27 30 L VH VH H H 1 5 
28 31 M M H H H 33 653 

Normalized Root Mean Square Error (NRMSE) =
RMSE

ymax
− ymin. (30) 

Mean Magnitude of Relative Error(MMRE):MMRE =
1

n
∑

|yi
a − yi|

yi

n

i=1

. (31) 

Balanced Mean Magnitude of Relative Error(BMMRE) =
1

n
∑

|yi
a − yi|

Min(yi
a, yi)

.

n

i=1

 (32) 

Coefficient of Determination(R2) = 1 −
∑ (yi

a − yi)
2n

i=1

∑ (yi
a − y)2n

i=1

, (33) 
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prediction, the final results are de-normalized to obtain the predicted values in their original states. The 

predicted result of the proposed study is compared with [45] as shown in Table 5. 

Table 5. Predicted no. of defects at requirements and designphases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Table 5, it is generally observed that the proposed model predicted numbers of defects are closer 

to the actual number of defects than the predicted number of defects for nine software projects in 

Chatterjee et al. [46] model. The negative number (-21) is one of the predicted values of the proposed 

system. This shows that the prediction result of that particular project number is below zero. 

Table 6 shows the total number of defects predicted and absolute errors for nine projects at the 

requirements and design phases undertaken by the proposed work and model of [46]. 

Table 6. The total number of defects predicted and absolute errors for nine projects. 

 

SN Project 
No. 

Actual 
No. of 
Defect 

Predicted No. of Defects 
Chatterjee et al. [46] 

Predicted No. of Defects 
Proposed Model 

Requirements 
Phase 

Design 
Phase 

Requirements 
Phase 

Design 
Phase 

1 1 148 85 72 145.9 148.8 
2 2 31 37 12 29 116.3 
3 3 209 - - 157.6 246.9 
4 5 373 - - 308.4 451.8 
5 6 167 - - 164.3 217 
6 7 204 139 168 299.1 249.7 
7 8 53 - - 55.8 59.1 
8 9 17 41 18 62.3 -8.3 
9 10 29 64 43 -21 72.3 
10 11 71 - - 79.9 57.5 
11 12 90 219 155 73.2 111.3 
12 13 129 - - 174.6 134.5 
13 14 672 - - 680.5 758.3 
14 15 1768 1946 1549 1766.3 1764.5 
15 16 109 - - 138 166.4 
16 17 688 371 286 762 701.7 
17 18 1906 - - 1905.7 1905.4 
18 19 476 - - 472.3 483.2 
19 20 928 - - 913.7 930.2 
20 21 196 - - 193.5 319.8 
21 22 184 - - 199 196.1 
22 23 680 - - 680.9 697.3 
23 24 1597 - - 1581 1544.6 
24 27 412 - - 431.1 531.2 
25 28 881 - - 747.7 878.7 
26 29 91 82 68 103.8 122.2 
27 30 5 - - 9.5 6.1 
28 31 653 - - 656.6 665.8 

Project 
No. 

Actual 
No. of 
Defects 

Predicted No. of Defects 
by Chatterjee et al. [46] 

Predicted No. of Defects by Proposed Model 

Requirement 
Phase 

Design 
Phase 

Requirement Phase Design Phase 

Pv Absolute 
Error 

Pv Absolute 
Error 

Pv Absolute 
Error 

Pv Absolute 
Error 

1 148 85 63 72 76 145.9 2.1 148.8 0.8 
2 31 37 6 12 19 29 2 116.3 85.3 
7 204 139 65 168 36 299.1 95.1 249.7 45.7 
9 17 41 24 18 1 62.3 45.3 -8.3 25.3 
10 29 64 35 43 14 -29 58 72.3 43.3 
12 90 219 129 155 65 73.2 16.8 111.3 21.3 
15 1768 1946 178 1549 219 1766.3 1.7 1764.5 3.5 
17 688 371 317 286 402 762 74 701.7 13.7 
29 91 82 9 68 23 103.8 12.8 122.8 31.8 
Total   826   855   307.8   270.7 
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From Table 6, PV stands for predicted value. 

Table 6 indicates the actual and predicted values together with the absolute error for the nine projects 

undertaken by the proposed model and model of [46]. This is done to ascertain the accuracy level of 

each model. From Table 6, the total absolute error for [46] is 826 at the requirement and 855 at the 

design phases while the proposed model provides the least total absolute errors of 307.8 at the 

requirement and 270.7 at the design phases which show better and accurate predictions. Figs. 6 and 7 

show the plots of the predicted defects values of the study and that of [46] model with the actual defects 

values for the nine projects considered. 

Fig. 6. Plot of total number of defects at the requirements phase for the nine software. 

 Fig. 7. Plot of total number of defects at the design phase for the nine software projects. 

From Figs. 6 and 7, it is observed that the proposed model predicted defect values are in close agreement 

with the actual defect values than [46] predicted defect values, showing a superior prediction. Table 7 

presents the accuracy of the models based on performance measures. 

 Table 7. Performance comparison of proposed model with Chatterjee et al. [46] model. 

 

 

 

Table 7 presents the accuracy of the models based on performance measures. Table 7 depicts that the 

proposed model has the smallest errors in terms RMSE, NRMSE, MMRE and BMMRE. Table 7 also 

Model RMSE NRMSE MMRE BMMRE R2 

Chatterjee et al. [46]   
Prediction at requirement phase 132.8230 0.0758 0.6280 0.7247 0.9398 
Prediction at design phase 157.0951 0.0897 0.3883 0.6568 0.9158 
Proposed model   
Prediction at requirement phase 71.7201 0.0377 0.2465 0.3680 0.9933 
Prediction at design phase 41.4476 0.0218 0.1132 0.3580 0.9983 
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provides the R2 values for the models. R2 for [46] is 0.9398 (93.98%) at the requirement and 0.9158 

(91.58%) at the design phases while the proposed model has R2 values that are closer to 1; 0.9933 (99.33%) 

at the requirement and 0.9983 (99.83%) at the design phases respectively, showing superior prediction 

accuracy. 

Figs. 8 and 9 present the learning of the optimized IT2FLS showing the relationship between the actual 

and predicted outputs at the requirements and design phases of the model. 

Fig. 8. Actual and predicted outputs of early SRP at the requirements phase. 

Fig. 9. Actual and predicted outputs of early SRP at the design phase. 

Figs. 10 and 11 present the convergence graphs of optimized IT2FLS showing a smooth convergence at 

the requirement and design phases of the study. 
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Fig. 10. Convergence graph of optimized IT2FLS-based model at 

requirements phase. 

Fig. 11. Convergence graph of optimized IT2FLS-based model 

at design phase. 

Shown in Figs. 12 and 13 are the graphical views of the different prediction errors with optimized 

IT2FLS having the least errors. 

Fig. 12. RMSE of early software defect prediction. 
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a. Chatterjee et al. [46]. 

b. Proposed model. 

Fig. 13. Early software defect prediction errors (NRMSE, MMRE and BMMRE). 

As shown in Figs. 12 and 13, the proposed model has the least prediction errors showing a superior 

performance over the model of [46]. 

8 | Conclusion 

This work develops a model to predict software reliability (number of defects) at the early phase 

(requirements and design) of software development process. In this work, a-TSK-based interval type 2 

fuzzy logic systems, with ANN is employed to handle uncertainty in the prediction of software reliability. 

The degree of membership grades of the IT2FSs are obtained using interval type 2 gaussian membership 

function with fixed mean and uncertain standard deviation. The parameters of the IT2FLS membership 

functions are optimized using GD back-propagation algorithm. Inputs to the system are the top significant 

reliability relevant software metrics of the early phase and the software size. The model takes into account 

the uncertainty associated over the assessment of three reliability relevant metrics of requirements phase, 

namely, RC, RS and RIW; and two reliability relevant metrics of design phase, viz, DTE and PM and 

software size metric to predict the defect of software. The proposed model made use of real software 

projects to validate its predictive ability. The performance of the model was evaluated using five 

performance metrics which include RMSE, NRMSE, MMRE, BMMRE and R2 and comparison was made 

with [46] models. The proposed model showed a superior performance over [46] model in terms of 

prediction accuracy. The model’s predicted defects for twenty-eight software projects are found very close 

to the actual software defect outputs. The proposed model will be useful to the software engineers, 

designers, stakeholders and researchers with an idea about software reliability in early phase where 
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sufficient data are not available. Precisely, the proposed model will assist software engineers, designers 

and developers in making informed and useful decisions in the face of uncertainty. In the future, we 

intend to explore other prediction approaches such as extreme learning machine, extended Kalman 

filter, support vector machine and hybrid methods in early software defect prediction. We also intend 

to adopt the generalized interval type-2 fuzzy logic in SRP. 
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