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Abstract 

 

1 | Introduction  

Fire, adversity originating either from natural phenomena or human lapses, necessitates proactive 

detection and early intervention [1]. Depending on their nature, firefighting approaches potentially 

inflict collateral harm to both the environment and the populace [2]. Given the specialized knowledge 

required for fire suppression, the choice of extinguishing methodology is of paramount importance. 

Varying combustible materials necessitate differentiated extinguishing techniques; a singular method 

is seldom capable of addressing all fire types. Hence, investigations into alternative fire suppression 

techniques are currently in progress [3]-[5]. 

One such technique under scrutiny is sound wave-based fire extinguishment. This strategy exhibits a 

reduced likelihood of environmental or human harm and offers the advantage of reusability [1], [6]. 

The primary mechanism of such fire suppressants involves oxygen deprivation to the flame, achieved 
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Fire is a natural disaster that poses a profound existential threat to humanity. It has traditionally been fought with conventional 

methods, which, unfortunately, are often fraught with limitations and potential environmental damage. Given these limitations, 

there is an urgent need for research into novel firefighting methods. Sound wave-based firefighting systems, an emerging 

solution, show promising potential in this regard. 

The current study uses an extensive data set derived from numerous experimental trials of sound-wave-based firefighting. Based 

on this extensive dataset, we have developed a sound wave technology-based fire suppression model that includes five different 

fuzzy logic methods: Fuzzy Rough Set (FRS), Fuzzy K-Nearest Neighbors (FNN), Fuzzy Ownership K-Nearest Neighbors 

(FONN), Fuzzy-Rough K-Nearest Neighbors (FRNN), and Vaguely Quantified K-Nearest Neighbors (VQNN). 

The main objective of these models is to accurately distinguish between the extinguished and non-extinguished states of a 

flame. This classification is based on a number of intrinsic model parameters, such as the type of fuel, the size of the flame, the 

decibel level, the frequency, the airflow, and the distance. 

To evaluate the classification effectiveness of the models, a number of statistical methods were used, including Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), Kappa Statistics (KP), and Mean Square Error (MSE). 

Our analysis yielded promising results, with the models FRS, FNN, FONN, FRNN, and VQNN achieving classification 

accuracies of 93.12%, 96.66%, 95.56%, 96.35%, and 96.89%, respectively. These results confirm the high accuracy of the 

proposed model in classifying fire data and underline its practical applicability. 
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by manipulating airflow via the compression and expansion of sound waves [7]. Empirical studies [8]-

[13] have demonstrated that the pressure induced by low-frequency (30 Hz-50 Hz) sound waves can 

effectively extinguish flames and diminish fuel mass. 

Sound waves' efficacy can vary under the influence of gravitational forces, as evidenced by their usage 

in spacecraft, where extinguishment is achievable within a frequency range of 60 Hz to 90 Hz [8], [14], 

[15]. Apart from the frequency attributes of sound waves, their intensity and propagation distance also 

play significant roles in fire suppression [16]. 

There have been concerted efforts to ascertain the requisite parameters for fire detection and 

suppression based on inherent fire characteristics [17]-[20]. Research exploring the properties of flames 

extinguished by sound waves has yielded insights into flame behavior, with statistical analysis and 

classification algorithms being used to interpret this data [21]. Beyond extinguishment trials, fire-related 

data can also be amassed through sensors, cameras, and thermal imaging devices [22]-[27]. 

Machine learning techniques have been instrumental in utilizing this accumulated data to tackle 

classification, regression, and clustering tasks [28]-[30]. 

Experimental trials employing the sound wave fire extinguishing technique served as the primary data 

source for this investigation [8], [31]-[33]. The dataset, comprising 17,442 samples, was derived from 

experiments varying in fuel type, frequency, distance, and flame size as parameters within the sound 

wave fire suppression system. Subsequently, a fuzzy-based classification model was architectured, 

utilizing data from an acoustically governed airflow extinguishing system to suppress liquid and gaseous 

fuels [8], [31]-[33]. The fuzzy classification methodology incorporated is the fuzzy roughest neighbor 

technique [34]-[38].  

Fuzzy sets [39]-[42] and rough sets [43]-[45] represent natural computational paradigms designed to 

negotiate the qualities of imperfect data and knowledge akin to human cognition. Simultaneously, they 

characterize elements corresponding to certain and probable concepts to facilitate concept estimation, 

even amidst information scarcity. Such approximations are realized by grouping objects into certain and 

probable concept categories. Dubois and Prade were pioneers in proposing a hybrid Fuzzy Rough Set 

(FRS) model in [44], which has since found successful applications across various domains, 

predominantly in machine learning. 

The K-Nearest Neighbor (KNN) method is a recognized classification approach that assigns a test 

object to the decision class most frequently represented among its K nearest neighbors [46]-[48]. A 

specific extension of the KNN technique to fuzzy set theory, termed Fuzzy Nearest Neighbor (FNN), 

was developed [49]. This not only considers the relative distance of each neighbor but also allows an 

object to possess partial membership in multiple classes. However, the FNN algorithm encounters 

challenges when dealing with insufficient data [35], [50], [51]. The 'fuzzy rough ownership function' 

software was developed to remedy this. The term 'fuzzy rough' may be misleading as it bears no relation 

to the core components of fuzzy set theory, specifically the lower and upper approximations of a 

decision class. 

In this research, we validate that those fuzzy approximations derived from a test object's nearest 

neighbors can accurately predict its classification. Our most trustworthy predictions stem from output 

classifications based on sound wave-dependent parameters. The uniqueness of the VQRS technique lies 

in its use of natural language quantifiers like 'some' and 'most,' enhancing the model's resistance to 

categorization errors [52]. 

The study's objectives center around distinguishing extinguished and non-extinguished flame states, 

identifying the algorithm with superior predictive ability, and constructing a model with essential 

parameters for flame suppression. The sound wave-based extinguishing model governs the fire 



219 

 

F
ir

e
 e

x
ti

n
g

u
is

h
e
rs

 b
a
se

d
 o

n
 a

c
o

u
st

ic
 o

sc
il

la
ti

o
n

s 
in

 a
ir

fl
o

w
 u

si
n

g
 f

u
z
z
y
 c

la
ss

if
ic

a
ti

o
n

 

 
suppression system based on flame characteristics, ensuring quick and efficient extinguishment. Fig. 1 

outlines the proposed classification model's structure and parameters, which include input parameters, 

classifiers, and output. 

 

Fig. 1. Diagram of a fuzzy classification model for an acoustically regulated 

airflow-based fire suppression system. 

The machine learning component often termed the 'black box', forms the intermediate element in this 

system, learning and making decisions (see Fig. 1). Effective models reliably predict new inputs' outcomes. 

With modern computing power and data digitization, supervised learning algorithms are increasingly 

crucial across various applications. A model is deemed interpretable if its predictive reasoning is 

comprehensible. While standards exist for assessing a classification system's performance using metrics like 

accuracy, Receiver Operating Characteristic Curve (ROC) area, and Root Mean Square Error (RMSE), a 

universally accepted interpretability measure is yet to be established. There's no perfect equilibrium 

between interpretability and performance in classification systems; simpler ones, while less powerful, are 

more easily understood. 

The rest of this paper is structured as follows: Section 2 discusses materials and methods, including the 

dataset, classification algorithms, and performance metrics. Section 3 presents experimental results, and 

Section 4 concludes with interpretations and conclusions. 

2 | Methodology 

This section elucidates the methodology employed for data acquisition, the technical attributes of the 

dataset, and the data distribution within the dataset. It further delineates the classification strategies 

implemented in this research and the performance metrics essential for appraising the efficacy of these 

classification methodologies. 

2.1 | Data Acquisition 

The utilized dataset [8], [31]-[33] encompasses data derived from trials of the sonic extinguisher on four 

distinct fuel flames. The system comprises four subwoofers situated within the collimator enclosure, with 

an aggregate power of 4,000 watts and a pair of amplifiers designed to magnify and direct the sound towards 

these subwoofers. The control unit houses the power supply, responsible for system energizing, and the 

filter circuit, ensuring the accurate transmission of sound frequencies. While the computer functioned as 

the frequency source, an anemometer and decibel meter were employed to monitor the airflow engendered 

by sound waves during the flame-extinguishing phase. A camera was mounted to chronicle the flame 

extinction timeframe, and an infrared thermometer was used to gauge the temperature of the flame and 

fuel container. This experimental arrangement facilitated the conduct of a total of 17,442 trials. Fig. 2 

illustrates the comprehensive layout of the employed acoustic wave-based flame suppression system. 
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Fig. 1. Fire-extinguishing system using sound waves and its experimental setup [36]. 

Experiments were carried out in a specially designed fire chamber, which housed the sonic flame 

apparatus. Throughout the course of flame extinguishing studies, data were amassed into a dataset, 

encompassing parameters such as fuel tank size, flame size, fuel type, frequency, decibels, distance, 

airflow, and flame extinction. Thus, the models are formulated based on six input features and one 

output feature. The output feature—flame extinction or non-extinguishment—should be 

prognosticated based on the six aforementioned features in the dataset. Table 1 and Table 2 illustrate the 

utilized dataset's general data distribution and statistical specifics, respectively, whereas Fig. 3 presents a 

histogram of the employed data.  

 Table 1. Characteristics and descriptions of the data in the utilized dataset. 

 

 

 

 

 Table 2. Features and interpretations of the data in the employed dataset. 

 

 

 

 

 

 

Attributes Descriptions of Features Min. Max. Mean StdDev 

SIZE  7, 12, 14, 16, 20 cm recorded as 7 
cm=1, 12 cm=2, 14 cm=3, 16 
cm=4, 20 cm=5 

1 7 3.412 1.751 

DISTANCE 10 - 190 cm 10 190 100 54.774 
DESIBEL 72 - 113 dB 72 113 96.379 8.164 
AIRFLOW  0 - 17 m/s 0 17 6.976 4.736 
FREQUENCY  1-75 Hz 1 75 31.611 20.939 

Attributes Descriptions of Features Label Count Weight 

 
 
FUEL 

 
 
Fuel type 

Gasoline 5130 5130 

Kerosene 5130 5130 

Thinner 5130 5130 

LPG 2052 2052 

 
STATUS 

 
Extinction or non-extinction state 

0 8759 8759 

1 8683 8683 
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Fig. 2. Histogram of the data used. 

2.2 | Fuzzy Classifier 

This section introduces the classification algorithms in our model. These classifiers use fuzzy logic 

definitions for upper and lower approximations, eliminating the need for traditional fuzzy relations. This 

fuzzy logic method was chosen for its strength in dealing with uncertain and vague data and its ability to 

interpret degrees of truth rather than absolute truths, which meets our model's need for a detailed 

understanding of the data. 

The selection criteria based on these fuzzy approximations represent the links between the accuracy of the 

premises and the resulting outcomes. In this way, fuzzy logic can efficiently handle complex decision-

making processes common in the real world. 

2.2.1 | Fuzzy rough set theory 

We derive FRSs by amalgamating fuzzy logic methods, capable of extracting imprecise structures, with 

data mining techniques. The FRS approach utilizes strategies such as inference from missing data, 

knowledge base reduction, data mining, and rule extraction to prepare insufficient, ambiguous, and 

incomplete data for analysis. It has the aptitude to handle inconsistent and incomplete data, which poses a 

significant challenge for rule extraction and classification. FRSs are versatile tools and find applications in 

various artificial intelligence methods, including uncertainty resolution, pattern recognition, image analysis, 

feature extraction, classification, rule reduction, and machine learning. These techniques have found utility 

across various domains, such as medicine, finance, rule simplification, dispute resolution, and feature 

selection [53]-[60]. Rough clustering incorporates fundamental concepts such as decision systems (tables), 

consciousness, approximate clustering, reductions, core ideas, rough membership, and attribute 

dependence. The concept of rough sets enables the pragmatic application of rule reduction and 

classification techniques. Fig. 4 provides a schematic representation of the rough set. 
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Fig. 3. Schematic representation of the rough set [66]. 

Assume U as a finite collection of objects, referred to as the universe, and A as a finite set of associated 

attributes. The pair S = (U, A) represents an information system. Each attribute A is defined by a 

function a: U → Va, where Va is the domain of the attribute for each a in A. Any subset B ⊆ A delineates 

a distinctness relation, termed INDs (B), as expressed in Eq. (1). 

If a set X cannot be precisely distinguished utilizing attributes of B ⊆ A, and the system calculates the 

lower and upper approximations of X, the following can be posited: the B-lower approximation set 

symbolized as , represents the set of objects that unequivocally belong to the element X (refer to 

Eq. (2)). 
 

X constitutes a set of objects that could potentially be part of the B-upper approximation, represented 

by  

 

The notation (refer to Eq. (3)). 

2.2.2 | Fuzzy k-nearest neighbors 

The FNN technique [49] is implemented to classify test subjects based on their proximity to a certain 

number of neighbors and their degree of association with this group. This strategy was designed using 

fuzzy-rough fuzziness, which enhances the classification performance of the conventional KNN 

method [49], [61]. The proposed method preserves the simplicity and nonparametric characteristics of 

the classic KNN algorithm. Contrary to the conventional technique, our proposed approach doesn't 

require knowledge of the optimal K value. Additionally, the sum of class confidence values, constructed 

as fuzzy-rough values, doesn't always add up to one [62], [63]. The pseudocode for this algorithm is 

provided in Algorithm 1. 

 

 

 

 

(1) 

(2) 

(3) 
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 Algorithm 1. The fuzzy rough nearest neighbor's algorithm (C is the total number of class, q 

ε (1,∞) is an index of fuzziness controls) [50]. 

 

 

 

 

2.2.3 | Fuzzy ownership k-nearest neighbors 

The fuzzy rough ownership function represents an amalgamation of the FNN algorithm with principles 

derived from FRS theory [51], [64], [65]. It effectively addresses both "fuzzy uncertainty," arising from 

competing classes, and "brute uncertainty," stemming from inadequate information about objects or 

features. Unlike the FNN method, this function takes into account all training objects, eliminating the need 

to specify a predetermined number of neighbors. This is due to the fact that training objects situated farther 

away do not significantly impact the result. This aligns with the Parzen window approach [66], where all 

objects within a certain distance are considered, rather than just the k closest training objects. Algorithm 2 

[35] presents the pseudocode for this algorithm. 

Algorithm 2. The fuzzy-rough ownership nearest neighbour algorithm. 

 

 

 

 

 

 

 

 

 

INPUT: (a) Training data  with fuzzy class labels. 
                (b) The test pattern . 
ALGORITHM: 
Compute . 

     
             Set  as zero 

END FOR 

FOR  to 𝑛 

                                  Determine squared weighted distance 

                                       FOR  to  

                 END FOR 
END FOR 
Crisp class label of  is  where . 

OUTPUT: (a) Class label of . 

                                                     (b) Class confidence values . 

Input: 𝑋, the training data; 𝐴, the set of conditional features; 𝒞, the set of decision classes: 

𝑦, the object to be classified. 

Output: Classification for 𝑦 
begin 
          foreach  do 

           end 

           foreach  do  
           foreach  do 

               
                  foreach  do 

⁡

                  end 
           end 
           output arg  

end 
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2.2.4 | Fuzzy-rough k-nearest neighbors 

The proposed method, known as Fuzzy Roughest Nearest Neighbors (FRNN), leverages the concept 

of nearest neighbors to construct fuzzy lower and upper approximations of decision classes. 

Subsequently, it classifies test patterns based on their membership within these approximations. This 

method offers a comprehensive solution by integrating fuzzy brute approaches with FNN principles. 

The corresponding pseudocode for this algorithm is outlined in Algorithm 3 [35]. 

 Algorithm 3. The fuzzy-rough nearest neighbour algorithm.  

 

 

 

 

 

 

 

This method summarizes the proposed technique that combines fuzzy brute approximations with the 

FNN approach. The approach is based on the premise that the upper and lower approximations of a 

decision class computed from the nearest neighbors of a test object y provide useful information for 

predicting whether the test object belongs to that class. In particular, a high value of (R↓C) (y) indicates 

that all neighbors of y belong to class C, while a high value of (R↑C) indicates that at least one neighbor 

belongs to that class. Since τ is initialized to zero in line (2), a classification for y is always determined. 

The decision class is determined using the best combination of the lower and upper fuzzy approaches, 

or the information from the lower and upper fuzzy approaches is used to determine membership in this 

class. 

2.2.5 | Vaguely quantified k-nearest neighbors 

The Vaguely Quantified Nearest Neighbor (VQNN) method has been applied for data classification, 

leveraging the notion of overall similarity within each class [37]. This approach incorporates linguistic 

quantifiers such as "most" and "some" to facilitate its operations. By employing a set of fuzzy quantifiers 

(Qu, Ql) to represent "most" and "some," respectively, the upper and lower approximations of class C 

are utilized to assign a class label to the target instance y [52], [67]. The upper and lower approximations 

of vaguely quantified rough sets are characterized as follows: 

I. The upper approximation of C, denoted as (R↑C), represents the set of instances that "most" likely 

belong to class C. 

II. The lower approximation of C, denoted as (R↓C), includes instances that "some" likely belong to class 

C. 

These approximations serve as vital components in the VQNN method, facilitating the classification 

process based on the overall similarity within each class. Vaguely quantified rough sets' upper and lower 

approximations are characterized as follows: 

 

Input: 𝑋, the training data; 𝒞, the set of decision classes; 𝑦, the object to be classified 

Output: Classification for 𝑦 
begin 

 getNearestNeighbours  
, Class  

        foreach  do 
               if  then 
                    Class  

 
               end 

          end 
          output Class 
end 
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2.3 | Performance Metrics 

The main objective of performance evaluation is to verify the efficiency of the algorithms used and the 

system's applicability. To substantiate a classification method, comparing the resulting values with empirical 

observations is necessary. The performance indices for a sound wave-based fire extinguishing system 

include a confusion matrix, sensitivity, specificity, False Positive Rate (FPR), the balanced classification 

rate, and the Matthews correlation coefficient. The confusion matrix for the binary classifier is shown in 

Table 3 [68]. Sophisticated metrics are used to investigate the relationships between these indicators. Table 

4 shows the measurements used to evaluate performance. 

Table 3. Confusion matrix.  

 

  

 

In the structure of the confusion matrix, True Positive (TP) symbolizes the quantity of positively labeled 

data that has been accurately classified, whereas False Positive (FP) represents the quantity of positively 

labeled data that has been inaccurately classified. True Negative (TN) signifies the quantity of negatively 

labeled data that has been correctly classified, and False Negative (FN) corresponds to the quantity of 

negatively labeled data that has been inaccurately classified. Moreover, parameters such as sensitivity, 

specificity, accuracy, F-measure, and Area Under the Curve (AUC) were considered for the methods 

proposed in this study. Table 4 lays out the mathematical expressions for the performance assessment 

metrics employed in this research.  

Table 4. Performance metrics. 

  

  

 

 

 

 

 

 

 

 

(4) 

(5) 

Predicted Negative Predicted Positive 

Actual negative True Negative (TN) False Positive (FP) 

Actual positive False Negative (FN) True Positive (TP) 

Abbreviation Description Formula References 

ACC Accuracy [69]-[71] 

RCL Sensitivity (Recall) [70], [71] 

SPC Specificity [70], [71] 

PRE Precision [70], [71] 

FSC F-1 Score [70], [71] 

MCC Mathews Correlation 
Coefficient 

MCC [72] 
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Table 4. Continued. 

 

The ROC is described by the area under the receiver operating characteristic curve (AUC). In a threshold 

classifier, the ROC curve can be used to examine the balance between the rate of TPs and FPs (True 

Positive Rate (TPR) or FPR). Precision and recall are the most important parameters to consider in the 

context of unbalanced data (i.e., the F-score). Precision indicates the degree of agreement and closeness 

between the scale of the results and the expected response. In addition to the above indices, the AUC 

is also suggested as a performance measure. The AUC is a graphical representation of the FPR and the 

TPR at different thresholds. Since the AUC is not dependent on a threshold, it serves as a more reliable 

measure of comprehensive performance than accuracy [70].  

3 | Experimental Results 

In the present research, algorithms based on fuzzy logic (FRS, FNN, FONN, FRNN, and VQNN) were 

employed to suppress fires ignited by flaming fuels, thereby developing an acoustic extinguishing system. 

The interrelation between the features might influence the classification outcome either positively or 

negatively. Furthermore, the investigation of sonic flame extinguishing revealed that all parameters 

impact the status of the flame, either extinguishing it or leaving it burning. The distribution of feature 

values and the count of duplicates within the dataset also significantly contribute to the study of the 

classification problem. Fig. 3 exhibits the distribution of feature values per class. 

Cross-validation serves as an approach for objectively assessing the accuracy of model categorization. 

The dataset is partitioned into 'k' equal segments, contingent on the specified 'k' value. Subsequently, 

data undergo cross-validation. Each of these segments is isolated as a testing sample. The 'k-1' rear 

component is utilized during the training phase. This procedure is conducted 'k' times until every 

component has served as a test sample. The overall classification success of the model is the arithmetic 

mean of the classification success of each procedure. Based on the experiments within this study, the 'k' 

value was established at 10. All resulting test outcomes were tabulated. The process flow diagram is 

displayed in Fig. 5. 

A confusion matrix was implemented to analyze the values resulting from the test data classification. 

Computation of the values in the confusion matrix, formulated for each test using formulas, provided 

the models' performance metrics. The tables present the outcomes of these performance metrics for 

each model. 

 

 

 

Abbreviation Description Formula References 

AUC Area Under the Curve [73] 

KP Kappa statistics [74] 

MAE Mean Absolute Error [73] 

RMSE Root Mean Square Error 
 

[73] 



227 

 

F
ir

e
 e

x
ti

n
g

u
is

h
e
rs

 b
a
se

d
 o

n
 a

c
o

u
st

ic
 o

sc
il

la
ti

o
n

s 
in

 a
ir

fl
o

w
 u

si
n

g
 f

u
z
z
y
 c

la
ss

if
ic

a
ti

o
n

 

 

 

Fig. 5. Flowchart of the process in the knowledge flow of the environment. 

A series of tests were performed to prove the effectiveness of the proposed method. A comparative 

analysis was performed to evaluate the classification performance of fuzzy and fuzzy rough techniques. 

The confusion matrix of the proposed models (FRS, FNN, FONN, FRNN, and VQNN) are shown in 

Fig. 6. 

Fig. 6. Confusion matrix of proposed models. 

The performance measures of the models were derived from the information extracted from the confusion 

matrix. The calculated performance measures are presented in Table 5 and Table 6, providing a 

comprehensive evaluation of the model's performance. 

Additionally, Fig. 7 depicts a graphical representation of the performance metrics, offering a visual overview 

of the model's effectiveness. This graphical representation aids in understanding and comparing the 

performance of different models, enabling the identification of patterns, trends, and areas for 

improvement. 

By utilizing the information from the confusion matrix and presenting the performance measures in tabular 

and graphical formats, a comprehensive evaluation of the models' performance is achieved, providing 

valuable insights into their efficacy and aiding in informed decision-making. 
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Table 5. Performance metrics of proposed fuzzy-based models. 

 

 

 

 

TP is the situation where both the actual and expected values are 1. TN occurs when both the actual 

and expected values are 0. FP are situations where the actual value is 0, but the expected value is 1. FN 

occurs when the actual value of a variable is 1, and our expected value is 0. ACC is a measure of how 

often the classifier makes a correct classification. The TPR indicates the percentage of TP values the 

classifier correctly predicts. The true negative rate indicates the percentage of TN values the classifier 

correctly predicts. The FPR is the percentage of individuals whose predicted value is 1 while the true 

value is 0. The FN rate is the percentage of individuals whose predicted value is 0 while the actual value 

is 1. Precision is the degree to which predictions from all classes are correct. 

 

Fig. 4. Graphical representation of the performance metrics. 

The Kappa Statistic quantifies the actual performance of the classifier. In other words, the kappa score 

of a model is high if there is a significant discrepancy between its accuracy and its error rate. The F-

score is the harmonic mean of the ratio of TPs (recall) to accuracy (precision). It is a measure of how 

well the classifier performs and is often used to compare classifiers. 

Table 3. Performance metrics of performed models. 

 

 

 

 
TP Rate FP Rate PRE RCL FSC MCC ROC Area PRC Area Class 

FONN 0.959 0.046 0.955 0.959 0.957 0.913 0.991 0.991 0 
0.954 0.041 0.958 0.954 0.956 0.913 0.991 0.992 1 

FRNN 0.968 0.04 0.961 0.968 0.964 0.928 0.995 0.995 0 
0.96 0.032 0.967 0.96 0.964 0.928 0.995 0.996 1 

VQNN 0.971 0.035 0.966 0.971 0.969 0.937 0.996 0.995 0 
0.965 0.029 0.971 0.965 0.968 0.937 0.996 0.996 1 

FNN 0.967 0.036 0.965 0.967 0.966 0.932 0.966 0.95 0 
0.964 0.033 0.967 0.964 0.966 0.932 0.966 0.95 1 

FRS 0.948 0.081 0.922 0.948 0.935 0.868 0.973 0.966 0 
0.919 0.052 0.946 0.919 0.932 0.868 0.974 0.967 1 

 
ACC KP  MAE  RMSE  

FRS 93.12% 0.8673 0.0742 0.2253 

FNN 96.66% 0.9318 0.0341 0.1847 

FONN 95.56% 0.9131 0.0594 0.1861 

FRNN 96.35% 0.928 0.1108 0.2335 

VQNN 96.89% 0.9366 0.0457 0.1567 
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In machine learning models, the RMSE is often used to measure the difference between expected and 

actual values. The RMSE is the standard deviation of the prediction error. In other words, it measures the 

distance between the errors and the data points on the regression line. Mean Absolute Error (MAE) is a 

measure of the difference between two continuous variables. MAE is a linear variable that measures the 

average number of errors in a set of predictions, regardless of their direction, with each error having the 

same weight on the mean. 

 

Fig. 8. Algorithms classification accuracy (%). 

As seen in Table 6 and Fig. 8, the VQNN model achieved the highest classification accuracy of 96.89%. 

These metrics show that the VQNN model is a more effective classifier than the others. The classification 

accuracy of the VQNN, FNN, FRNN, FONN, and FRS models ranges from the highest to the lowest. 

Fig. 8 shows the percentage classification accuracy of the models. The classification accuracy of the FNN, 

FRNN, FONN, and FRS models is 96.66%, 96.35%, 95.56%, and 93.12%, respectively. The ROC curve 

is an important metric for classification performance. The area under the ROC probability curve (AUC) 

represents the degree of separability or metric. The greater the class difference, the greater the AUC. The 

optimal threshold for class separation must be determined to create the ideal ROC curve. The optimal 

ROC curve is also developed once the ideal F1 score is found by experimenting with different thresholds. 

The AUC value measures the ability of a model to discriminate between classes. The higher the AUC value, 

the more accurately the model predicts that 0s will be 0s and 1s will be 1s. Fig. 9 shows the ROC curve 

created using the proposed models. 

 

Fig. 9. ROC Curve for all models 

The purpose of this curve was to evaluate the balance between sensitivity and selectivity. The area under 

the ROC curve represents the ROC value. This number also describes the performance of the model. A 
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lower value on the x-axis means fewer FPs and more TNs. The values on the y-axis increase when the 

number of TPs and FNs decreases. The ROC curve is created by graphing the number of TPs versus 

the number of FPs for each categorization level. Table 7 shows the general comparison of the previous 

results in a single table and the algorithm's performance. 

Table 7. Analysis of the performance of the algorithm ((1) rules.Roughset, (2) fuzzy.FuzzyNN, 

(3) fuzzy.FuzzyOwnershipNN, (4) fuzzy.FuzzyRoughNN, (5) fuzzy. VQNN). 

 

 

 

 

 

 

 

4 | Conclusion and Future Works 

Based on fuzzy set theory, this study used a combination of classification and estimation techniques - 

VQNN, FNN, FRNN, FONN, and FRS. We constructed fuzzy-based classification models for acoustic 

flame extinguishing systems using a dataset of 17,442 tests. 

We used five fuzzy logic models to classify flames' extinguishing and non-extinguishing states accurately. 

The VQNN model, which integrates lower and upper techniques with natural language quantifiers, 

performed equivalently to FNN and FRNN models under standard conditions. 

Through cross-validation, we evaluated the accuracy of these models and created confusion matrices to 

identify correctly and incorrectly classified data samples. VQNN had the highest classification accuracy 

of 96.89%, followed by FNN (96.66%), FRNN (96.35%), FONN (95.56%), and FRS (93.12%). 

Our results led to the development of a decision support system that enables faster parameter selection 

for flame-extinguishing tests. We believe that our approach, especially the sonic flame fire extinguishing 

system, can minimize the damage to electronic equipment and the environmental impact. 

In the future, we plan to refine these models using different datasets and explore the integration of fuzzy 

methods for coarse feature selection. There are opportunities to reduce computational complexity and 

extend these models to data with missing values. 

However, our study has limitations. The models are based on a specific data set, and their performance 

may vary for different flame types, conditions, or extinguishing systems. Moreover, despite its 

advantages, fuzzy logic leads to complexity in interpretation and computation, especially for larger data 

sets. 

 

 

 (1) Rules.Ro|  (2) Fuzzy (3) Fuzzy (4) Fuzzy (5) Fuzzy 

Percent correct 93.12| 96.66v 95.56v 96.35v 96.89v 
Kappa statistics 0.87  | 0.93v 0.91v 0.93v 0.94v 
MAE 0.07  | 0.03* 0.06* 0.11v 0.05* 
RMSE 0.23  | 0.18* 0.19x 0.23v 0.16* 
Relative Absolute Error (RAE ) 15.02| 6.68 * 11.91* 22.29v 9.12 * 
TPR 0.95  | 0.97v 0.96v 0.97v 0.97v 
FPR 0.08  | 0.03* 0.05* 0.04* 0.03* 
True negative rate 0.92  | 0.97v 0.95v 0.96v 0.97v 
False negative rate 0.05  | 0.03* 0.04* 0.03* 0.03* 
Recall 0.95  | 0.97v 0.96v 0.97v 0.97v 
F measure 0.93  | 0.97v 0.96v 0.96v 0.97v 
Matthews correlation 0.87  | 0.93v 0.91v 0.93v 0.94v 
Are under ROC 0.97  | 0.97* 0.99v 1.00v 1.00v 

Elapsed time testing 0.84  | 41.68 5.90v 5.83v 5.83v 
User CPU time testing 0.83  | 7.51v 5.82v 5.77v 5.78v 
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