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Abstract 

 

1 | Introduction  

In Multi-Criteria Decision-Making (MCDM), the Decision-Making Trial and Evaluation Laboratory 

(DEMATEL) method, initially introduced by Gabus and Fontela in 1972 has emerged as a valuable 

tool for identifying critical factors that exert substantial influence on specific systems and unraveling 

their interdependence [1]. Unlike alternative methodologies, DEMATEL uniquely unveils causal 

relationships and comprehensively gauges the collective impact of theoretical and empirical factors. 

Its application extends to solving contextual decision problems, where it has been further refined 

through integration with diverse MCDM methods [2]-[4]. However, a critical aspect of DEMATEL 

lies in the subjective nature of the initial decision information provided by experts, which raises 

concerns about potential limitations stemming from experts' domain knowledge and bounded 

rationalities. The consequences of relying on inherent limitations of expert input become apparent 
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DEMATEL serves as a tool for addressing multi-criteria decision-making problems, primarily by identifying critical factors that exert the most 

significant influence on a specific system. To enhance its capabilities in handling contextual decision problems, DEMATEL has been further 

developed through integration with various other MCDM methods. The inherent reliance on direct input from experts for initial decision 

information in DEMATEL raises concerns about the potential limitations imposed by experts' domain knowledge and bounded rationalities. 

The effectiveness of decision-making can be compromised if the initial information provided by experts is deemed unreliable, leading to 

debatable outcomes. To address these challenges, this study proposes the incorporation of a Bonferroni mean aggregation operator within a 

Pythagorean neutrosophic environment, illustrated through a numerical example applied to DEMATEL. This integration is intended to fortify 

decision accuracy by introducing a more enhanced decision framework by developing a new normalized weighted Bonferroni mean operator 

for Pythagorean neutrosophic set aggregation (PN-NWBM). By integrating this operator, this study aims to alleviate the impact of unreliable 

initial information and enhance the overall reliability of decision outcomes thereby contributing to its improvement in decision making. 

Through the implementation of the Bonferroni mean aggregation operator, the study anticipates achieving a more comprehensive and accurate 

representation of decision factors as illustrated in the numerical example. This research includes a comparative and sensitivity analysis to 

thoroughly examine the implications and effectiveness of the proposed integration. 
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in the form of debatable decision outcomes. Nevertheless, the active involvement of decision makers 

from diverse fields is imperative, fostering a multifaceted understanding of issues and enriching decision-

making through varied perspectives [5]. As the complexity and uncertainty in practical decision-making 

scenarios escalate, efforts to address these challenges have led to the integration of DEMATEL with 

fuzzy set theory and other MCDM methods [6]-[8]. While these endeavors have shown promise in 

improving decision outcomes, a critical gap remains in the consideration of other extension theory. 

Neutrosophic sets have emerged as an extension of fuzzy sets, designed to reflect the existence of 

uncertain, imprecise, incomplete, and inconsistent information that is present in the real world [9]. In 

this framework, each element within the set is assigned degrees of truth, falsity, and indeterminacy 

membership [10]. A novel extension of neutrosophic set theory is the Pythagorean Neutrosophic Set 

(PNS) where PNS has dependent truth and false components where the sum of the truth square, falsity 

square, and indeterminacy square must be less than or equal to two [11]. This novel extension of 

neutrosophic set addresses a common challenge encountered in real-life scenarios [11]–[16]. PNS is a 

relatively new concept and its applications are still being explored. A recent study conducted by [17] has 

innovatively integrated PNS with DEMATEL but a significant challenge surfaces in decision-making 

problems when experts from diverse professional backgrounds provide evaluations influenced by their 

unique status, experience, and academic influence. These discrepancies in preferences present a critical 

challenge in MCDM. To effectively tackle this issue, this study proposes the incorporation of a 

Bonferroni Mean (BM) aggregating operator, aiming to harmonize diverse evaluations and enhance the 

decision-making processes. The BM introduced by [18] is a significant aggregation operator that 

effectively captures the interrelationship among individual arguments. While many existing aggregation 

operators assume that the criteria used in decision making are mutually independent, BM takes into 

account the interactions between these criteria. This allows BM to provide a more comprehensive 

representation of the relationships and dependencies among the individual arguments, making it a 

valuable tool in decision making and analysis. Since aggregation process is essential as it combines the 

evaluations of all decision makers into a single collective evaluation before proceeding with further steps, 

we utilize BM aggregation operator under Pythagorean neutrosophic environment within the 

DEMATEL method. Motivated by the concept normalized weighted BM operators which has the ability 

to deal with inter-related criteria [19], [20], this paper aims to develop a new normalized weighted BM 

operator for PNS aggregation (PN-NWBM) thereby contributing to its improvement in decision 

making. This study stands as one of the pioneering efforts to introduce a BM aggregation operator 

within DEMATEL under PNS environment. This paper is organized into the following sections: 

fundamental PNS theories are introduced in Section 2. The proposed approach is fully explained in 

Section 3. Numerical example is presented is Section 4 and Section 5 provides findings and discussions.  

2 | Preliminaries  

The foundational theories that are important for the development of PN-NWBM are presented in this 

section. 

Definition 1 ([18]). Consider a set of positive real numbers denoted by p and q. Let be a 

collection of values such that  ia 0,1   and (i 1,2,3,.....,n) , then the BM is defined as 

 

    

This BM operator consider interrelationship between ai and aj while disregarding the individual weights 

of the aggregated arguments. The importance of each argument, however, differs depending on the 

scenario, necessitating different weightings. As a result, the definitions of the Weighted Bonferroni Mean 

(WBM) and Normalized Weighted Bonferroni Mean (NWBM) are given in Definition 2 below. 

  








 
 
 
 
 

 (1) 
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Definition 2 ([21]). Consider a set of positive real numbers denoted by p and q. Let be a 

collection of values such that       and   with weight vector  

where   and 


  represents the importance degree of , then WBM is defined as: 

Definition 3 ([22]). Consider a set of positive real numbers denoted by p and q. Let be a 

collection of values such that       and   with weight vector  

where   and 


  represents the importance degree of , then NWBM is defined as: 

Definition 4 ([23]). Let X be a universe or non-empty set. A Pythagorean fuzzy set A is defined: 

where      denote the truth membership and false membership respectively of each element 𝑥 ∈ 

𝑋 to the set A, and     for each 𝑥 ∈ 𝑋. The indeterminacy membership is given by 

        . 

Definition 5 ([24]). Let X be a universe or non-empty set. A single valued neutrosophic set X in  is 

defined as: 

where     and      .  

Definition 6 ([11]). Let X be a universe or non-empty set. A PNS with  and  as dependent 

membership is defined as: 

where ,  and  are the truth, indeterminacy and false membership respectively such that 

     and satisfying 

Definition 7 ([25]). Let   ,    and    are any two PNSs, 

then the operational rules for PNSs are defined as follows: 

 
   










 
 
 
 
 

 (2) 

   








 
 
 

 
 

 (3) 

       (4) 

         (5) 

        (6) 

   (7) 

   
 

(8) 

     (9) 



 

 

284 

Is
m

a
il

 e
t 

a
l.

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 4

(4
) 

(2
0
2
3
) 

2
8
1-

2
9
8

 

 

 

 

 

 

 

 

3 | Proposed Method 

In this section, we aim to expand the capability of NWBM operator's in Definition 3 to account for 

circumstances in which PNS are utilized as input arguments. Thus, we propose the PN-NWBM operator 

under Pythagorean neutrosopic environment.  

Definition 8. Let         where   be a set of PNS and  , then 

PNBM is defined as: 

 

 

 

Based on the algebraic operations defined for PNSs in Definition 7 and PNBM defined in Definition 8, we 

have the following propositions.  

Proposition 1. Let         where   be a set of PNS and  , 

then  for any i, j and  : 

 

 

Proof: Let two PNS numbers         and        By the 

Operational Law (12) in Definition 7, we have        
 
 
 

, and 

       
 
 
 

. Then based on Operational Law (10) in Definition 7, we have: 

 

Thus, Proposition 1 holds. 

        (10) 

   
 
 
 

 where   and   (11) 

       
 
 
 

 where μ  and   (12) 

 
 







  


 
 
 
 
 

  (13) 

             
 

  
 

  (14) 

       

         

         

       

          

         



         

      

   
   
   

 
 
 
 
 
 
 
 

 
 
 
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Proposition 2. Let         where   be a set of PNS and  ,  

then  for any i, j and  : 

Proof: Based on the result from Proposition 1, we have: 

              
 
 
 

 and 

              
 
 
 

 

Then based Operational Law (9) in Definition 7, we have: 

Thus, we conclude the Proposition 2 proof. 

Proposition 3. Let         where   be a set of PNS and  ,  

then  for any i, j and   and   , we have: 

   

  

         

         

  

         

     

 
 
 
 
 
 
 
 
 
 
 

  (15) 

   

       

       

       

   

       

 
  
 
 
   

            
   
 
 

      
 

  
    
  

 
       

 

       

     

       

       

 
 
 
 
 
  

 
 
   

            

 
   
 
 
   

         
   
 
   

            
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Proof: Based on Eq. (14) in Proposition 1, if we let f = 2, we have: 

 

Then, 

 

 

Next if we let f = fo,  

 

Thus Eq. (16) from Proposition 3 holds for  f = fo .  

When  f = fo +1, we have:  

 

Thus also holds for f = fo +1. Therefore, Proposition 3 holds. Hence, we can directly deduce the following 

Proposition 4 based on Proposition 3 above. 

Proposition 4. Let         where   be a set of PNS and  , 

then  for any i, j and   and   , we have: 

 

           




  

  

  

       
 
 
 
 

     
(16) 

          

 
        

 
   

     

  

       

       


     

 
   
 
 
            
   
 
   

        
   

  

 

 

         




  
 

  

 
              

    
 

  

  

 

       

         

   

 

     
  

  
  

   

         

 
                

    
 

    

  

   

         

 

  

  
  

 
  

 

 
               

    
 

     
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Proposition 5. Let         where   be a set of PNS and  , then  

for any i, j and  , 

Proof: By combining the result from Propositions 2 to 4, we can prove Proposition 5 as follows: 

Let n = 2, we use Eq. (15) from Proposition 2 to get; 

and if n = f, we have: 

Thus when n = f +1, we have: 

where  

  from Proposition 3, is 

 

         




  
  

  

 
              

    
 

     
 

 

 

   

   

 

 






 
 
 
  
 
 
 

          
 
 
 
  

    
  

 
 







  (18) 

     

  

       

       




      

 
   
 
 
           
   
 
   

        
   

   

 

         

 

     

  

 
              

    
 

  
   

       


 
     
            

           
  

 
             

    
 

      
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and  

   from Proposition 4, is 

 

 

Hence, we calculate  


 
   as follows:  

Since Eq. (18) also holds for n = f +1, thus the statement for Proposition 5 holds.  

Proposition 6. Let         where   be a set of PNS and  , 

then  for any i, j and  , 

 

 

 

Proof: Based on Proposition 5, we have: 

 

 

 

Next by using Operational Law (11) from Definition 7, we compute  
 

 
 

 
  

   

 as 

follows: 

 

 

Thus, Proposition 6 holds. Next, by utilizing PN-BM in Definition 8 we can further deduce the PN-NWBM 

operator as follows. 

           
  

 
              

    
 

      

 

             
  

  

  











       

  

 
 
   
 
 
 

  

   

 
 

   

     

     



 



 
 



 

 
  
 
 
 

    
                

 
 

        







  (19) 

 

         

 

     

  

 
              

    
 

  
  

 
 

   

     

     



 



 
 



 

 
  
 
                   
 

        






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Definition 9. Let         where   be a set of PNS and  , then  

for any i, j and   PN-NWBM is defined as: 

where    is the weight vector represents the importance degree of , with   and  


 . 

Theorem 1. Given   and         where   be a set of PNS, 

then the aggregated value by PN-NWBM operator in Eq. (20) is a Pythagorean neutrosophic number with 

Proof: Based on the derived equations in Propositions 1 to 6, we can prove Theorem 1 as follows: 

We have        
 

        
 

, then 

 

 

 





 
 
 
 
 

   


 (20) 

    








 
 

   
 
 

,

     







 
  

        
  

 

    

and      




 

 
  

       
  

 

  

 

            


         


 
  
         

 

 



  


  

           


  

  

        

 
 

  
   

 
 

    

 



 

 

290 

Is
m

a
il

 e
t 

a
l.

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 4

(4
) 

(2
0
2
3
) 

2
8
1-

2
9
8

 

 

Therefore,    





 
 

     
 

 

 

 

 

where  

And    




 

 
  

        
  

 

  satisfying Eq. (7) and Eq. (8) from Definition 

6 which proves Theorem 1.  

4 | Computational Procedure for PN-NWBM within DEMATEL 

In this section, the computational procedure  is outlined to show the applicability of the proposed 

method. The PN-NWBM operator is utilized to aggregate all individual experts’ decisions into a single 

evaluation before initiating the DEMATEL procedure. 

    

    

    

























  

     

     

 
  
  
  
  
  

 
  
  
  
  

  
 
 

  
  
  
  
  

 

 (21) 

   

   















 
  

      
  

 

 
  

         
  

 
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Fig. 1. PN-NWBM DEMATEL computational procedure. 

The seven steps algorithm for the computation of the numerical example is explained in detailed below: 

Step 1. Construct the initial direct-relation matrix. A direct-relation matrix with Pythagorean neutrosophic 

number were constructed based on experts’ preference. The score is determined using seven linguistic 

scales that ranged from no influence to very high influence based on Pythagorean neutrosophic linguistic 

variable as in Table 1 below. 

Table 1. The Pythagorean neutrosophic linguistic variable. 

 

 

  

 

Step 2. Obtain the aggregate direct-relation matrix A. Aggregate all the individual direct relation-matrices, 

  into one collective decision matrix 


 
 

using PN-NWBM in Eq. (21) where 

   and    is the weight vector of  , satisfying 

     and 


 . 

Step 3. To deneutrosophicate the Pythagorean neutrosophic number         to a crisp 

value, the deneutrosophication formula is used as follows:  

 

Score Linguistic Variable Pythagorean Neutrosophic Number 

1 No impact < 0.10, 0.80, 0.90 > 
2 Low impact < 0.20, 0.70, 0.80 > 
3 Medium low impact < 0.35, 0.60, 0.60 > 
4 Medium impact < 0.50, 0.40, 0.45 > 
5 Medium high impact < 0.65, 0.30, 0.25 > 
6 High impact < 0.80, 0.20, 0.15 > 
7 Very high impact < 0.90, 0.10, 0.10 > 

      
  (22) 

Construction of individual direct-relation matrix with PNS  

Aggregation of direct relation matrix using PN-NWBM 

Obtain the crisp direct relation matrix

Normalized the crisp matrix 

Construct total relation matrix 

Calculate the sum of rows and columns 

Construct the causal diagram 
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Step 4. Normalizing the matrix. Using, 

 

where 
 



  . All elements in the matrix Z are complying with   . 

Step 5. Construct the total-influence matrix Tij using 

 

where I is the identity matrix.  

Step 6. Calculating the sums of the rows and columns. 

In this step, the vectors R and C representing the sum of the rows and the sum of columns from the 

total-influence matrix T are defined by the following formulas: 

 

 

 

 

The  and  values are calculated in which these values reflect the importance and relation 

values, respectively.  

Step 7. Construct Network Relationship Map (NRM). The graph is plotted using (R + C, R – C) data 

set. The R + C is labelled on the horizontal axis and R – C is on vertical axis. The NRMs advantages 

can reflect the MCDM flow. Each graph node represents the object examined, while the arc between 

two nodes shows the direction and strength of the influence relationship. 

5 | Numerical Example 

In this section, a numerical example based on MCDM problem under Pythagorean neutrosophic 

environment adapted from [17] that used seven term linguistic variable with PNS number. The study 

used arithmetic mean to aggregate the experts’ evaluations, thus in this numerical example  PN-NWBM 

operator is utilized to show the applicability of the proposed method. Table 2 shows each expert’s 

evaluation in PNS number that will then aggregated to a single direct relation matrix as in Table 3. 

Table 2. Experts’ evaluation in PNS number. 

  (23) 

 


   (24) 






 
     

  
  (25) 






 
     

  
  (26) 

E1 (0,0,0) (0.1,0.8,0.9) (0.2,0.7,0.8) (0.9,0.1,0.1) (0.5,0.4,0.45) (0.8,0.2,0.15) (0.8,0.2,0.15) 

 (0.1,0.8,0.9) (0,0,0) (0.5,0.4,0.45) (0.1,0.8,0.9) (0.2,0.7,0.8) (0.1,0.8,0.9) (0.35,0.6,0.6) 

 (0.8,0.2,0.15) (0.2,0.7,0.8) (0,0,0) (0.5,0.4,0.45) (0.1,0.8,0.9) (0.8,0.2,0.15) (0.1,0.8,0.9) 

 (0.5,0.4,0.45) (0.65,0.3,0.25) (0.2,0.7,0.8) (0,0,0) (0.65,0.3,0.25) (0.65,0.3,0.25) (0.5,0.4,0.45) 

 (0.1,0.8,0.9) (0.8,0.2,0.15) (0.1,0.8,0.9) (0.5,0.4,0.45) (0,0,0) (0.2,0.7,0.8) (0.5,0.4,0.45) 

 (0.2,0.7,0.8) (0.5,0.4,0.45) (0.65,0.3,0.25) (0.2,0.7,0.8) (0.1,0.8,0.9) (0,0,0) (0.2,0.7,0.8) 

 (0.1,0.8,0.9) (0.1,0.8,0.9) (0.1,0.8,0.9) (0.5,0.4,0.45) (0.35,0.6,0.6) (0.35,0.6,0.6) (0,0,0) 
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Table 2. Continued. 

 

Table 3. Aggregated direct relation matrix. 

 

Table 4. Crisp matrix. 

 

 

 

 

 

 Table 5. Normalized matrix. 

 

 

 

 

 

  

 

E2 (0,0,0) (0.2,0.7,0.8) (0.35,0.6,0.6) (0.9,0.1,0.1) (0.35,0.6,0.6) (0.65,0.3,0.25) (0.8,0.2,0.15) 
 (0.35,0.6,0.6) (0,0,0) (0.35,0.6,0.6) (0.1,0.8,0.9) (0.2,0.7,0.8) (0.1,0.8,0.9) (0.35,0.6,0.6) 
 (0.9,0.1,0.1) (0.1,0.8,0.9) (0,0,0) (0.5,0.4,0.45) (0.2,0.7,0.8) (0.9,0.1,0.1) (0.1,0.8,0.9) 
 (0.65,0.3,0.25) (0.65,0.3,0.25) (0.2,0.7,0.8) (0,0,0) (0.5,0.4,0.45) (0.5,0.4,0.45) (0.65,0.3,0.25) 
 (0.35,0.6,0.6) (0.65,0.3,0.25) (0.1,0.8,0.9) (0.65,0.3,0.25) (0,0,0) (0.1,0.8,0.9) (0.35,0.6,0.6) 
 (0.35,0.6,0.6) (0.5,0.4,0.45) (0.5,0.4,0.45) (0.35,0.6,0.6) (0.35,0.6,0.6) (0,0,0) (0.1,0.8,0.9) 
 (0.2,0.7,0.8) (0.35,0.6,0.6) (0.2,0.7,0.8) (0.65,0.3,0.25) (0.1,0.8,0.9) (0.2,0.7,0.8) (0,0,0) 

E3 (0,0,0) (0.35,0.6,0.6) (0.1,0.8,0.9) (0.8,0.2,0.15) (0.5,0.4,0.45) (0.9,0.1,0.1) (0.9,0.1,0.1) 
 (0.2,0.7,0.8) (0,0,0) (0.5,0.4,0.45) (0.35,0.6,0.6) (0.1,0.8,0.9) (0.35,0.6,0.6) (0.1,0.8,0.9) 
 (0.8,0.2,0.15) (0.2,0.7,0.8) (0,0,0) (0.35,0.6,0.6) (0.1,0.8,0.9) (0.65,0.3,0.25) (0.2,0.7,0.8) 
 (0.5,0.4,0.45) (0.5,0.4,0.45) (0.1,0.8,0.9) (0,0,0) (0.65,0.3,0.25) (0.65,0.3,0.25) (0.5,0.4,0.45) 
 (0.1,0.8,0.9) (0.9,0.1,0.1) (0.35,0.6,0.6) (0.5,0.4,0.45) (0,0,0) (0.2,0.7,0.8) (0.5,0.4,0.45) 
 (0.1,0.8,0.9) (0.35,0.6,0.6) (0.65,0.3,0.25) (0.1,0.8,0.9) (0.1,0.8,0.9) (0,0,0) (0.2,0.7,0.8) 
 (0.35,0.6,0.6) (0.1,0.8,0.9) (0.35,0.6,0.6) (0.35,0.6,0.6) (0.35,0.6,0.6) (0.1,0.8,0.9) (0,0,0) 

E4 (0,0,0) (0.1,0.8,0.9) (0.1,0.8,0.9) (0.8,0.2,0.15) (0.35,0.6,0.6) (0.65,0.3,0.25) (0.65,0.3,0.25) 
 (0.2,0.7,0.8) (0,0,0) (0.35,0.6,0.6) (0.2,0.7,0.8) (0.35,0.6,0.6) (0.1,0.8,0.9) (0.2,0.7,0.8) 
 (0.9,0.1,0.1) (0.1,0.8,0.9) (0,0,0) (0.5,0.4,0.45) (0.2,0.7,0.8) (0.9,0.1,0.1) (0.35,0.6,0.6) 
 (0.5,0.4,0.45) (0.5,0.4,0.45) (0.1,0.8,0.9) (0,0,0) (0.8,0.2,0.15) (0.5,0.4,0.45) (0.65,0.3,0.25) 
 (0.35,0.6,0.6) (0.65,0.3,0.25) (0.2,0.7,0.8) (0.65,0.3,0.25) (0,0,0) (0.35,0.6,0.6) (0.35,0.6,0.6) 
 (0.35,0.6,0.6) (0.35,0.6,0.6) (0.35,0.6,0.6) (0.2,0.7,0.8) (0.35,0.6,0.6) (0,0,0) (0.35,0.6,0.6) 
 (0.1,0.8,0.9) (0.35,0.6,0.6) (0.1,0.8,0.9) (0.35,0.6,0.6) (0.2,0.7,0.8) (0.2,0.7,0.8) (0,0,0) 

E5 (0,0,0) (0.2,0.7,0.8) (0.35,0.6,0.6) (0.8,0.2,0.15) (0.5,0.4,0.45) (0.8,0.2,0.15) (0.9,0.1,0.1) 
 (0.1,0.8,0.9) (0,0,0) (0.65,0.3,0.25) (0.2,0.7,0.8) (0.1,0.8,0.9) (0.2,0.7,0.8) (0.35,0.6,0.6) 
 (0.9,0.1,0.1) (0.1,0.8,0.9) (0,0,0) (0.65,0.3,0.25) (0.35,0.6,0.6) (0.8,0.2,0.15) (0.2,0.7,0.8) 
 (0.65,0.3,0.25) (0.5,0.4,0.45) (0.35,0.6,0.6) (0,0,0) (0.8,0.2,0.15) (0.65,0.3,0.25) (0.35,0.6,0.6) 
 (0.2,0.7,0.8) (0.8,0.2,0.15) (0.1,0.8,0.9) (0.35,0.6,0.6) (0,0,0) (0.35,0.6,0.6) (0.35,0.6,0.6) 
 (0.2,0.7,0.8) (0.65,0.3,0.25) (0.35,0.6,0.6) (0.35,0.6,0.6) (0.2,0.7,0.8) (0,0,0) (0.2,0.7,0.8) 
 (0.2,0.7,0.8) (0.2,0.7,0.8) (0.1,0.8,0.9) (0.35,0.6,0.6) (0.2,0.7,0.8) (0.2,0.7,0.8) (0,0,0) 

(0,0,0) (0,0,0) (0.24,0.7,0.77) (0.84,0.16,0.13) (0.44,0.48,0.52) (0.77,0.22,0.18) (0.82,0.18,0.15) 
(0.21,0.71,0.8) (0,0,0) (0.47,0.47,0.49) (0.2,0.72,0.81) (0.2,0.72,0.81) (0.18,0.74,0.83) (0.28,0.66,0.71) 

(0.86,0.14,0.12) (0.14,0.76,0.86) (0,0,0) (0.5,0.42,0.45) (0.2,0.72,0.81) (0.82,0.17,0.15) (0.2,0.72,0.81) 
(0.56,0.36,0.37) (0.57,0.36,0.37) (0.19,0.73,0.82) (0,0,0) (0.68,0.28,0.26) (0.59,0.34,0.34) (0.55,0.39,0.4) 
(0.24,0.7,0.77) (0.77,0.22,0.18) (0.18,0.74,0.83) (0.55,0.39,0.4) (0,0,0) (0.24,0.69,0.76) (0.41,0.52,0.54) 
(0.25,0.68,0.75) (0.47,0.46,0.49) (0.52,0.43,0.43) (0.25,0.68,0.75) (0.24,0.7,0.77) (0,0,0) (0.21,0.71,0.79) 
(0.2,0.72,0.81) (0.24,0.7,0.77) (0.19,0.74,0.83) (0.45,0.49,0.51) (0.25,0.69,0.76) (0.21,0.7,0.79) (0,0,0) 

0.0000 0.5756 0.5709 0.3768 0.4804 0.3893 0.3817 

0.5743 0.0000 0.4748 0.5773 0.5772 0.5845 0.5528 

0.3737 0.5893 0.0000 0.4594 0.5782 0.3818 0.5782 

0.4323 0.4318 0.5786 0.0000 0.4090 0.4235 0.4445 

0.5697 0.3893 0.5839 0.4445 0.0000 0.5641 0.4922 

0.5608 0.4736 0.4606 0.5615 0.5697 0.0000 0.5705 

0.5756 0.5697 0.5825 0.4846 0.5627 0.5701 0.0000 

0.0000 0.1721 0.1706 0.1126 0.1436 0.1164 0.1141 

0.1717 0.0000 0.1419 0.1726 0.1725 0.1747 0.1652 

0.1117 0.1762 0.0000 0.1373 0.1728 0.1141 0.1728 

0.1292 0.1291 0.1729 0.0000 0.1223 0.1266 0.1329 

0.1703 0.1164 0.1745 0.1329 0.0000 0.1686 0.1471 

0.1676 0.1416 0.1377 0.1679 0.1703 0.0000 0.1705 

0.1721 0.1703 0.1741 0.1449 0.1682 0.1704 0.0000 
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Table 6. R+C and R-C values. 

 

 

 

 

 

Table 4 above shows the crisp matrix and Table 5 show the normalized direct relation matrix. Table 6 

presents the resulting R+C and R-C values together with its ranking order and cause effect group. Fig. 

2 below illustrates the causal diagram based on the R+C and R-C values from the PN-NWBM 

DEMATEL calculation. Based on the ranking order, F2 has become the most influential factor and F4 

as the least influential factor. It can also be seen that F2, F6 and F7 lies in the cause group while F1, F3, 

F4 and F5 lies in the effect group. 

Fig. 2. Causal diagram. 

6 | Results and Findings 

In this section, we present the sensitivity analysis to explore how variations in parameters p and q  

influnce the PN-NWBM calculation and also comporative analysis between the PN-NWBM 

DEMATEL, SVNNWBM DEMATEL and PN-DEMATEL with arithmetic mean aggregation. 

6.1 | Sensitivity Analysis 

Sensitivity analysis was done by varying the parameters p and q in the calculation using PN-NWBM 

operators. Table 7 illustrates how these parameter changes affect the DEMATEL results, including 

ranking order and Cause-Effect (CE) group category. 

 

Factor R C R+C R-C Ranking Category 

F1 9.661940497 10.57232732 20.23426781 -0.910386821 6 Effect 
F2 11.33145586 10.4298902 21.76134606 0.901565654 1 Cause 

F3 10.27204608 11.08162812 21.35367419 -0.809582038 3 Effect 
F4 9.466186835 10.01967411 19.48586094 -0.553487274 7 Effect 
F5 10.43465839 10.86974451 21.3044029 -0.435086118 4 Effect 
F6 10.89789035 10.06108136 20.95897171 0.836808987 5 Cause 

F7 11.3647677 10.39460009 21.75936778 0.97016761 2 Cause 
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 Table 7. Affect the DEMATEL results. 

 

The findings on sensitivity analysis are relatively stable across different values of parameters suggesting less 

fragility and provides greater degree of assurance. This stability instills confidence in the reliability of 

theresults, suggesting that the outcomes are not heavily contingent on specific assumptions or conditions 

by maintaining their validity across a spectrum of realistic situations. However bigger variations in the 

parameter somehow showed some significant effect in the result suggesting influence of bigger parameter 

involved in the calculation. 

6.2 | Comparative Analysis 

Next, we conducted a comparative analysis between PN-NWBM aggregation operator with Single Value 

Neutrosophic Set Normalized Weighted Bonferroni Mean (SVNNWBM), as well as the Pythagorean 

neutrosophic arithmetic mean aggregation in DEMATEL as shown in Table 8 below: 

 

Parameter F R+C R-C Rank Difference Category Differnce 

p = 1 ,  
q = 2 

F1 20.21064797 -0.907857972 6 No changes 
in ranking 

Effect No changes in 
group category F2 21.74054272 0.898203904 1 Cause 

F3 21.33820088 -0.8096818 3 Effect 
F4 19.47079406 -0.548911372 7 Effect 
F5 21.28184782 -0.434557005 4 Effect 
F6 20.93809075 0.829696155 5 Cause 
F7 21.73527706 0.973108091 2 Cause 

Parameter F R+C R-C Rank Difference Category Differnce 

p = 2 ,  
q = 1 

F1 20.26576603 -0.907394918 6 No changes 
in ranking 

Effect No changes in 
group category F2 21.80252519 0.902110079 1 Cause 

F3 21.40046336 -0.809242054 3 Effect 
F4 19.52622841 -0.548970418 7 Effect 
F5 21.3451787 -0.437725326 4 Effect 
F6 21.0007347 0.828744556 5 Cause 
F7 21.79650599 0.972478081 2 Cause 

Parameter F R+C R-C Rank Difference Category Differnce 

p = 1 ,  
q = 5 

F1 21.25590337 -0.91501019 6 No changes 
in ranking 

Effect No changes in 
group category F2 22.84333222 0.880278442 1 Cause 

F3 22.41796735 -0.767736461 3 Effect 
F4 20.57476121 -0.528378528 7 Effect 
F5 22.34485545 -0.44844022 4 Effect 
F6 22.01696838 0.814296201 5 Cause 
F7 22.81857971 0.964990756 2 Cause 

Parameter F R+C R-C Rank Difference Category Differnce 

p = 10 ,  
q = 1 

F1 22.66661775 -0.900719607 6 Slight 
changes 
where F2 
interchange 
rank with F7 
and  F3 
interchange 
rank with F5 

Effect No changes in 
group category F2 24.05814678 1.036901298 2 Cause 

F3 23.58671103 -0.898867095 4 Effect 
F4 21.99559391 -0.474352529 7 Effect 
F5 23.74793719 -0.462792626 3 Effect 
F6 23.43020006 0.784888108 5 Cause 
F7 24.18478804 0.914942452 1 Cause 

Parameter F R+C R-C Rank Difference Category Differnce 

 p = 1 ,  
q = 20 

F1 170.131852 -0.736038426 7 Major 
changes in 
F2, F3 and 
F7 ranking 
while slight 
changes in 
F1, F5 and 
F6 

Effect F2 now become 
Effect group 
while the others 
remain the same 

F2 177.3393278 -1.366489905 1 Effect 
F3 176.2492714 -0.420580016 2 Effect 
F4 173.7068337 -0.32371644 5 Effect 
F5 175.0774596 -0.275871019 3 Effect 
F6 172.3896808 2.504506013 6 Cause 
F7 174.8814991 0.618189793 4 Cause 

Parameter F R+C R-C Rank Difference Category Differnce 

p = 15 ,  
q = 20 

F1 19.06379124 -1.005490149 7 Similar with 
the above 
changes  

Effect Similar with 
above where F2 
now lies in effect 
group while the 
others remain 
the same 

F2 20.45839382 0.586502985 1 Effect 
F3 20.40349107 0.088017955 2 Effect 
F4 18.39145137 1.215849306 5 Effect 
F5 19.07312988 -0.472231209 4 Effect 
F6 19.18246055 -0.802675137 6 Cause 
F7 19.86860682 0.390026249 3 Cause 
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 Table 8. Comparative analysis. 

 

 

The findings of this comparative analysis indicate a striking consistency in the ranking of factors and 

CE group between PN-NWBM DEMATEL and SVNNWBM-DEMATEL. It can also be seen that 

conventional DEMATEL method using arithmetic mean as its aggregation operator gives a slight 

different ranking for the F2 and F7. However the difference is very small difference which is 0.0003. 

This validates the utilization PN-NWBM aggregation operator within DEMATEL and PNS framework. 

7 | Conclusion 

In conclusion, this research focused on the application of the BM aggregation operator within a 

Pythagorean neutrosophic framework. The main objective was to introduce and validate a new 

normalized weight BM, known as PN-NWBM, for PNS. BMs was introduced in 1950 and have been 

studied by many authors. While additional extensions have been developed in recent decades, their 

primary objective remains consistent which to capture the explicit interconnection among the criteria. 

Throughout the study the normalized weight BM has been proposed as the aggregation operator for 

combining all the decision makers’ decision into a comprehensive evaluation. By incorporating the BM 

operator into the Pythagorean neutrosophic environment, we aimed to improve the precision and 

reliability of the decision-making process using DEMATEL method. The proposed PN-NWBM 

method demonstrated promising results and was rigorously validated through various experiments and 

comparisons.  

Furthermore, this research contributes to the existing literature by expanding the applications of the BM 

operator and addressing its effectiveness in Pythagorean neutrosophic environments. The findings 

emphasize the potential of PN-NWBM as a practical means of aggregating information in decision-

making problems involving imprecise and uncertain data. It is worth noting that further research can 

explore additional aspects of the BM operator and Pythagorean neutrosophic environments. These may 

include investigating its performance in different domains, analyzing its computational complexity, and 

exploring its potential combination with other aggregation operators. Overall, this research paves the 

way for utilizing the BM aggregation operator in Pythagorean neutrosophic decision-making, and the 

proposed PN-NWBM contributes valuable insights and methodologies to this field. To further expand 

the scope of this research, future investigations should explore aggregation operators within the 

proposed model and their application in solving complex decision-making problems, see [26]-[30]. 
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