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1|Introduction    

The concept of n-cyclic refined neutrosophic rings was proposed in [1] as a novel generalization of classic 

rings using logical generators and indices. The idea behind 2-cyclic refined rings is to use literal neutrosophic 

elements in building algebraic extensions of rings, as suggested for the first time in [2]. 
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Abstract 

Integers play a basic role in the structures of asymmetric crypto-algorithms. Many famous public key crypto-schemes 

use the basics of number theory to share keys and decrypt and encrypt messages and multimedia. As a novel trend 

in the world of cryptography, non-classical integer systems, such as neutrosophic or plithogenic integers, are used for 

encryption and decryption. The objective of this paper is to provide the basic foundations of 2-cyclic refined number 

theory and linear Diophantine equations in two variables by building suitable algebraic isomorphism between the 2-

cyclic refined integer ring and a subring of the direct product of Z with itself three times. Also, this work presents 

two novel crypto schemes for the encryption and decryption of data and information based on the algebraic 

properties of 2-cyclic refined integers, where improved versions of the El-Gamal crypto-scheme and RSA algorithm 

will be established through the view of the algebra and number theory of 2-cyclic refined integers. On the other hand, 

we illustrate some examples and tables to show the validity and complexity of the novel algorithms.  
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In [3]–[9], many special cases of n-cyclic refined neutrosophic algebraic structures were handled, such as 2-

cyclic group of units, 2-cyclic Diophantine equations, and 2-cyclic refined neutrosophic matrices. 

Theoretical mathematics is an important resource of cryptography, as the most famous cryptographic 

algorithms with their symmetric and asymmetric types follow generalized problems in traditional number 

theory and the theory of functions. 

Concepts such as congruencies, Euler's function, and elliptic curves have been used in the construction and 

exchange of secret keys for the encryption and decryption process; perhaps the most prominent examples of 

this are asymmetric public-key encryption algorithms such as the RSA algorithm and the El-Gamal algorithm. 

Proceeding from this point, it can be said that by generalizing and expanding the integers used in the 

encryption and decryption process, it is possible to build encryption systems that generalize classical systems 

and are characterized by a higher degree of complexity and greater difficulty for attackers to obtain secret 

keys. 

So far, based on the latest published articles, three types of new numerical systems that expand integers in the 

construction of new encryption algorithms based on previously known algorithms have been used. 

Neutrosophic integers, for example, are essentially an extended numerical system of partially ordered integers 

possessing many characteristic properties in two dimensions. 

These numbers were used in the generalization of the RSA algorithm and El-Gamal algorithm and have given 

good results in terms of the resulting complexity in the difficulty of breaking and the flow ability of the 

approval calculations. 

On the other hand, refined neutrosophic integers and symbolic 2-plithogenic integers are essentially extended 

numerical systems of partially ordered integers, possessing many characteristic properties in three dimensions. 

The usage of non-classical integer systems in cryptography was proposed first in [10], and then many 

applications of neutrosophic of previous efforts to apply non-classical integer systems in cryptography. We 

can see generalized versions of RSA and El-Gamal algorithms were built by using neutrosophic integers, 

refined neutrosophic integers, and symbolic n-plithogenic numbers [11]–[15]; many other extensions and 

algorithms in cryptography were presented in [16], [17]. 

Through this paper, we depend on the algebraic properties of 2-cyclic refined integers and the foundational 

concepts in 2-cyclic refined number theory to present a novel generalized form of the El-Gamal crypto 

scheme and a novel generalization of the RSA algorithm, with many examples and tables that explain the 

complexity of the novel algorithm. On the other hand, we present valid and strong mathematical proofs for 

building the mathematical basis of 2-cyclic refined number theory and for solving 2-cyclic refined Diophantine 

equations in two variables. 

2|The Idea Behind Using Integers in Cryptography 

Encryption using algebraic properties of integers is beneficial because it reduces the problem of breaking the 

code to an unsolvable problem in ordinary linear time. 

For example, the RSA algorithm is based on answering the problem of code-breaking to the problem of 

finding a very large integer analysis of its prime factors. 

The El-Gamal algorithm is based on answering the problem of breaking the cipher to the problem of 

calculating the natural logarithm mod n. 

All of the above methods create a kind of bridge between complex problems in number theory and the 

disclosure of the secrecy of messages. Hence, discovering the Secret Key becomes a counter to solving a 

problem that is still impossible on the best computers nowadays. 
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We can easily say that when modern mathematics succeeds in solving these problems and finds effective and 

applicable algorithms for solving them, breaking encryption and discovering secret keys will become real 

achievements, which is still not possible today. 

Non-classical extensions of integers for modern crypto-systems. So far, based on the latest published articles, 

three types of new numerical systems that expand integers in the construction of new encryption algorithms 

based on previously known algorithms have been used. 

Initially, the use of such numbers was proposed in [9]. Neutrosophic integers, for example, are essentially an 

extended numerical system of partially ordered integers possessing many characteristic properties in two 

dimensions. 

These numbers were used in the generalization of the RSA algorithm and El-Gamal algorithm and have given 

good results in terms of the resulting complexity in the difficulty of breaking and the flow ability of the 

approval calculations. 

On the other hand, refined neutrosophic integers and symbolic 2-plithogenic integers are essentially extended 

numerical systems of partially ordered integers, possessing many characteristic properties in three dimensions. 

These two novel sets provided good generalizations of classical RSA and El-Gamal Systems, and these 

generalizations are more complex than classical algorithms, which implies more security for sharing 

information and data through the internet and unsafe channels. 

 

Fig. 1. Cryptography Process. 

 

Fig. 2. Integers in constructing cryptography. 

 

3|The Mathematical Foundations of 2-Cyclic Refined Number Theory 

Definition 1. The 2-cyclic refined integer is defined x + yI1 + zI2; x, y, z ∈ Z . It is denoted by Z2(I). 

Addition: 

Multiplication: 

Theorem 1. Let K= ℤ × ℤ × ℤ be the direct product of three copies of ℤ, then S = {(a, b, c) ∈ K;  b − c ∈ 2ℤ} 

is a subring of K.  

Proof: S ≠ ∅, that is because (0,0,0) ∈ S. 

(x + yI1 + zI2) + (m + nI1 + tI2) = (x + m) + (y + n)I1 + (z + t)I2.  

(x + yI1 + zI2) × (m + nI1 + tI2) = xm + (xn + ym + yt + zn)I1 + (xt + yn + zm + zt)I2.  

Message CiPher Text Plain Text
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Let X = (a, b, c), Y = (m, n, t) be two arbitrary elements in S, then X + Y = (a + m, b + n, c + t), X. Y =

(am, bn, ct), (b + n) − (c + t) = (b − c) + (n − t) ∈ 2ℤ, thus X + Y ∈ S. On the other hand 

Hence, bn − ct = (c + 2k1)n − c(t + 2k2) = 2(k1n − ck2) + c(n − t), so that bn − ct ∈ 2ℤ, and X. Y ∈ S. It is 

clear that −X = (−a, −b, −c) ∈ S, thus our proof is complete. 

Theorem 2. Let Z2(I) be the 2-cyclic refined ring, then Z2(I) ≅ S. 

Proof: Define the mapping: f: Z2(I) → S such that 

According to [18], the mapping f is a ring homomorphism. 

Let X = a + bI1 + cI2 ∈ ker (f), then {
a = 0

b + c = 0
−b + c = 0

. Thus, X=0, and (f) is injective. 

Let Y = (a, b, c) ∈ S; b − c ∈ 2ℤ, there exists X = a +
1

2
(b − c)I1 + (

b+c

2
− a)I2 ∈ S, such that f(X) = Y, so that 

(f) is surjective, and then a ring isomorphism. 

Definition 2. Let X = t0 + t1I1 + t2I2, Y = s0 + s1I1 + s2I2 ∈ Z2(I), then 

I. X|Y if and only if  f(X)|f(Y), i.e. 

II. gcd(X, Y) = Z if and only if gcd(f(X), f(Y)) = f(Z), where Z = z0 + z1I1 + z2I2 ∈ Z2(I), i.e. 

III. f(X) ≡ f(Y) (mod f(Z)) if and only if X ≡ Y (mod Z), i.e. 

IV. xy = f −1[f(x)]f(y), i.e. 

Remark 1: 

(≤) is a partial order relation clearly. 

Example 1. Take X = 3 + I1 + I2, Y = 2 + 2 I1 + I2, Z = 1 + I1 + I2, we have 

Also 

{
b − c = 2k1,                        
n − t = 2k2   ; k1, k2 ∈ ℤ.

  

f(a + bI1 + cI2) = (a, a + b + c, a − b + c).  

{

t0|s0,                                     

t0 + t1 + t2|s0 + s1 + s2,

t0 − t1 + t2|s0 − s1 + s2.
  

gcd(X, Y) = gcd(t0, s0) +
1

2
I1[gcd(t0 + t1 + t2, s0 + s1 + s2) − gcd(t0 − t1 + t2, s0 − s1 +

s2)] +
1

2
I2[gcd(t0 + t1 + t2, s0 + s1 + s2) + gcd(t0 − t1 + t2, s0 − s1 + s2) − 2gcd(t0, s0)].  

 

{

t0 ≡ s0 (mod z0),                                                       
t0 + t1 + t2 ≡ s0 + s1 + s2 (mod z0 + z1 + z2)

t0 − t1 + t2 ≡ s0 − s1 + s2(mod z0 − z1 + z2).
,   

xy = t0
s0 +

1

2
I1[(t0 + t1 + t2)s0+s1+s2 − (t0 − t1 + t2)s0−s1+s2] +

1

2
I2[(t0 + t1 +

t2)s0+s1+s2 + (t0 − t1 +  t2)s0−s1+s2 − 2t0
s0].  

 

X ≤ Y ⟺ {

t0 ≤ s0,                                    
t0 + t1 + t2 ≤ s0 + s1 + s2,
t0 − t1 + t2 ≤ s0 − s1 + s2,

   

{

X > 0: (3 > 0, 5 > 0, 3 > 0),
Y > 0: (2 > 0, 5 > 0, 1 > 0),
Z > 0: (1 > 0, 3 > 0, 1 > 0).
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Hence,  X ≡ Y (mod Z). 

Remark 2: If X ≡ Y (mod Z), then Z|X − Y, and if gcd (X, Y) = 1, then X and Y are called relatively prime. 

Example 2. Let X = 10 + I1 + 5I2, Y = 4 + 2I1 + 3I2, hence 

Thus, gcd (X, Y) = 2 +
1

2
I1[1 − 1] +

1

2
I2[1 + 1 − 2(2)] = 2 − I2. 

Remark 3: According to the partial order relation (≤) defined on Z2(I), we can see easily that gcd (X, Y) > 0 

for every X, Y ∈ Z2(I). 

Definition 3. Let 0 < X = x0 + x1I1 + x2I2 ∈ Z2(I), we define φ∗: Z2(I) → ℤ, such that 

Theorem 3. Let 0 < X = x0 + x1I1 + x2I2 ∈ Z2(I), then 

where φ is the classical phi-Euler's function. 

Proof: Assume that x0 + x1 + x2, x0 − x1 + x2 ∈ 2ℤ, hence if 0 < Y = y0 + y1I1 + y2I2 ≤ X with gcd (X, Y) =

1, we get 

According to the assumption, {
x0 + x1 + x2

x0 − x1 + x2
  are even numbers; hence, all possible values of y0 + y1 + y2, y0 −

y1 + y2 are odd numbers, so that we have 

Thus φ∗(X) = φ(x0) × φ(x0 + x1 + x2) × φ(x0 − x1 + x2). 

Assume that {
x0 + x1 + x2

x0 − x1 + x2
  are odd numbers, hence for 0 < Y = y0 + y1I1 + y2I2 ≤ X with gcd (X, Y) = 1, we 

have 
1

2
φ(x0 + x1 + x2) different odd values of y0 + y1 + y2, and  

1

2
φ(x0 + x1 + x2) different even values of 

y0 + y1 + y2.  

Also, we have 
1

2
φ(x0 − x1 + x2) different even values of y0 − y1 + y2, and 

1

2
φ(x0 − x1 + x2) different odd 

values of y0 − y1 + y2, so that Y ∈ Z2(I) if and only of {
y0 + y1 + y2

y0 − y1 + y2
  are both odd or both even, hence 

Example 3. Take: X = 4 + 5I1 + 7I2 ∈ Z2(I), then 

{

3 ≡ 2 (mod 1),
5 ≡ 5 (mod 3),
3 ≡ 1 (mod 1).

   

{

gcd (4,10) = 2,
gcd (9,16) = 1,
gcd (14,5) = 1.

   

φ∗(X) = |{0 < Y = y0 + y1I1 + y2I2 ≤ X; gcd(X, Y) = 1}|.   

φ∗(X)

= {
φ(x0) × φ(x0 + x1 + x2) × φ(x0 − x1 + x2);    x0 + x1 + x2, x0 − x1 + x2 are even,
1

2
φ(x0) × φ(x0 + x1 + x2) × φ(x0 − x1 + x2);    x0 + x1 + x2, x0 − x1 + x2 are odd,

  
 

{
y0 − y1 + y2 ≤ x0 − x1 + x2 
y0 + y1 + y2 ≤ x0 + x1 + x2

{
gcd(x0 − x1 + x2, y0 − y1 + y2) = 1 
gcd(x0 + x1 + x2, y0 + y1 + y2) = 1

.  

{

φ(x0) different Value of     y0,                                      
φ(x0 + x1 + x2)  different Value of    y0 + y1 + y2

φ(x0 − x1 + x2) different Value of    y0 − y1 + y2.
,  

φ∗(X) = φ(x0) × (
1

2
φ(x0 + x1 + x2)) × (

1

2
φ(x0 − x1 + x2)) + φ(x0) × (

1

2
φ(x0 − x1 +

x2)) (
1

2
φ(x0 + x1 + x2)) =

1

2
φ(x0) × φ(x0 + x1 + x2) × φ(x0 − x1 + x2).  
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So that φ∗(X) = φ(4) × φ(16) × φ(6) = 2 × 8 × 2 = 32. Take X = 4 + 3I1 + 2I2, then 

So that φ∗(X) =
1

2
φ(4) φ(9) φ(3) =

1

2
(2)(6)(2) = 12. 

Theorem 4. Let Y = y0 + y1I1 + y2I2, X = x0 + x1I1 + x2I2 ∈ Z2(I), such that X, Y > 0, and gcd(X, Y) = 1, 

hence Xφ∗(Y) ≡ 1(mod Y). 

Proof: According to the assumption, gcd(X, Y) = 1, hence 

Case 1: If y0 + y1 + y2, y0 − y1 + y2 are even numbers, then Xφ∗(Y) = L0 + L1I1 + L2I2, where L0 = x0
μ;  μ =

φ∗(Y) = φ(x0)φ(x0 + x1 + x2)φ(x0 − x1 + x2), L1 =
1

2
[(x0 + x1 + x2)μ − (x0 − x1 + x2)μ], L2 =

1

2
[(x0 +

x1 + x2)μ + (x0 − x1 + x2)μ − 2x0
μ]. 

By classical Euler's theorem, we can write 

Hence 

Thus 

Hence Xφ∗(Y) ≡ 1 (mod y). 

Case 2: If y0 + y1 + y2, y0 − y1 + y2 are odd numbers, then μ = φ∗(Y) =
1

2
φ(y0) φ(y0 + y1 + y2)φ(y0 − y1 +

y2), so that 

Hence Xφ∗(Y) ≡ 1 (mod y). 

4|Applications to Linear 2-Cyclic Refined Diophantine Equations in 

Two Variables 

Definition 4. Let 

{

x0 = 4,                     
x0 + x1 + x2 = 16,
x0 − x1 + x2 = 6.

   

{

x0 = 4,                  
x0 + x1 + x2 = 9,
x0 − x1 + x2 = 3.

   

{

gcd(x0, y0) = 1,                                      
gcd(x0 + x1 + x2, y0 + y1 + y2) = 1,
gcd(x0 − x1 + x2, y0 − y1 + y2) = 1.

   

{

x0
φ(y0) ≡ 1 (mod y0),                                                      

(x0 + x1 + x2)φ(y0+y1+y2) ≡ 1 (mod y0 + y1 + y2),

(x0 − x1 + x2)φ(y0−y1+y2) ≡ 1 (mod y0 − y1 + y2).

   

{

x0
μ ≡ 1 (mod y0),                                        

(x0 + x1 + x2)μ ≡ 1 (mod y0 + y1 + y2),

(x0 − x1 + x2)μ ≡ 1 (mod y0 − y1 + y2).

   

{

L0 ≡ 1 (mod y0),                                      

L0 + L1 + L2 ≡ 1 (mod y0 + y1 + y2),

L0 − L1 + L2 ≡ 1 (mod y0 − y1 + y2).

   

L0 =  x0
μ = [x0

φ(y0)]
1

2
 φ(y0+y1+y2)φ(y0−y1+y2) ≡ 1( mod y0),  

L0 + L1 + L2 = [(x0 + x1 + x2)φ(y0+y1+y2)]
1

2
 φ(y0)φ(y0−y1+y2) ≡ 1( mod y0 + y1 + y2),  

L0 − L1 + L2 = [(x0 − x1 + x2)φ(y0−y1+y2)]
1

2
 φ(y0)φ(y0+y1+y2)

≡ 1( mod y0 − y1 + y2).  
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Such that 

Then, it is called a linear 2-cyclic refined Diophantine equation in two Variables X,Y. 

Remark 4: The Eq. (1) is equivalent to the following system of linear Diophantine equations: 

It holds directly by taking the direct image of Eq. (1) by the isomorphism f. 

If any Eqs. (2)-(4) is not solvable, then Eq. (1) is not solvable, and this is equivalent to 

or 

or 

So, we must suppose that Eqs. (2)-(4) are solvable. 

Assume that {

(x0, y0)  is a solution to Eq. (1)

(x1
′ , y1

′ )  is a solution to Eq. (2)

(x2
′ , y2

′ )  is a solution to Eq. (3)

 . Hence {
x1′ = x0 + x1 + x2

y1′ = y0 + y1 + y2
 and {

x2′ = x0 − x1 + x2

y2′ = y0 − y1 + y2
. 

So that (x0, x1′, x2′), (y0, y1′, y2′) is a solution to the system f(∗) in ring S if and only if 

In these cases, the solutions of Eq. (1) are exactly the inverse image of the solutions (y0, y1′, y2′), (x0, x1′, x2′) 

as follows: 

Example 4. Consider the following 2-cyclic refined Diophantine equation: 

The equivalent system is 

gcd (3,1) = 1|5, gcd (5,3) = 1|5, gcd (2,1) = 1|3, hence Eqs. (5)-(7) are solvable in ℤ. 

The solutions of Eq. (5) are {
x0 = 1 + k0

y0 = 1 − 2k0
; k0 ∈ ℤ.  

The solutions of Eq. (6) are: {
x1′ = 1 + 3k1

y1′ = −5k1    
; k1 ∈ ℤ.  

The solutions of Eq. (7) are: {
x2′ = 1 + k2    

y2′ = 2 − 3k2    
; k2 ∈ ℤ.  

(a0 + a1I1 + a2I2)X + (b0 + b1I1 + b2I2)Y = c0 + c1I1 + c2I2.  (1) 

{
ai, bi, ci, xi, yi ∈ ℤ,                                              

X = x0 + x1I1 + x2I2, Y = y0 + y1I1 + y2I2.
   

a0x0 + b0y0 = c0.  (2) 

(a0 + a1 + a2)(x0 + x1 + x2) + (b0 + b1 + b2)(y0 + y1 + y2) = c0 + c1 + c2. (3) 

(a0 − a1 + a2)(x0 − x1 + x2) + (b0 − b1 + b2)(y0 − y1 + y2) = c0 − c1 + c2. (4) 

gcd(a0, b0) does not divide c0,  

gcd(a0 + a1 + a2, b0 + b1 + b2) does not divide c0 + c1 + c2,  

gcd(a0 − a1 + a2, b0 − b1 + b2) does not divide c0 − c1 + c2.  

{
x1

′ , x2
′  are both even numbers or odd numbers,

y1
′ , y2

′  are both even numbers or odd numbers.
  

X = x0 +
1

2
I1[x1

′ − x2
′ ] +

1

2
I2[x1

′ + x2
′ − 2x0].  

Y = y0 +
1

2
I1[y1

′ − y2
′ ] +

1

2
I2[y1

′ + y2
′ − 2y0].  

(2 + I1 + 2I2)X + (1 + I1 + I2)Y = 3 + 2I2.  

2x0 + y0 = 3. (5) 

5(x0 + x1 + x2) + 3(y0 + y1 + y2) = 5. (6) 

3(x0 − x1 + x2) + (y0 − y1 + y2) = 5. (7) 



 On Novel Security Systems Based on the 2-Cyclic Refined Integers … 76

x1′, x2′ are both even numbers if and only if k1, k2 are odd. 

x1′, x2′ are both odd numbers if and only if k1, k2 are even. 

y1′, y2′ are both even numbers if and only if k1, k2 are even. 

y1′, y2′ are both odd numbers if and only if k1, k2 are odd. 

We discuss the possible Cases. 

Case 3: If k1, k2 are both odd numbers, then x1′, x2′ are even, and y1′, y2′ are odd. Hence 

Case 4: If (k1 is odd and k2 is even) or (k1 is even and k2 is odd), then (x1′, x2′) or (y1′, y2′) are not both odd 

or even numbers; hence, they will not generate any solution to the original equation. 

Case 5: If k1, k2 are both even, then (x1′, x2′) are both odd and (y1′, y2′) are both even, then 

is a solution of the original equation. 

For example, take k0 = 1, k1 = 3, k2 = 1, hence X = 2 + 4I1 + 4I2, Y = −1 − 7I1 − 7I2. 

5|The Description of the Novel Generalized El-Gamal Algorithm 

Since 2-cyclic refined integers have three parts, we can use them to decrypt and encrypt data with three 

components, such as dimensional points or neutrosophic data units. 

Consider that we have two sides (F) and (E). The first side decides to send a letter formed as a 2-cyclic refined 

integer as a cipher text to the second side (E). The recipient (E) picks a large 2-cyclic refined integer P = p0 +

p1I1 + p2I2 with p0, p0 + p1 + p2, p0 − p1 + p2 are primes. Also, (E) picks a generator g = g0 + g1I1 + g2I2 

such that 

Then (E) picks x = x0 + x1I1 + x2I2 such that 

(E) computes 

The 2-cyclic refined integer (x) is kept as the secret key. 

Assume that (F) wants to send  m = m0 + m1I1 + m2I2 as a message to (E). For this goal, (F) picks  r = r0 +

r1I1 + r2I2 such that such that 

X = (1 + k0) +
1

2
I1(3k1 − k2) +

1

2
I2(3k1 + k2 − 2k0).  

Y = (1 − 2k0) +
1

2
I1(−5k1 + 3k2 − 2) +

1

2
I2(−5k1 − 3k2 + 4k0). 

 

X = (1 + k0) +
1

2
I1(3k1 − k2) +

1

2
I2(3k1 + k2 − 2k0),  

Y = (1 − 2k0) +
1

2
I1(−5k1 + 3k2 − 2) +

1

2
I2(−5k1 − 3k2 + 4k0), 

 

{

1 < g0 < p0 − 1,                                      
1 < g0 + g1 + g2 < p0 + p1 + p2 − 1,
1 < g0 − g1 + g2 < p0 − p1 + p2 − 1.

  

{

0 < x0 < p0 − 2,                                      
0 < x0 + x1 + x2 < p0 + p1 + p2 − 2,
1 < x0 − x1 + x2 < p0 − p1 + p2 − 2.

  

X ≡ gx(mod P) = g0
x0(mod p0) +

1

2
I1[(g0 + g1 + g2)x0+x1+x2(mod (p0 + p1 + p2)) −

(g0 − g1 + g2)x0−x1+x2(mod (p0 − p1 + p2))] +
1

2
I2[(g0 + g1 + g2)x0+x1+x2(mod (p0 +

p1 + p2)) − (g0 − g1 + g2)x0−x1+x2(mod (p0 − p1 + p2)) − 2g0
x0(mod p0)].  
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Then, (F) computes 

The shared key k is computed as follows k ≡ Xr(mod P). 

(F) encrypts the message as S ≡ m × k, and sends the ciphertext to (E) as a duplet (R, S). 

(E) decrypts the message as follows m ≡ R−x × S, where 

 

 

Fig. 3. The process 2-cyclic refined generator. 

 

 

{

0 < r0 < p0 − 2,                                     
0 < r0 + r1 + r2 < p0 + p1 + p2 − 2,
1 < r0 − r1 + r2 < p0 − p1 + p2 − 2.

   

R ≡ gr(mod P) = g0
r0(mod p0) +

1

2
I1[(g0 + g1 + g2)r0+r1+r2(mod (p0 + p1 + p2)) −

(g0 − g1 + g2)r0−r1+r2(mod (p0 − p1 + p2))] +
1

2
I2[(g0 + g1 + g2)r0+r1+r2(mod (p0 +

p1 + p2)) − (g0 − g1 + g2)r0−r1+r2(mod (p0 − p1 + p2)) − 2g0
r0(mod p0)].  

 

R−1(mod P) = r0
−1(mod p0) +

1

2
I1[(r0 + r1 + r2)−1(mod (p0 + p1 + p2)) − (r0 − r1 +

r2)−1(mod (p0 − p1 + p2))] +
1

2
I2[(r0 + r1 + r2)−1(mod (p0 + p1 + p2)) − (r0 − r1 +

r2)−1(mod (p0 − p1 + p2)) − 2r0
−1(mod p0)].  
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Fig. 4. The novel generalized El-Gamal algorithm. 

Example 5. Consider that the second side picked P = 5 − 2I1 + 4I2, where 5,5 − 2 + 4 = 7,5 − (−2) + 4 =

11 are primes. The generator g = 3 + 2I1 + I2, where 

Now, the second side picks x = 2 + I1 + I2, where 

And computes 

{
0 < 3 < 5 − 1 = 4,                           
0 < 3 + 1 + 1 = 5 < 7 − 1 = 6,   

1 < 3 − 1 + 1 = 3 < 11 − 1 = 10.
   

{
0 < 2 < 5 − 2 = 3,                        
0 < 2 + 1 + 1 = 4 < 7 − 2 = 5,

1 < 2 − 1 + 1 = 2 < 11 − 2 = 9.
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Remark that we chose 32(mod 11) ≡ 20(mod 11) to get an even integer so that we can divide it by 2. 

Suppose that the first side decides to send m = 3 − I1 + I2 to the second one. 

The first side picks r = 1 + 2I1 + I2, where 

He computes 

The shared key (K) is 

The encrypted message is 

The second side decrypts the message  

which is the plain text. 

6|The Description of the 2-Cyclic Refined RSA Algorithm 

Suppose that we have two sides: a sender (F) and a recipient (E). Suppose that M = m0 + m1I1 + m2I2 is the 

message that (F) decided to send it to (E). (E) picks two positive 2-cyclic refined integers P = p0 + p1I1 +

p2I2, Q = q0 + q1I1 + q2I2, with p0, q0, p0 + p1 + p2, q0 + q1 + q2, p0 − p1 + p2, q0 − q1 + q2 are large odd 

primes and then computes 

X ≡ gx(mod P) = 32(mod 5) +
1

2
I1[54(mod 7) − 32(mod 11)] +

1

2
I2[54(mod 7) −

32(mod 11) − 2 × 32(mod 5)].  
 

X ≡ 4 + I1 [
1

2
× 54(mod 7) −

1

2
× 32(mod 11)] + I2 [

1

2
× 54(mod 7) −

1

2
× 32(mod 11) −

32(mod 5)] = 4 − 9I1 + 2I2.  
 

{
0 < 1 < 5 − 2 = 3,                        
0 < 1 + 1 + 1 = 3 < 7 − 2 = 5,

1 < 1 − 1 + 1 = 1 < 11 − 2 = 9.
   

R ≡ gr(mod P) = 31(mod 5) +
1

2
I1[53(mod 7) − 31(mod 11)] +

1

2
I2[53(mod 7) −

31(mod 11) − 2 × 31(mod 5)] = 3 + I1 [
1

2
× (6) −

1

2
× (14)] + I2 [

1

2
× (6) −

1

2
× (14) −

3] = 3 − 4I1 + 7I2.  

 

K = Xr(mod P) = (4 − 9I1 + 7I2)1+I1+I2 = 41(mod 5) +
1

2
I1[23(mod 7) −

201(mod 11)] +
1

2
I2[23(mod 7) + 20(mod 11) − 2 × 41(mod 5)] = 4 + I1[4 − 10] +

I2[4 + 10 − 4] = 4 − 6I1 + 10I2.  

 

S = m × k = (3 − I1 + I2)(4 − 6I1 + 10I2) = 12 + I1[−18 − 4 − 10 − 6] + I2[4 + 30 +

6 + 10] = 12 − 38I1 + 50I2.  
 

R−1 = 3−1(mod 5) +
1

2
I1[6−1(mod 7) − 14−1(mod 11)] +

1

2
I2[6−1(mod 7) +

14−1(mod 11) − 2 × 3−1(mod 5)] = 2 + I1 + 3I2.  
 

R−x = (R−1)x = (2 + I1 + 3I2)2+I1+I2 = 4 +
1

2
I1[64 − 42] +

1

2
I2[64 − 42 − 8] = 4 +

640I1 + 652I2.  
 

m = R−x × S = (4 + 640I1 + 652I2) × (12 − 38I1 + 50I2) = 1248 + 14752I1 + 16304I2.   

R−x × S(mod P) = 48(mod 5) +
1

2
I1[31104(mod 7) − 1600(mod 11)] +

1

2
I2[31104(mod 7) + 1600(mod 11) − 2 × 48(mod 5)] = 3 +

1

2
I1(3 − 5) +

1

2
I2(3 + 5 −

6) = 4 − I1 + I2.  

 



 On Novel Security Systems Based on the 2-Cyclic Refined Integers … 80

Then (E) picks E = e0 + e1I1 + e2I2 with 

The public key is (E, N). Now, (F) encrypts the message M as follows: 

The secret key is 

The recipient (E) decrypts the message by M ≡ CE−1
(mod N). 

 

Fig. 5. The 2-cyclic refined RSA Algorithm. 

Example 6. Suppose that (F) decides to send M = 3 + 4I1 + 2I2 to (E). 

(E) picks P = 13 + 2I1 + 8I2, Q = 7 + 4I1, PQ = 91 + 52I1 + 14I1 + 18I2 + 56I2 + 32I1 = 91 + 98I1 +

64I2. ∅∗(N) = ∅(13) × ∅(23) × ∅(19) × ∅(7) × ∅(11) × ∅(3) = 12 × 22 × 18 × 6 × 10 × 2 = 2. (285120). 

(E) picks E = 7 + 3I1 + 3I2 it is clear that 

N = PQ = p0q0 + I1(p0q1 + p1q0 + p1q2 + p2q1) + I1(p0q2 + p2q0 + p2q2 + p2q1) =

n0 + n1I1 + n2I2.  
 

∅∗(N) = ∅∗(P). ∅∗(Q) = ∅(p0) ∗ ∅(p0 + p1 + p2) ∗ ∅(p0 − p1 + p2)∅(q0) ∗ ∅(q0 + q1 +

q2) ∗ ∅(q0 − q1 + q2) = (p0 − 1)(p0 + p1 + p2 − 1)(p0 − p1 + p2 − 1)(q0 − 1)(q0 +

q1 + q2 − 1)(q0 − q1 + q2 − 1).  

 

{

1 < e0 < ∅∗(N), gcd(e0, ∅∗(N)) = 1,                                      

1 < e0 + e1 + e2 < ∅∗(N), gcd(e0 + e1 + e2, ∅∗(N)) = 1,

1 < e0 − e1 + e2 < ∅∗(N), gcd(e0 − e1 + e2, ∅∗(N)) = 1.

   

C ≡ ME(mod N) = m0
e0(mod n0) +

1

2
I1[(m0 + m1 + m2)e0+e1+e2(mod n0 + n1 + n2) −

(m0 − m1 + m2)e0−e1+e2(mod n0 − n1 + n2)] +
1

2
I1[(m0 + m1 + m2)e0+e1+e2(mod n0 +

n1 + n2) + (m0 − m1 + m2)e0−e1+e2(mod n0 − n1 + n2) − 2m0
e0(mod n0)].  

 

E−1 = e0
−1(mod ∅∗(N)) +

1

2
I1[(e0 + e1 + e2)−1(mod ∅∗(N)) − (e0 − e1 +

e2)−1(mod ∅∗(N))] +
1

2
I1[(e0 + e1 + e2)−1(mod ∅∗(N)) − (e0 − e1 +

e2)−1(mod ∅∗(N)) − e0
−1(mod ∅∗(N))].  

 

{

0 < 7 < 285120, gcd(7,285120) = 1,                             

0 < 7 + 3 + 3 = 13 < 285120, gcd(13,285120) = 1,

0 < 7 − 3 + 3 = 7 < 285120, gcd(7,285120) = 1.     
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The public key is (7 + 3I1 + 3I2, 91 + 98I1 + 64I2). 

The encrypted message is 

The second side (E) decrypts the message as follows: 

The plain text is 

Why 2-cyclic refined integers? 

This numerical system is a powerful expansion of integers built on solid algebraic and logical rules. 

These numbers have three dimensions, as they have a base of three independent generators, in addition to 

many algebraic properties that distinguish them from refined neutrosophic integers or symbolic 2-plithogenic 

integers. 

For example, the ring of 2-cyclic refined integers is not isomorphic to the direct product of Z with itself; it 

has zero divisors and exactly 8 units. 

In addition, congruencies are defined on them, with a partial order relation and the ability to compute natural 

powers and exponents. 

2-cyclic refined integers are very useful in encrypting data in three dimensions, such as matrices with 

dimension 3, or data units with three pieces of information, such as neutrosophic data units or fuzzy relations 

and graphs. 

These numbers are technically better because if we want to encrypt information consisting of three parts or 

three partial information, we need to apply the classical algorithm three times with three different keys to 

ensure security and not discover the secret key. 

If the partial information is the same or all or some of it is the same, this will make it very easy for an attacker 

to discover the secret key and then steal information that is supposed to remain secret, in case it is of military, 

medical, or even logistical nature. 

Whereas by using 2-cyclic refined numbers, it is enough to use only one secret key to encrypt the three parts 

together, and the difficulty of finding this secret key exceeds the difficulty of finding the three classic keys 

together. 

The following table compares classical El-Gamal cryptosystems and a 2-cyclic refined system through the 

time needed to break the code, measured in milliseconds. 
We can see from this table that the duration of the novel system is around three times compared to the 

classical system, and that can be explained algebraically by the existence of the isomorphism between a 2-

cyclic refined integer ring and a subring of the three times direct product of Z with itself. 

M ≡ CE−1
(mod N) = 37(mod 91) +

1

2
I1[913(mod 253) − 17(mod 57)] +

1

2
I1[913(mod 253) + 17(mod 57) − 2 × 37(mod 91)] = 3 +

1

2
I1[269 − 1] +

1

2
I1[269 + 1 −

6] = 3 + 134I1 + 132I2.  

 

e0
−1(mod ∅∗(N)) = 7−1(mod 285120) = 81463. 

(e0 + e1 + e2)−1(mod ∅∗(N)) = 13−1(mod 285120) = 65797. 

(e0 − e1 + e2)−1(mod ∅∗(N)) = 7−1(mod 285120) = 81463.  

 

M ≡ CE−1
(mod N) = 381463(mod 91) +

1

2
I1[16228725(mod 253) −

197129(mod 57)] +
1

2
I1[16228725(mod 253) + 197129(mod 57) − 2 ×

381463(mod 91)] = 3 +
1

2
I1[9 − 1] +

1

2
I1[9 + 1 − 6] = 3 + 4I1 + 2I2.  
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Table 1. Comparing classical El-Gamal cryptosystems and the 2-cyclic refined system (El Gamal Crypto System). 

  
Table 2. Comparing classical El-Gamal cryptosystems and the 2-cyclic refined system (2-Plithogenic El 

Gamal Crypto System). 

  

We can illustrate the following graph that explains the previous relationship between the complexity of the 

classical algorithm concerning the novel one. 

 

Fig. 6. Comparing the complexity of the classical and the novel algorithm. 

 

Why should we use new algorithms? 

In cryptography, it is important to maintain confidentiality and security, whether it is digital data, text, or even 

information of a military or medical nature. 

Time Duration Measured by 
M.Sec 

El Gamal Crypto System 2-Cyclic Refined System 

Around 1,0031 for a classical system 
Around 1,07723787251  
For the novel system 

For  

500000 < g < 1000000 

For  

500000 < g0, g0 + g1, g0 − g1 +
g2 < 1000000  

Around 9,12001 for the classical 
system 
Around 28,5433223 for the novel 
system 

For  

 5000000 < g < 10000000 

For  

5000000 < g0, g0 + g1, g0 −
g1 + g2 < 10000000  

Around 25,3241 for the classical 
system 
Around  82,1233678 for the novel 
system 

For  

10000000 < g < 30000000 
 

For  

1000000 < g0, g0 + g1, g0 −
g1 + g2 < 30000000  

Around 223,1348 for the classical 
system 
Around  712.21445675 for the novel 
system 

For  

100000000 < g < 300000000 
 

For  

10000000 < g0, g0 + g1, g0 −
g1 + g2 < 300000000  

Time Duration Measured by 
M.Sec 

2-Plithogenic El Gamal Crypto 
System 

2-Cyclic Refined System 

Around 1,04358787251 for 2-
plithogenic 
Around  1,07723787251 for the 
novel system 

For  

500000 < g0, g0 + g1, g0 + g1 +
g2 < 1000000  

For  

500000 < g0, g0 + g1, g0 − g1 +
g2 < 1000000  

Around 27,533023  for 2-
plithogenic 
Around 28,5433223 for the novel 
system 

For  

5000000 < g0, g0 + g1, g0 + g1 +
g2 < 10000000  

For  

5000000 < g0, g0 + g1, g0 − g1 +
g2 < 10000000  

Around 80,5906 for 2-plithogenic 
Around  82,1233678 for the 
novel system 

For  

1000000 < g0, g0 + g1, g0 + g1 +
g2 < 30000000  

For  

1000000 < g0, g0 + g1, g0 − g1 +
g2 < 30000000  
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Therefore, we must use high-efficiency and high-complexity encryption systems, as increased secrecy is closely 

related to the increased complexity of the algorithm and the difficulty of attacking it. 

Since the number system used in our new algorithm is three-dimensional, or in other words, described by 

three different components, this gives the process of exchanging keys or confidential data more security and 

reliability than using classical one-dimensional methods. 

An attacker may be able to detect one of the components used. Still, it will be very far from detecting the 

remaining two components that enter into the formation of the algebraic key structure. 

The main difficulties facing these new algorithms are the following points: 

I. Until now, computers do not recognize these numerical systems because they are new, which presents a 

challenge for programmers to introduce them into programming languages, making it easier for a computer 

to deal with them. 

II. Also, using these expanded numbers may result in greater consumption of computer resources, which 

significantly affects the ability of the computer to deal with them within a useful and logical time. 

These theses remain as challenges to the possible development of the theory of cryptography and its various 

applications in this time when the movement of interest in cyber-security and its applications is accelerating. 

The following figure shows a comparison between using integers and 2-cyclic refined integers in cryptography. 

 

Fig. 7. Comparing integers and 2-cyclic refined integers in cryptography. 

 

7|Conclusion 

This paper presents two novel algorithms for the encryption and decryption of data and information based 

on the El-Gamal algorithm, the RSA algorithm, and the algebra of 2-cyclic refined integers. In addition, we 

have discussed the possible future applications of the novel algorithms with many examples to clarify their 
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validity. Also, many figures and tables were provided to explain the new algorithms concerning the classical 

ones. 

We recommend researchers continue our efforts and use the 3-cyclic refined integers to find novel 

generalizations of classical, well-known crypto-algorithms and study their properties and complexity. 
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