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Abstract 

 

1 | Introduction  

Decision making problems in decentralized organizations are often modeled as stackelberg games, 

and they are formulated as bi-level mathematical programming problems. A bi-level problem with a 

single decision maker at the upper level and two or more decision makers at the lower level is referred 

to as a decentralized bi-level programming problem. Real-world applications under non cooperative 

situations are formulated by bi-level mathematical programming problems and their effectiveness is 

demonstrated. 

The use of fuzzy set theory for decision problems with several conflicting objectives was first 

introduced by Zimmermann. Thereafter, various versions of Fuzzy Programming (FP) have been 

investigated and widely circulated in literature. The use of the concept of tolerance membership 

function of fuzzy set theory to Bi-Linear Programming Problems (BLPPs) for satisfactory decisions 
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was first introduced by Lai in 1996 [1]. Shih and Lee further extended Lai’s concept by introducing the 

compensatory fuzzy operator for solving BLPPs [2]. Sinha studied alternative BLP techniques based on 

Fuzzy Mathematical Programming (FMP). 

The basic concept of these FMP approaches is the same as Fuzzy Goal Programming (FGP) approach 

which implies that the lower level DMs optimizes, his/her objective function, taking a goal or preference 

of the higher level DMs in to consideration. In the decision process, considering the membership functions 

of the fuzzy goals for the decision variables of the higher level DM, the lower level DM solves a FMP 

problem with a constraint on an overall satisfactory degree of the higher level DMs. If the proposed 

solution is not satisfactory, to the higher level DMs, the solution search is continued by redefining the 

elicited membership functions until a satisfactory solution is reached [2]. The main difficulty that arises 

with the FMP approach of Sinha is that there is possibility of rejecting the solution again and again by the 

higher level DMs and re-evaluation of the problem is repeatedly needed to reach the satisfactory decision, 

where the objectives of the DMs are over conflicting [2]. 

Taking in to account vagueness of judgments of the decision makers, we will present interactive fuzzy 

programming for bi-level linear programming problems. In the interactive method, after determining the 

fuzzy goals of the decision makers at both levels, a satisfactory solution is derived by updating some 

reference points with respect to the satisfactory level. In the real world, we often encounter situations 

where there are two or more decision makers in an organization with a hierarchical structure, and they 

make decisions in turn or at the same time so as to optimize their objective functions. In particular, consider 

a case where there are two decision makers; one of the decision makers first makes a decision. Such a 

situation is formulated as a bi-level programming problem. Although a large number of algorithms for 

obtaining stackelberg solutions have been developed, it is also known that solving the mathematical 

programming problems for obtaining stackelberg solution is NP-hard [3]. From such difficulties, a new 

solution concept which is easy to compute and reflects structure of bi-level programming problems had 

been expected [4] proposed a solution method, which is different from the concept of stackelberg 

solutions, for bi-level linear programming problems with cooperative relationship between decision 

makers. Sakawa and Nishizaki [5] present interactive fuzzy programming for bi-level linear programming 

problems. In order to overcome the problem in the methods of [4], after eliminating the fuzzy goals for 

decision variables, they formulate the bi-level linear programming problem. 

In their interactive method, after determining the fuzzy goals of the decision makers at all the levels, a 

satisfactory solution is derived efficiently by updating the satisfactory degree of the decision maker at the 

upper level with considerations of overall satisfactory balance among all the levels. By eliminating the fuzzy 

goals for the decision variables to avoid such problems in the method of [4]-[6] develop interactive fuzzy 

programming for bi-level linear programming problems. Moreover, from the viewpoint of experts’ 

imprecise or fuzzy understanding of the nature of parameters in a problem-formulation process, they 

extend it to interactive fuzzy programming for bi-level linear programming problems with fuzzy parameters 

[5]. Interactive fuzzy programming can also be extended so as to manage decentralized bi-level linear 

programming problems by taking in to consideration individual satisfactory balance between the upper 

level DM and each of the lower level DMs as well as overall satisfactory balance between the two levels 

[7]. Moreover, by using some decomposition methods which take advantage of the structural features of 

the decentralized bi-level problems, efficient methods for computing satisfactory solutions are also 

developed [7] and [8].  

Recently, [9]-[11] considered the 𝐿-𝑅 fuzzy numbers and the lexicography method in conjunction with 

crisp linear programming and designed a new model for solving FFLP. The proposed scheme presented 

promising results from the aspects of performance and computing efficiency. Moreover, comparison 

between the new model and two mentioned methods for the studied problem shows a remarkable 

agreement and reveals that the new model is more reliable in the point of view of optimality. Also, an 

author in [12]-[15] has been proposed a new efficient method for FFLP, in order to obtain the fuzzy 
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optimal solution with unrestricted variables and parameters. This proposed method is based on crisp 

nonlinear programming and has a simple structure. 

Furthermore, several authors deal with the modeling and optimization of a bi-level multi-objective 

production planning problem, where some of the coefficients of objective functions and parameters of 

constraints are multi-choice. They has been used a general transformation technique based on a binary 

variable to transform the multi-choices parameters of the problem into their equivalent deterministic 

form [16]-[21]. 

In this study, we discuss a procedure for solving bi-level linear programming problems through linear 

FMP approach. In order to reach the optimal solution of bi-level linear programming problems, using 

fuzzy programming approach, the report contains section three chapters. In section two we describe the 

basic concept of fuzzy set, and linear programming using fuzzy approach. In section three the basic 

concept of bi level linear programming characteristics and general model of mathematical formulation 

of bi -level linear programming problems are presented. In section, four the procedure for solving bi-

level linear programming problems and FMP solution approach are discussed. 

2| Preliminary 

2.1| Fuzzy Set Theory 

Fuzzy set theory has been developed to solve problems where the descriptions of activities and 

observations are imprecise, vague, or uncertain. The term “fuzzy’’ refers to a situation where there are 

no well-defined boundaries of the set of activities or observations to which the descriptions apply. For 

example, one can easily assign a person 180 cm tall to the class of tall men’’. But it would be difficult to 

justify the inclusion or exclusion of a 173 cm tall person to that class, because the term “tall’’ does not 

constitute a well- defined boundary. This notion of fuzziness exists almost everywhere in our daily life, 

such as a ’’class of red flowers,’’ a “class of good shooters,’’ a “class of comfortable speeds for travelling,’’ 

a “number close to 10,’’etc.These classes of objects cannot be well represented by classical set theory. 

In classical set theory, an object is either in a set or not in a set. An object cannot partially belong to a 

set .In fuzzy set theory, we extend the image set of the characteristic function from the binary set 𝐵 =

{0 ,1} which contains only two alternatives, to the unit interval 𝑈 = [0,1] which has an infinite number 

of alternatives. We even give the characteristic function a new name, the membership function, and a 

new symbol  𝜇, instead of  𝜒. The vagueness of language, and its mathematical representation and 

processing, is one of the major areas of study in fuzzy set theory. 

2.2| Definition of Fuzzy and Crisp Sets 

Definition 1. Let 𝑋 be a space of points (objects) called universal or referential set .An ordinary (a crisp) 

subset 𝐴 in 𝑋 is characterized by its characteristic function 𝑋𝐴 as mapping from the elements of 𝑋 to 

the elements of the set {0,1} defined by;  

XA (x) = {
1,   if x ∈ A 
0,   if x ∉ A

. 

Where {0, 1} is called a valuation set. However, in the fuzzy set t, the membership function will have 

not only 0 and 1 but also any number in between. This implies that if the valuation set is allowed to be 

the real interval [0, 1], 𝐴 is called a fuzzy set. 

Definition 2. If   𝑋  is a collection of objects denoted by  𝑥, then a fuzzy set  𝐴 is a set of ordered pairs 

denoted by  𝐴 = {( 𝑥, 𝜇
𝐴
(𝑥)) | 𝑥 ∈ 𝑋}. Where  𝜇

𝐴
(𝑥): 𝑋 → [0,1] is called membership function or degree 

of membership (degree of compatibility or degree of truth). 
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Definition 3.  A fuzzy set 𝐴 in a non empty set 𝑋 is categorized by its membership function 𝜇
𝐴

(𝑥): 𝑋 →

[0,1] and   𝜇
𝐴

(𝑥) is called the degree of membership of element 𝑥 in fuzzy set 𝐴 for each 𝑥 is an element 

of 𝑋 that makes values in the interval [0, 1]. 

Definition 4. Let 𝑋 be a universal set and 𝐴 is a subset of  𝑋. A fuzzy set of 𝐴 in 𝑥 is a set of ordered 

pairs  𝐴 = {( 𝑥, 𝜇
𝐴
(𝑥)) | 𝑥 ∈ 𝑋} where,   𝜇

𝐴
(𝑥) → [0,1] is called the membership function at 𝑥  in 

membership, the value one is used  to represent  complete membership and value zero is used to represent 

intermediate degree of membership. 

Example 1. let 𝑋 = {𝑎 , 𝑏 , 𝑐} and define the fuzzy set 𝐴 as follows:  

μA(a) = 1.0, μA(b) = 0.7, μA(c) = 0.4 , 

A = {(a, 1.0), (b, 0.7), (c, 0.4)}. 

Note. The statement, 𝜇𝐴(𝑏)  = 0.7 is interpreted as saying that the membership grade of ‘𝑏’ in the fuzzy 

set 𝐴 is seven-tenths. i.e. the degree or grade to which 𝑏 belongs to 𝐴 is 0.7. 

Definition 5. A fuzzy set 𝐴 = ∅ if and only if it is identically zero on 𝑋. 

Definition 6. If two fuzzy sets 𝐴 andfuzzy set 𝐵 are equal then 𝐴 = 𝐵, if and only if 𝐴(𝑥)  = 𝐵(𝑥), ∀𝑥 ∈ 𝑋. 

2.3| Fuzzy Linear Programming  

Crisp linear programming is one of the most important operational research techniques. It is a problem of 

maximizing or minimizing a crisp objective function subject to crisp constraints (crisp linear-inequalities 

and/or equations). It has been applied to solve many real world problems but it fails to deal with imprecise 

data, that is, in many practical situations it may not be possible for the decision maker to specify the 

objective and/or the constraint in crisp manner rather he/she may have put them in ‘’fuzzy sense’’. So 

many researchers succeeded in capturing such vague and imprecise information by fuzzy programming 

problem. In this case, the type of the problem he/she put in the fuzziness should be specified, that means, 

there is no general or unique definition of fuzzy linear problems. The fuzziness may appear in a linear 

programming problem in several ways such as the inequality may be fuzzy (p1–FLP), the objective function 

may be fuzzy (P2-FLP) or the parameters c, A, b may be fuzzy (P3-FLP) and so on.  

Definition 7. If an imprecise aspiration level is assigned to the objective function, then this fuzzy objective 

is termed as fuzzy goal. It is characterized by its associated membership function by defining the tolerance 

limits for achievement of its aspired level.  

We consider the general model of a linear programming 

 Where 𝐴𝑖 is an n-vector C is an n-column vector and  𝑥 ∈ ℝ𝑛. 

To a standard linear programming Problem (1) above, taking in to account the imprecision or fuzziness of 

a decision maker’s judgment, Zimmermann considers the following linear programming problem with a 

fuzzy goal (objective function) and fuzzy constraints. 

max   CTx, 
s. t. 
 A ix ≤ bi   (i = 1,2,3,…m), 
x ≥ 0, 

(1) 



 

 

256 

G
u

rm
u

 a
n

d
 F

ik
a
d

u
|

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(4
) 

(2
0
2
0
) 

2
5
2
-2

7
1

 

 

 

Where the symbol ≲ denotes a relaxed or fuzzy version of the ordinary inequality  < . From the decision 

maker’s preference, the fuzzy goal (1a) and the fuzzy constraints (1b) mean that the objective function 

  𝐶𝑇𝑥 should be “essentially smaller than or equal to” a certain level  𝑍0, and that the values of the 

constraints 𝐴𝑋 should be “essentially smaller than or equal to”  b, respectively. Assuming that the fuzzy 

goal and the fuzzy constraints are equally important, he employed the following unified formulation. 

Bx ≲ b′, 

x ≥ 0. 

Where 𝐵 = [
𝐶
𝐴𝑖
]  and 𝑏′ = [

𝑍0

𝑏𝑖
] . 

Definition 8. Fuzzy decision is the fuzzy set of alternatives resulting from the intersection of the fuzzy 

constraints and fuzzy objective functions. Fuzzy objective functions and fuzzy constraints are 

characterized by their membership functions. 

2.4| Solution Techniques of Solving Some Fuzzy Linear Programming Problems 

The solution techniques for fuzzy linear programming problems follow the following procedure. We 

consider the following linear programming problem with fuzzy goal and fuzzy constraints (the 

coefficients of the constraints are fuzzy numbers). 

Where 𝑎𝑖�̃� and 𝑏�̃� are fuzzy numbers with the following linear membership functions: 

µij(x) =

{ 
  
  
 
  
  
  
 
 

1, if x ≤ aij,

aij + dij − x

dij
, if aij < x < aij + dij,

0, if x ≥ aij + dij.

 

µ
bĩ
(x) =

{ 
  
  
  
  
  
 

1, if x ≤ bi,
bi + pi − x

p
, if bi < x < bi + pi,

0, if x ≥ bi + pi.

 

and 𝑥 ∈ 𝑅, 𝑑𝑖𝑗 > 0 is the maximum tolerance for the corresponding constraint coefficients and 𝑝𝑖 is the 

maximum tolerance for the 𝑖 𝑡ℎ constraint. For defuzzification of the problem, we first fuzzify the 

objective function. This is done by calculating the lower and upper bounds of the optimal values. These 

optimal values 𝑧𝑙 and 𝑧𝑢 can be defined by solving the following standard linear programming problems, 

for which we assume that both of them have finite optimal values. 

 

 

CTx ≲ Z0,                                                                                                                  (1a) 

A ix ≲ bi   (i = 1,2,3,…m),                                                                                      (1b) 

x ≥ 0. 

(2) 
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  Let 𝑧𝑙 = 𝑚𝑖𝑛(𝑧1, 𝑧2) and   𝑧𝑢  = 𝑚𝑎𝑥(𝑧1, 𝑧2) . The objective function takes values between 𝑧𝑙 and 𝑧𝑢 while the 

constraint coefficients take values between 𝑎𝑖𝑗 and 𝑎𝑖𝑗 + 𝑑𝑖𝑗and the right-hand side numbers take values 

between 𝑏𝑖 and 𝑏𝑖 + 𝑝𝑖 .Then, the fuzzy set optimal values, 𝐺, which is a subset of 𝑅𝑛 is defined by: 

µG(x) =

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0,                  if ∑cjxj

n

j=1

≤ zl,

∑ cjxj
n
j=1 − zl

zu − zl
, if zl <∑cjxj

n

j=1

≤ zu.

1, if∑cjxj

n

j=1

≥ zu.

 

The fuzzy set of the 𝑖 𝑡ℎ constraint, 𝐶𝑖 , which is a subset of 𝑅𝑛 is defined by: 

µci(x) =

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0,                  if bi ≤∑aijxj

n

j=1

,

bi − ∑ aijxj
n
j=1

∑ dijxj + pi
n
j=1

, if ∑aijxj

n

j=1

< bi <∑(aijxj + dij)xj

n

j=1

+ pi.

1,                              if  b ≥∑(aijxj + dij)xj

n

j=1

+ pi.

 

Using the above membership functions µ𝑐𝑖(𝑥) and µ𝐺(𝑥)and following Bellmann and Zadeh approach, we 

construct the membership function µ𝐷(𝑥)as follows: µD(x)  =  mini(µG(x), µci(x)). 

Where µ𝐷(𝑥) is the membership function of the fuzzy decision set. The min. section is selected as the 

aggregation operator. Then the optimal decision 𝑥∗ is the solution of x ∗ = arg(max mini{µG(x), µci(x)}. 

Then, Problem (1) is reduced to the following crisp problem by introducing the auxiliary variable 𝜆 which 

indicates the common degree of satisfaction of both the fuzzy constraints and objective function. 

 

 

 

z1 = max   ∑cjxj,

n

j=1

  

s. t. 

∑(aij + dij)xj

n

j=1

 ≤ bi,   1 ≤ i ≤ m) xj ≥ 0, 

and 

z2 = max   ∑cjxj

n

j=1

 , 

s. t. 

∑aijxj

n

j=1

 ≤ bi + pi,   1 ≤ i ≤ m)xj ≥ 0. 

(3) 
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maxλ, 

s. t. 

 μG(x) ≥ λ, 

μci(x) ≥ λ, 

x ≥ 0, 0 ≤ λ ≤ 1, 1 ≤ i ≤ m. 

This problem is equivalent to the following non-convex optimization problem 

maxλ, 

λ(z1 − z2) −∑cjxj

n

j=1

− z1 ≤ 0, 

∑(aij + λdij)

n

j=1

xj + λpi − bi ≤ 0 , 

x ≥ 0, 0 ≤ λ ≤ 1, 1 ≤ i ≤ m . 

Which contains the cross product terms 𝜆𝑥𝑗 that makes non- convex. Therefore, the solution of this 

problem requires the special approach such as fuzzy decisive method adopted for solving general non-

convex optimization problems.  Here solving the above linear programming problem gives us an 

optimum  𝜆∗  ∈ [0,1]. Then the solution of the problem is any 𝑥 ≥  0 satisfying the problem constraint 

with   𝜆 =  𝜆∗ . 

3| Bi-Level Programming 

3.1| Basic Definitions 

3.1.1| Decision making 

Decision making is a process of choosing an action (solution) from a set of possible actions to optimize 

a given objective.  

3.1.2| Decision making under multi objectives 

 In most real situation a decision maker needs to choose an action to optimize more than one objective 

simultaneously. Most of these objectives are usually conflicting. For example, a manufacturer wants to 

increase his profit and at the same time want to produce a product with better quality. Mathematically a 

multi objective optimization with 𝑘 objectives, for a natural number  𝐾 > 1, can be given as: 

maxF(x) = (f1(x), f2(x),… , fk(x)) , 
s. t. 

x ∈ S ⊆ ℝn. 

3.1.3| Hierarchical decision making 

 An optimization problem which has other optimization problems in the constraint set and has a 

decision maker for each objective function controlling part of the variables is called multi-level 

optimization problem. If there are only two nested objective functions then it is called a bi-level 

optimization problem. The decision maker at the first level, with objective function  𝑓
1
, is called the 

leader and the other decision makers are called the followers. A solution is supposed to fulfill all the 
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feasibility conditions and optimize each objectives it is uncommon to find a solution which makes all the 

decision makers happy. Hence to choose an action the preference of the decision makers for all the levels 

or objectives play a big role. 

3.1.4| Bi-level programming (BLP) 

 is a mathematical programming problem that solves decentralized planning problems with two DMs in a 

two level or hierarchical organization. It has been studied extensively since the 1980s. It often represents 

an adequate tool for modeling non-cooperative hierarchical decision process, where one player optimizes 

over a subset of decision variables, while taking in to account the independent reaction of the other player 

to his or course of action. In the real world, we often encounter situations where there are two or more 

decision makers in an organization with a hierarchical structure, and they make decisions in turn or at the 

same time so as to optimize their objective functions. In particular, consider a case where there are two 

decision makers; one of the decision makers first makes a decision, and then the other who knows the 

decision of the opponent makes a decision. Such a situation is formulated as a bi-level programming 

problem. We call the decision maker who first makes a decision the leader, and the other decision maker 

the follower. For bi-level programming problems, the leader first specifies (decides) a decision and then 

the follower determines a decision so as to optimize the objective function of the follower with full 

knowledge of the decision of the leader. According to this rule, the leader also makes a decision so as to 

optimize the objective function of self. This decision making process is extremely practical to such 

decentralized systems as agriculture, government policy, economic systems, finance, warfare, 

transportation, network designs, and is especially for conflict resolution.  

Bi-level programming is particularly appropriate for problems with the following characteristics: 

 Interaction: Interactive decision-making units within a predominantly hierarchical structure.  

  Hierarchy: Execution of decision is sequential, from upper to lower level.  

 Full information: Each DM is fully informed about all prior choices when it is his turn to move.  

 Nonzero sum: The loss for the cost of one level is unequal to the gain for the cost of the other level. External effect 

on a DM’s problem can be reflected in both the objective function and the set of feasible decision space.  

 Each DM controls only a subset of the decision variables in an organization. 

3.2| Mathematical Formulation of a Bi-Level Linear Programming Problem 

(BLPP) 

For the bi-level programming problems, the leader first specifies a decision and then the follower 

determines a decision so as to optimize the objective function of self with full knowledge of the decision 

of the leader. According to this rule, the leader also makes a decision so as to optimize the objective 

function of self. The solution defined as the above mentioned procedure is a stackelberg solution. 

A bi-level LPP for obtaining the stackelberg solution is formulated as: 

 

maxz1(x1, x2) = c1x1 + d1x2, 
x1. 
Where x2  solves 

(4) 

maxz2(x1, x2) = c2x1 + d2x2, 
x2, 
s. t. 
Ax1 + Bx2 ≦ b. 
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Where 𝑐𝑖, 𝑖 = 1,2 are 𝑛1-dimensional row coefficient vector𝑑𝑖, 𝑖 = 1,2, are 𝑛2- dimensional row coefficient 

vector, 𝐴 is an mxn1 coefficient matrix, 𝐵 is a 𝑚𝑥𝑛2 coefficient matrix, 𝑏-is an 𝑚-dimensional column 

constant vector. In the bi-level linear programming problem above𝑧1(𝑥1, 𝑥2), and 𝑧2(𝑥1, 𝑥2)represent the 

objective functions of the leader and the follower, respectively, and 𝑥1 and 𝑥2 represent the decision 

variables of the leader and the follower respectively. Each decision maker knows the objective function 

of self and the constraints. The leader first makes a decision, and then the follower makes a decision so 

as to maximize the objective function with full knowledge of the decision of the leader. Namely, after 

the leader chooses  𝑥1, he solves the following linear programming problem: 

And chooses an optimal solution 𝑥2(𝑥1) to the problem above as a rational response. Assuming that the 

follower chooses the rational response, the leader also makes a decision such that the objective function 

𝑧1(𝑥1, 𝑥2(𝑥1)) is maximized. 

3.3| BLP Problem Description 

The linear bi-level programming problem is similar to standard linear programming, except that the 

constraint region is modified to include a linear objective function constrained to be optimal with respect 

to one set of variables. The linear BLPP characterized by two planners at different hierarchical levels 

each independently controlling only a set of decision variables, and with different conflicting objectives. 

The lower- level executes its policies after and in view of, the decision of the higher level , and the higher 

level optimizes its objective independently which is usually affected by the reactions of the lower level. 

Let the control over all real-valued decision variables in the vector 𝑥 = (𝑥1
1 , 𝑥1

2 , … , 𝑥1
𝑁(1)

 , 𝑥2
1 , 𝑥2

2 , … , 𝑥2
𝑁(2)

) 

be partitioned between two planners ,hereafter known as level-one(the superior or top planner) and 

level-two(the inferior or bottom planner).Assume that the level-one has control over the vector 𝑥 =

(𝑥1
1 , 𝑥1

2 , … , 𝑥1
𝑁(1)

), the first 𝑁(1) components of the vector x, and that the level-two has control over the 

vector 𝑥 = (𝑥2
1 , 𝑥2

2 , … , 𝑥2
𝑁(2)

) the remaining 𝑁(2) components .Further, assume that 

𝑓1, 𝑓2: 𝑅
𝑁(1)𝑥 𝑅𝑁(2)  → 𝑅1 linear. Then, the linear BLPP can be formulated as: 

Where 𝑆 ⊆  𝑅𝑁(1)+𝑁(2) is the feasible choices of (𝑥1, 𝑥2), and is closed and bounded. For any fixed choice 

of   𝑥1 , level-two will choose a value of 𝑥2 to maximize the objective function 𝑓1(𝑥1, 𝑥2). Hence, for 

each feasible value of  𝑥1, level-two will react with a corresponding value of 𝑥2. This induces a functional 

reaction ship between the decisions of level-one and the reactions of level-two. Say, 𝑥2 = 𝑊(𝑥1) .We will 

assume that the reaction function,  𝑊(. ), is completely known by level one. 

max z2(x1, x2) = c2x1 + d2x2, 

x2, 

(5) 

  s. t. 

Bx2 ≤ b − Ax1,                                                  

x2 ≧ 0. 

 

max f1(x1, x2) = c1x1 + d1x2, 
x1. 
Where x2  solves 

(6) 

max f2(x1, x2) = c2x1 + d2x2, 
x2, 
s. t. (x1, x2) ∈ S. 

(7) 
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Definition 9. The set 𝑊𝑓2(𝑆) given by 𝑊𝑓2(𝑆)  = {(𝑥1
∗ , 𝑥2

∗ ) ∈ 𝑆: 𝑓2(𝑥1
∗ , 𝑥2

∗ ) = 𝑚𝑎𝑥 𝑓2(𝑥1
∗ , 𝑥2

∗ ) is the set of 

rational reactions of 𝑓2over  𝑆. Hence level-one is really restricted to choosing a point in the set of rational 

reactions of 𝑓2 over  𝑆. So, if level-one wishes to maximize its objective function, 𝑓1(𝑥1, 𝑥2),by controlling 

only the vector  𝑥1, it must solve the following mathematical programming problem: 

 

 

 

For convenience of notation and terminology, we will refer to 𝑆1 =  𝑊𝑓2(𝑆) as the level-one feasible region 

or in general, the feasible region, and 𝑆1  = 𝑆 as the level two feasible regions.  

The following are the basic concepts of the bi-level linear programming problem of Eq. 3: 

The feasible region of the bi-level linear programming problem: S = {(x1, x2): Ax1 + Bx2 ≦ b}. 

The decision space (feasible set) of the follower after   𝑥1 is specified by the leader: S(x1) =

 {x2  ≧  0:  Bx2  <  b − Ax1, x1  ≧  0}. 

 The decision space of the leader:   𝑆𝑥 =  {𝑥 1 ≧  0 there is an 𝑥2 such that 𝐴𝑥1 + 𝐵𝑥2 ≦ 𝑏, 𝑥 2 ≧  0 } . 

 The set of rational responses of the follower for 𝑥1 specified by the leader 

R(x1) = {
x2 ≧  0: x2 ∈ argmax z1(x1, x2)

x2 ∈ S(x1)
. 

Inducible region: IR = {(x1, x2): (x1, x2)  ∈  S, x2  ∈ R(x1)}. 

 Stackleberg solution: {(x1, x2): (x1, x2)  ∈ argmax z1(x1, x2) , (x1, x2)  ∈ R(x1)}. 

Computational methods for obtaining stackelberg solution to bi-level linear programming problems are 

classified roughly in to three categories. These are 

The vertex enumeration approach [2]. This takes advantage of the property that there exists a 

stackelberg solution in a set of extreme points of the feasible region. The solution search procedure of the 

method starts from the first best point namely an optimal solution to the upper level problem which is the 

first best solution, is computed, and then it is verified whether the first best solution is also an optimal 

solution to the lower level problem. If the first best point is not the stackelberg solution, the procedure 

continues to examine the second best solution to the problem of the upper level, and so forth.  

The Kuhn-Tucker approach. In this approach, the leader’s problem with constraints involving the 

optimality conditions of the follower’s problem is solved.  

The penalty function approach. In this approach, a penalty term is appended to the objective function 

of the leader so as to satisfy the optimality of the follower’s problem. 

Fuzzy approach:-that will be discussed in detail under the next chapter. 

 

 

max f1(x1, x2), 
s. t. 
(x1, x2) ∈ Wf2(S). 

(8) 
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4| Fuzzy Approach to Bi-Level Linear Programming Problems 

4.1| Fuzzy Bi-Level Linear Programming 

As discussed under chapter two, a bi-level linear programming problem is formulated as: 

 

 

 

 

 

 

Where 𝑥𝑖, 𝑖 = 1,2 is an 𝑛𝑖-dimensional decision variable column vector ; 

𝐶𝑖1, 𝑖 = 1,2  is an 𝑛1-dimensional constant column vector;  

𝐶𝑖2, 𝑖 = 1,2 is an 𝑛2-dimensional constant column vector;  

𝑏-is an 𝑚-dimensional constant column vector, and  

𝐴𝑖, 𝑖 = 1,2 is an mxni coefficient matrix.  

For the sake of simplicity, we use the following notations: 

𝑋 = (𝑥1, 𝑥2) ∈ 𝑅
𝑛1+𝑛2, 𝐶𝑖 = (𝐶𝑖1, 𝐶𝑖2), 𝑖 = 1,2 and 𝐴 = [𝐴1, 𝐴2] and Let DM1 denotes the decision maker at 

the upper level and DM2 denotes the decision maker at the lower level. In the bi-level linear 

programming problem (7) above, 𝑓1(𝑥1, 𝑥2) and 𝑓2(𝑥1, 𝑥2)represent the objective functions of DM1 and 

DM2 respectively; and 𝑥1 and 𝑥2 represent the decision variables of DM1 and DM2 respectively. 

Instead of searching through vertices as the 𝑘𝑡ℎ best algorithm, or the transformation approach based 

on Kuhn-Tucker conditions, we here introduce a supervised search procedure (supervised by DM1) 

which will generate (non dominated) satisfactory solution for a bi-level programming problem. In this 

solution search, DM1 specifies(decides) a fuzzy goal and a minimal satisfactory level for his objective 

function and decision vector and evaluates a solution proposed by DM2, and DM2 solves an 

optimization problem, referring to the fuzzy goal and the minimal satisfactory level of DM1. The DM2 

then presents his/her solution to the DM1. If the DM1 agrees to the proposed solution, a solution is 

reached and it is called a satisfactory solution here. If he/she rejects this proposal, then DM1 will need 

to re-evaluate and change former goals and decisions as well as their corresponding leeway or tolerances 

until a satisfactory solution is reached. It is natural that decision makers have fuzzy goals for their 

objective functions and their decision variables when they take fuzziness of human judgments in to 

consideration .For each of the objective functions 𝑓
𝑖
(𝑥) , 𝑖 = 1,2 , assume that the decision makers have 

fuzzy goals such as “the objective function 𝑓𝑖(𝑥) should be substantially less than or equal to some value 

𝑞𝑖 “ and the range of the decision on 𝑥𝑖 , 𝑖 = 1,2 ,should be “ around 𝑥𝑖
∗with its negative and positive –

side tolerances 𝑝𝑖
−and 𝑝𝑖

+,respectively.  

max f1(x1, x2) = c11x1 + c12x2, 

x1. 

Where x2  solves 

(9) 

max f2(x1, x2) = c21x1 + c22x2, 

s. t. 

 A 1x1 +A 2x2 ≤ b, 

(x1, x2) ≥ 0. 
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We obtain optimal solution of each DM1 and DM2 calculated in isolation. If the individual optimal 

solution  𝑥𝑖
0 , 𝑖 =  1.2; are the same then a satisfactory solution of the system has been attained. But this 

rarely happens due to conflicting objective functions of the two DMs. The decision-making process then 

begins at the first level. Thus, the first-level DM provides his preferred ranges for 𝑓
1
and decision vector 

 𝑥1 to the second level DM. This information can be modeled by fuzzy set theory using membership 

functions. 

4.2| Fuzzy Programming Formulation of BLPPs 

To formulate the fuzzy programming model of a BLPP, the objective functions 𝑓𝑖, (𝑖 = 1,2) and the decision 

vectors 𝑥𝑖, (𝑖 = 1,2) would be transformed in to fuzz goals by means of assigning an aspiration level (the 

optimal solutions of both of the DMs calculated in isolation can be taken as the aspiration levels of their 

associated fuzzy goals) to each of them. Then, they are to be characterized by the associated membership 

functions by defining tolerance limits for achievement of the aspired levels of the corresponding fuzzy 

goals. 

4.3| Fuzzy Programming Approach for Bi-Level LPPs 

In the decision making context, each DM is interested in maximizing his or her own objective function, 

the optimal solution of each DM when calculated in isolation would be considered as the best solution and 

the associated objective value can be considered as the aspiration level of the corresponding fuzzy goal 

because both the DMs are interested of maximizing their own objective functions over the same feasible 

region defined by the system of constraints. Let 𝑥𝑖
𝐵 be the best (optimal) solution of the 𝑖𝑡ℎ level DM. It is 

quite natural that objective values which are equal to or larger than 𝑓𝑖
𝐵 =  𝑓𝑖(𝑥𝑖

𝐵 ) = 𝑚𝑎𝑥 𝑓𝑖(𝑥) , 𝑖 = 1,2. , 𝑥 ∈ 𝑆 

should be absolutely satisfactory to the 𝑖𝑡ℎ level DM. If the individual best (optimal) solution 𝑥𝑖
𝐵, 𝑖 = 1,2 

are the same, then a satisfactory optimal solution of the system is reached. However, this rarely happens 

due to the conflicting nature of the objectives. To obtain a satisfactory solution, higher level DM should 

give some tolerance (relaxation) and the relaxation of decision of the higher level DM depends on the 

needs, desires and practical situations in the decision making situation .Then the fuzzy goals take the form 

𝑓𝑖(𝑥) ≲ 𝑓𝑖(𝑥𝑖
𝐵 ), 𝑖 = 1,2, 𝑥𝑖  ≅  𝑥𝑖

𝐵.  

To build membership functions, goals and tolerance should be determined first. However, they could 

hardly be determined without meaningful supporting data. Using the individual best solutions, we find the 

values of all the objective functions at each best solution and construct a payoff matrix 

[ 
  
  
 
 f1(x) f2(x)

x1
0 f1(x1

0) f2(x1
0)

x2
0 f1(x2

0) f2(x2
0)
] 
  
  
 
 

. 

The maximum value of each column (𝑓𝑖(𝑥𝑖
0)) gives upper tolerance limit or aspired level of achievement 

for the ith objective function where 𝑓𝑖
𝑢  =  𝑓𝑖(𝑥𝑖

0) = max 𝑓𝑖(𝑥𝑖
0) , 𝑖 = 1,2. 

The minimum value of each column gives lower tolerance limit or lowest acceptable level of achievement 

for the ith objective function where  𝑓
𝑖

𝐿 = 𝑚𝑖𝑛 𝑓
𝑖
(𝑥𝑖

0), 𝑖 = 1.2. For the maximization type objective function, 

the upper tolerance limit  𝑓
𝑡

𝑢, 𝑡 = 1,2, are kept constant at their respective optimal values calculated in 

isolation but the lower tolerance limit 𝑓𝑖
𝐿 are changed. The idea being that  𝑓

𝑖
(𝑥) →  𝑓

𝑡

𝑢, then the fuzzy 

objective goals take the form  𝑓
𝑖
(𝑥) ≲  𝑓

𝑖
(𝑥𝑖

𝑢), 𝑖 =  1,2. And the fuzzy goal for the control vector 𝑥𝑖 is 

obtained a 𝑥𝑖  ≅  𝑥𝑖
𝑢 . Now, in the decision situation, it is assumed that all DMs that are up to  𝑖𝑡ℎ motivation 

to cooperate each other to make a balance of decision powers, and they agree to give a possible relaxation 

of their individual optimal decision. The   𝑖𝑡ℎ level DM must adjust his/her goal by assuming the lowest 
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acceptable level of achievement 𝑓𝑖
𝐿 based on indefiniteness of the decentralized organization. Thus, all 

values of   𝑓
𝑖
(𝑥) ≥  𝑓

𝑡

𝑢are absolutely acceptable (desired) to objective function 𝑓𝑖(𝑥)  satisfactory to the 

ith level DM. All values o𝑓𝑖(𝑥)f with  𝑓
𝑖
(𝑥) ≤  𝑓

𝑡

𝐿 are absolutely unacceptable (undesired) to the objective 

function 𝑓𝑖(𝑥) for  𝑖 = 1,2. Based on this interval of tolerance, we can establish the following linear 

membership functions for the defined fuzzy goals as Fig.1 below. 

Fig. 1. Membership function of maximization-type objective function. 

 

 

 

By identifying the membership functions µ1(𝑓1(𝑥))and µ2(𝑓2(𝑥))for the objective functions 𝑓1(𝑥) and 

𝑓2(𝑥), and following the principle of the fuzzy decision by Bellman and Zadeh, the original bi-level linear 

programming Problem (9) can be interpreted as the membership function maxmin problem defined by: 

Then the linear membership functions for decision vector 𝑥1 can be formulated as: 

Where 𝑥1
0 is the optimal solution of first level DM; 

𝑒1
−  the negative tolerance value on 𝑥1; 

𝑒1
+  the positive tolerance value on 𝑥1. 

To derive an overall satisfactory solution to the membership function maximization Problem (11), we 

first find the maximizing decision of the fuzzy decision proposed by Bellman and Zadeh [22]. Namely, 

the following problem is solved for obtaining a solution which maximizes the smaller degree of 

satisfaction between those of the two decision makers: 

 

µi(fi(x)) =

{ 
  
  
  
  
  
 1, if fi(x) ≥ fi

u,

fi(x) − fi
L

fi
u ≥ fi

L
, if fi

L ≤ fi(x) ≤ fi
u, i = 1,2     

0, if fi(x) ≤ fi
L.

 (10) 

max min{μi(fi(x)),   i = 1,2}, 

s.t.  

A 1x1 +A 2x2 ≤ b,   x1, x2 ≥ 0. 

(11) 

µx1(f1(x)) =

{ 
  
  
  
 
  
  
  
  
 
 

x1 − (x1
0 − e1

−)

e1
− , if x1

0 − e1
− ≤ x1 ≤ x1

0

(x1
0 + e1

+) − x1
e1
+ , if x1

0 ≤ x1 ≤ (x1
0 + e1

+)   

0, if otherwise.

 (12) 
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By introducing an auxiliary variable 𝜆, this problem can be transformed into the following equivalent 

problem: 

Solving Problem (14), we can obtain a solution which maximizes the smaller satisfactory degree between 

those of both decision makers. It should be noted that if the membership function𝜇𝑖(𝑓𝑖(𝑥)), 𝑖 = 1.2 are 

linear membership functions such as Eq. (10), Problem (14) becomes a linear programming problem. Let 

𝑥∗denotes an optimal solution to Problem (14). Then we define the satisfactory degree of both decision 

makers under the constraints as 

If DM1 is satisfied with the optimal solution  𝑥∗, it follows that the optimal solution 𝑥∗becomes a 

satisfactory solution; however DM1 is not always satisfied with the solution  𝑥∗. It is quite natural to assume 

that DM1 specifies (decides) the minimal satisfactory level 𝛿 ∈ [0,1] for his membership function 

subjectively. Consequently, DM2 optimizes his objective under the new constraints as the following 

problem: 

If an optimal solution to Problem (16) exists, it follows that DM1 obtains a satisfactory solution having a 

satisfactory degree larger than or equal to the minimal satisfactory level specified (decided) by DM1’s own 

self. However, the larger the minimal satisfactory level is assessed, the smaller DM2’s satisfactory degree 

becomes. Consequently, a relative difference between the satisfactory degrees of DM1 and DM2 becomes 

larger than it is feared that overall satisfactory balance between both levels cannot be maintained. To take 

account of overall satisfactory balance between both levels, DM1 needs to compromise (agree) with DM2 

on DM1’ s own minimal satisfactory level. To do so, the following ratio of the satisfactory degree of DM2 

to that of DM1 is defined as: 

 

 

max min{μ1(f1(x)), μ2(f2(x)), μx1(x1)}, 

s.t.  

A 1x1 +A 2x2 ≤ b,   x1, x2 ≥ 0. 

(13) 

max λ, 

s.t. μ1(f1(x)) ≥ λ, 

μ2(f2(x)) ≥ λ, 

μx1(x1) ≥ λ, 

A 1x1 +A 2x2 ≤ b,   x1, x2 ≥ 0. 

(14) 

λ∗ = min{μ1(f1(x
∗)), μ2(f2(x

∗))}. (15) 

max μ2(f2(x)),
 

 

s.t.  

μ1(f1(x)) ≤ δ 

A 1x1 +A 2x2 ≤ b,   x1, x2 ≥ 0. 

(16) 
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This is originally introduced by Lai [6]. 

Let ∆> ∆ 𝐿  denote the lower bound and the upper bound of ∆ specified by DM1. If ∆>

∆𝑈 , 𝑖. 𝑒 𝜇2(𝑓2(𝑥
∗)) > ∆𝑈𝜇1(𝑓1(𝑥

∗)),  then DM1 updates (improves) the minimal satisfactory level 𝛿 by 

increasing 𝛿 . Then DM1 obtains a larger satisfactory degree and DM2 accepts a smaller satisfactory 

degree. Conversely, if  ∆> ∆𝐿, 𝑖. 𝑒 𝜇
2

(𝑓
2
(𝑥∗)) < ∆𝑖𝜇

1
(𝑓

1
(𝑥∗)),  then DM1 updates the minimal 

satisfactory level 𝛿 by decreasing  𝛿, and DM1 accepts a smaller satisfactory degree and DM2 obtains a 

larger satisfactory degree. 

At an iteration  𝑙 , let 𝜇1 (𝑓1(𝑥
𝑙)) , 𝜇2 (𝑓2(𝑥

𝑙)) , 𝜆𝑙  and Δ𝑙 =
𝜇2(𝑓2(𝑥1

𝑙 ))

𝜇1(𝑓1(𝑥
𝑙))

  denote DM1’s and DM2’s 

satisfactory degrees, a satisfactory degree of both levels and the ratio of satisfactory degrees between 

both DMs, respectively, and let a corresponding solution be 𝑙𝑥 at the iteration. The iterated interactive 

process terminates if the following two conditions are satisfied and DM1 concludes the solution as a 

satisfactory solution. 

4.3.1| Termination conditions of the interactive processes for bi-level linear programming 

problems 

DM1’s satisfactory degree is larger than or equal to the minimal satisfactory level 𝛿 specified by DM1, 

i.e. 𝜇1 (𝑓1(𝑥
𝑙)) ≥  𝛿.  

The ratio Δ𝑙of satisfactory degrees lies in the closed interval between the lower and upper bounds 

specified by DM1, i.e. Δ𝑙  ∈  [∆  𝑚𝑖𝑛, ∆𝑚𝑎𝑥].  

Condition (i) is DM1’s required condition for solutions, and Condition (ii) is provided in order to keep 

overall satisfactory balance between both levels. Unless the conditions are satisfied simultaneously, DM1 

needs to update the minimal satisfactory level 𝛿. 

Procedure for updating the minimal satisfactory level 𝛿. 

If Condition (i) is not satisfied, then DM1 decreases the minimal satisfactory level by  𝛿. 

If the ratio Δ𝑙 exceeds its upper bound, then DM1 increases the minimal satisfactory level  𝛿. Conversely, 

if the ratio Δ𝑙is below its lower bound, then DM1 decreases the minimal satisfactory level  𝛿. 

4.4| Algorithm of Interactive Fuzzy Programming for BLPPs 

Step 1. Find the solution of the first level and second level independently with the same feasible set 

given.  

Step 2. Do these solutions coincide?  

          If yes, an optimal solution is reached.  

          If No, go to Step 3.  

∆=
μ2(f2(x

∗))

μ1(f1(x ∗))
. (17) 
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Step 3. Define a fuzzy goal, construct a payoff matrix, and then find upper tolerance limit 𝑓𝑡
𝑢 and lower 

tolerance limit  𝑓
𝑡

𝐿. 

Step 4. Build member ship functions for maximization objective functions µ𝑓𝑖(𝑓𝑖(𝑥)) and decision vector 

𝑥1 using Eqs. (8) and (10), respectively.  

Step 5. set ℓ = 1 and solve the auxiliary Problems (14). If DM1 is satisfied with the optimal solution, the 

solution becomes a satisfactory solution  𝑥∗. Otherwise, ask DM1 to specify (decide) the minimal 

satisfactory level 𝛿 together with the lower and the upper bounds [∆  𝑚𝑖𝑛, ∆  𝑚𝑎𝑥] of the ratio of satisfactory 

degrees Δ𝑙 with the satisfactory degree 𝜆∗of both decision makers and the related information about the 

solution in mind.  

Step 6. Solve Problem (16), in which the satisfactory degree of DM1 is maximized under the condition that 

the satisfactory degree of DM1 is larger than or equal to the minimal satisfactory level   𝛿, and then an 

optimal solution 𝑥𝑙 to Problem (16) is proposed to DM1 together with 𝜆𝑙 , µ1(𝑓1(𝑥
𝑙 )), µ2(𝑓2(𝑥

𝑙 )) and ∆ 𝑙.  

Step 7. If the solution 𝑥𝑙 satisfies the termination conditions and DM1 accepts it, then the procedure stops, 

and the solution 𝑥𝑙 is determined to be a satisfactory solution.  

Step 8. Ask DM1 to revise the minimal satisfactory level 𝛿 in accordance with the procedure for updating 

minimal satisfactory level. Return to Step 7. 

Example 2. Solve (Linear BLPP) 

Solution.  

Step 1. Find the solution of the top-level and lower-level independently with the same feasible set. i.e. 

 

 

 

max f1(x) = 5x1 + 6x2 + 4x3 + 2x4, 

x1, x2. 

Where  x3, x4 solves 

max f2(x) = 8x1 + 9x2 + 2x3 + 4x4, 

x3, x4, 

s. t. 
3x1 + 2x2 + x3 + 3x4  ≤ 40,  

x1 + 2x2 + x3 + 2x4 ≤ 30, 

  2x1 + 4x2 + x3 + 2x4 ≤ 35, 

x1, x2, x3, x4 ≥ 0. 

(18) 
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Then we find the optimal solution 

𝑓1 = 125 at 𝑥1
0 = (5, 0, 25,0); 

𝑓2 = 118.125 at 𝑥2
0 = (11.25, 3.125, 0,0); 

But this is not a satisfactory solution (since  𝑥1
0 ≠ 𝑥2

0). 

Step 2. Define fuzzy goals, construct the payoff matrix and we need to find the upper and lower 

tolerance limit. 

Objective function as: 𝑓1 ≲ 125, 𝑓2 ≲ 118.125. 

Decision variables as: 𝑥1 ≅ 5, 𝑥2 ≅ 0; 

Payoff matrix=[

𝑓
1
(𝑥1

0) 𝑓
2
(𝑥2

0)

𝑥1
0 125 90

𝑥2
0 75 118.125

]. 

Upper tolerance limits are 𝑓1
𝑢 = 125, 𝑓2

𝑢 ≲ 118.125. 

Lower tolerance limits are  𝑓1
𝐿 = 75, 𝑓2

𝐿 ≲ 90. 

Step 3. Build membership functions for: 

Objective functions as 

μf1(f1(x)) =
{ 
  
 
  
  
 
 

1,   if f1(x) ≥ 125
f1(x) − 75

125 − 75
, if 75 ≤ f1(x) ≤ 125

0, if f1(x) ≤ 75

 . 

Decision variable function as 

μf2(f2(x)) =
{ 
  
 
  
  
 
 

1,   if f2(x) ≥ 118.125
f2(x) − 90

118.125 − 90
, if 90 ≤ f2(x) ≤ 119.125.

0, if f2(x) ≤ 90

 

Let the upper level DM specifies (decides) 𝑥1 = 5 with 2.5 (negative) and 2.5 (positive) tolerances and  

𝑥2 = 0 with 0 (negative) and 3 (positive) tolerance values. 

  max f1(x) = 5x1 + 6x2 + 4x3 + 2x4,                          

s. t. 
3x1 + 2x2 + x3 + 3x4  ≤ 40,  

x1 + 2x2 + x3 + 2x4 ≤ 30, 

 2x1 + 4x2 + x3 + 2x4 ≤ 35, 

x1, x2, x3, x4 ≥ 0. 

(19) 
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μx1(x1) =

{ 
  
  
 
  
  
  
 
 
x1 − (5 − 2.5)

2.5
,   if 2.5 ≤  x1 ≤ 5

(5 + 2.5) − x1
2.5

, if 5 ≤ x1 ≤ 7.5

0,                        otherwise

, 

μx2(x2) = {

x2,                                    if x2 ≤ 3
3 − x2
3

,               if 0 ≤ x2 ≤ 3

0,                  otherwise

. 

Step 4. Solve the auxiliary problem 

The result of the first iteration including an optimal solution to the problem is 

𝑥1
1 = 6.41, 𝑥2

1 = 1.95, 𝑥3
1 = 10.52, 𝑥4

1 = 1.42,  and  λ1 = 0.316, f1
1(x) = 88.67, f2

1(x) = 95.55, μ1(f1(x)) = 0.2734. 

Suppose that DM1 is not satisfied with the solution obtained in iteration 1, and then let him specify (decide) 

the minimal satisfactory level at 𝛿 = 0.3 and the bounds of the ratio at the interval [∆𝑚𝑖𝑛, ∆ 𝑚𝑎𝑥]  =

 [0.3, 0.4], taking account of the result of the first iteration. Then, the problem with the minimal satisfactory 

level is written as: 

Applying simplex algorithm, the result of the second iteration including an optimal solution to Problem 

(21) is 

 

 
maxλ, 

   s. t. 

  μf1(f1(x)) ≥ λ,                                         

μf2(f2(x)) ≥ λ, 

μx1(x1) ≥ λ, 

3x1 + 2x2 + x3 + 3x4  ≤ 40,    

x1 + 2x2 + x3 + 2x4 ≤ 30, 

  2x1 + 4x2 + x3 + 2x4 ≤ 35, 

x1, x2, x3, x4 ≥ 0. 

(20) 

 
maxμf2(f2(x)), 

  s. t. 
 μf1(f1(x)) ≥ 0.3,                                          

x ∈ S. 

(21) 
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Therefore, this solution satisfies the termination conditions. 

5| Conclusion 

 The fuzzy mathematically programming approach is simple to implement, interactive and applicable to 

BLPP. The satisfactory solution obtained is realistic. We can take any membership function other than 

linear. The results will hold good, however, the problem will become a non linear programming problem. 

We observe that even though the decision making process is from higher to lower level, the lower level 

becomes the most important. This is because the decision vector under the control of the lower level 

DM is not given any tolerance limits. Hence this decision vector either remains unchanged or closest to 

its valued obtained in isolation. But at higher level, the decision vectors are given some tolerance and 

hence they are free to move within the tolerance limits. The tolerance levels can also be considered as 

variables and if the DMs cooperate then the entire system as a whole can be optimized. We can easily 

apply the same approach to non linear BLPPs. 
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1 | Introduction  

Data envelopment analysis is a linear programming method whose basic purpose is to compare and 

evaluate the performance of a number of identical decision-making units that have different amounts 

of inputs used and outputs produced. Data Envelopment Analysis (DEA) models used in evaluating 

the performance of the unit under study can use two separate approaches: reducing the amount of 

inputs without decreasing the amount of outputs, increasing the outputs without increasing the 

amount of inputs. 

In real world problems, inputs and outputs are considered vague and random. In fact, decision makers 

may face a specific hybrid environment where there is fuzziness and randomness in the problem.  
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Hatami-Marbini et al. classified the fuzzy DEA methods in the literature into five general groups [1], the 

tolerance approach [2] and [3], the α-level based approach, the fuzzy ranking approach [4] and [5], the 

possibility approach [6], and the fuzzy arithmetic approach [7]. Among these approaches, the α-level based 

approach is probably the most popular fuzzy DEA model in the literature. This approach generally tries 

to transform the FDEA model into a pair of parametric programs for each α-level. Kao and Liu, one of 

the most cited studies in the α-level approach’s category, used Chen and Klein [8] method for ranking 

fuzzy numbers to convert the FDEA model to a pair of parametric mathematical programs for the given 

level of α [9]. Saati et al. proposed a fuzzy CCR model as a possibilistic programming problem and changed 

it into an interval programming problem by means of the α-level based approach [10]. Parameshwaran et 

al. proposed an integrated fuzzy analytic hierarchy process and DEA approach for the service performance 

measurement [11]. Puri and Yadav [12] applied the suggested methodology by Saati et al. [10] to solve 

fuzzy DEA model with undesirable outputs. Khanjani et al. [13] proposed fuzzy free disposal hull models 

under possibility and credibility measures. Momeni et al. used fuzzy DEA models to address the 

impreciseness and ambiguity associated with input and output data in supply chain performance evaluation 

problems [14]. Payan evaluated the performance of DMUs with fuzzy data by using the common set of 

weights based on a linear program [15]. Aghayi et al. formulated a model to measure the efficiency of 

DMUs with interval inputs and outputs based on common sets weights [16].  

In recent years, several scholars work on DEA with fuzzy set extension. For example, Edalatpanah et al. 

[17] for the first time established triangular single-valued neutrosophic data envelopment analysis with 

application to hospital performance. He also presented data envelopment analysis based on triangular 

neutrosophic numbers [18]; see also [19]-[22]. 

In this research, some models of data envelopment analysis with fuzzy and random data will be mentioned. 

2| Existing Models 

In this section, we review the proposed models in a random fuzzy environment with undesirable outputs. 

Nasseri et al. [23] proposed a DEA-based method for evaluating the efficiencies of DMUs that not only 

depicts the impact of undesirable output on the performance of units, but also evaluated the efficiencies 

of DMUs with stochastic inputs and fuzzy stochastic outputs.  

They considered n DMUs, indexed by j=1,…,n. Each of with consumes m fuzzy random inputs, denoted 

by 
% % βα

ij ij ij ij LR
x ( x , x , x ) , i=1,…,m to produce 

1 2
s s s    fuzzy random outputs, denoted by 

% %
g g

g ,α g ,β

rj rj rj rj
y ( y , y , y ) , r==1,…,s1 as desirable outputs and 

% %
b b

b ,βb ,α

pj pj pj pj LR
y ( y , y , y ) , p=1,…,s2 as 

undesirable outputs. Let the random parameters %
ijx , % g

rj
y  and % b

pj
y , denoted by 

g g b b

ij ij rj rj pj pj
N( x ,σ ),  N( y ,σ ),  N( y ,σ ) , respectively, be normally distributed. Here, g b

ij rj pj
x ( y , y )  and 

g b

ij rj pj
σ (σ ,σ ) , are the mean value and the variance for  % % %g b

ij rj pj
x ( y , y ) , respectively. 

The Chance-Constrained Programming (CCP) developed by Cooper et al. [24] is a stochastic optimization 

approach suitable for solving optimization problems with uncertain parameters. Using the concepts of 

CCP and probability (possibility) of stochastic (fuzzy) events, the deterministic model will be as follows: 
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This model is always feasible as the traditional DEA-UO model. 

Then, they presented the CCR-UO model with fuzzy probability-necessity constraints. They considered 

n DMUs with m fuzzy stochastic inputs, s1 desirable and s2 undesirable outputs. The deterministic model 

will be as following: 

 

Analogously to the previous models, the corresponding fuzzy probability-credibility CCR-UO model 

was introduced. Thus, this model for δ 0.5  and δ 0.5  can be transformed into the following two 

models: 

For δ 0.5 : 

 

 

 

 

 

% %

%

%

  


 

 




 






    

  

  

 





1 2

Pos

k

s sg b
g g,β y1 b 1 b,α 1

rk pkr rk p pk k 1 γ
r 1 p 1

m
β1 x 1

ik
i ik k 1 γ

i 1
m

1 α x 1
ik

i ik k 1 γ
i 1

E (γ,δ) max   φ

s.t.

φ u (y R (δ)y ) u (y L (δ)y ) σ ,

v (x R (δ)x ) σ 1,

v (x L (δ)x ) σ 1,                                      

% %

% %

%

  


 

 

 





     

  

  

 

 



1 2

1 2

s sg b
g g,β y1 b 1 b,α 1

rj pjr j rj p j pj j 1 γ
r 1 p 1
s sg b

g g,α b,β1 b 1

rj pjr rj p pj
r 1 p 1

m
β1 A

ij
i ij j

i 1

                                    

u (y R (δ )y ) u (y L (δ )y ) σ 0,      j

u (y L (δ)y ) u (y R (δ)y )

v (x R (δ)x ) σ 


 

     

1

1 γ

g b

r p i

0,      j

u 0 r,   u 0 p,   v 0 i.

 
(1) 

% %

%

%

  


 

 




 








      

   

   

 





1 2

Nec

k

s sg b
g g,α b,β y1 b 1 1

rk pkr rk p pk k 1 γ
r 1 p 1

m
1 α x 1

ik
i ik k 1 γ

i 1
m

β1 x 1
ik

i ik k 1 γ
i 1

E (γ,δ) max   φ

s.t.

φ 1,

φ u (y L (1 δ)y ) u (y R (1 δ)y ) σ ,

v (x L (1 δ)x ) σ 1,

v (x R (1 δ)x ) σ 1,                          

% %

% % %

  


 

  

  

       

        

 

  

1 2

1 2

s sg b
g g,α b,β y1 b 1 1

rj pjr rj p pj j 1 γ
r 1 p 1
s s mg b

g g,β1 b 1 b,α 1 α A
ijrj pjr rj p pj i ij j 1

r 1 p 1 i 1

                          

u (y L (1 δ)y ) u (y R (1 δ)y ) σ 0,      j

u (y R (1 δ)y ) u (y L (1 δ)y ) v (x L (1 δ)x ) σ 





 

  

 



  

   

     



 

  

1 2

1 2

1

γ

m
x 2 2 1/2

k i ik
i 1
s s

y g g2 2 b 2 b 2 1/2

j r rj p pj
r 1 p 1

s s m
g gA 2 2 b 2 b 2 2 2 1/2

j r rj p pj i ik
r 1 p 1 i 1

g b

r p i

0,      j

σ ( v σ )

σ ( (u ) (σ ) (u ) (σ ) ) ,   j

σ ( (u ) (σ ) (u ) (σ ) v σ ) ,   j

u 0 r,   u 0 p,   v 0 i.

 

(2) 

% %

%

%

  


 

 




 








    

  

  

 





1 2

Cr

k

s sg b
g g,β y1 b 1 b,α 1

rk pkr rk p pk k 1 γ
r 1 p 1

m
β1 x 1

ik
i ik k 1 γ

i 1
m

1 α x 1
ik

i ik k 1 γ
i 1

E (γ,δ) max   φ

s.t.

φ 1,

φ u (y R (2δ)y ) u (y L (2δ)y ) σ ,

v (x R (2δ)x ) σ 1,

v (x L (2δ)x ) σ 1,                                                                    

 
(3) 
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And for δ 0 / 5 :  

In 2016, Nasseri et al. [24] proposed a new model of fuzzy stochastic DEA with input-oriented primal 

data. In this model, the properties and characteristics of the extended normal distribution are used. They 

considered n DMUs, each unit consumes m fuzzy stochastic inputs, denoted by 
% βm α

ij ij ij ij LR
x ( x , x , x ) , 

i=1,…,m, j=1,…,n, and produces s fuzzy stochastic outputs, denoted by 
% βm α

rj rj rj rj LR
y ( y , y , y )  , r=1,…,s, 

j=1,…,n. Also, they considered m

ij
x  and m

rj
y , denoted by m 2

ij ij ij
x N( x ,σ ): and m 2

rj rj rj
y N( y ,σ ):  be 

normally distributed. Therefore, 
ij rj

x ( y )  and 2 2

ij rj
σ (σ )  are the mean and the variance of m m

ij rj
x ( y ) for 

j
DMU , respectively. Each unit has an extended normal distribution as 

%
ij ij ij

x N( x ,σ ):  with 

βα
ij ij ij ij

x ( x , x , x )  and 
%

rj rj rj
y N( y ,σ ):  with βα

rj rj rj rj
y ( y , y , y ) . Finally, the final model is as follows: 

 

% %

% %
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1 2

m
β1 A 1

ij
i ij j 1 γ

i 1
m

x 2 2 1/2

k i ik
i 1
s s

y g g g2 2 b 2 2 1/2

j r rk p pk
r 1 p 1

s s m
g gA 2 2 b 2 b 2 2 2 1/2

j r rj p pj i ij0
r 1 p 1 i 1

g b

r p

) v (x R (2δ)x ) σ 0,      j

σ ( v σ )

σ ( (u ) (σ ) (u ) (σ ) ) ,   j

σ ( (u ) (σ ) (u ) (σ ) v σ ) ,   j

u 0 r,   u    
i

0 p,   v 0 i.
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rk pkr rk p pk k 1 γ
r 1 p 1

n
1 α x 1
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i ik k 1 γ

j 1
n

β1 x 1
ik

i ik k 1 γ
j 1

E (γ,δ) max   φ

s.t.

φ 1,

φ u (y L (2(1 δ))y ) u (y R (2(1 δ))y ) σ ,

v (x L (2(1 δ))x ) σ 1,

v (x R (2(1 δ))x ) σ 1,               
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1 2

1 2

m
b,α 1 α A 1

ij
pj i ij j 1 γ

i 1
m

x 2 2 1/2

k i ik
i 1
s s

y g g g2 2 b 2 2 1/2

j r rk p pk
r 1 p 1

s s m
g gA 2 2 b 2 b 2 2 2 1/2

j r rj p pj i ij
r 1 p 1 i 1

δ))y ) v (x L (2(1 δ))x ) σ 0,      j

σ ( v σ )

σ ( (u ) (σ ) (u ) (σ ) ) ,   j

σ ( (u ) (σ ) (u ) (σ ) v σ ) ,   j

u      
g b

r p i
0 r,   u 0 p,   v 0 i.

 

(4) 

$

$

$ $





 







  





 

δ,γ ) max  φ

φ y ,

 (5) 



 

 

276 

M
o

ta
z
e
ri

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(4
) 

(2
0
2
0
) 

2
7
2
-2

7
8

 

 

 

 

 

 

Theorem 1. Assume that ξ  is a fuzzy random vector, and 
j

g  are real-valued continuous functions for 

i=1,2,…,n. We have: 

The possibility 
j

pos{g (ξ(ω)) 0,   j 1,..., n}  is a random variable. 

The necessity 
j

Nec{g (ξ(ω)) 0,   j 1,...,n}  is a random variable. 

The credibility 
j

Cr{g (ξ(ω)) 0,   j 1,..., n}  is a random variable. 

Lemma 1. Let 1λ  and 2λ  be two fuzzy numbers with continuous membership functions. For a given 

confidence level 1 2α 0,1 ,Pos{λ λ } α     
 if and only if R R

1,α 2 ,α
λ λ  and 1 2Nec{λ λ } α   if and 

only if L R

1,1 α 2 ,α
λ λ


 . Where L R

1,α 1,α
λ ,λ  and L R

2 ,α 2 ,α
λ ,λ  are the left and the right side extreme points of the 

α -level sets 1λ  and 2λ , respectively, and 1 2Pos{λ λ } and  1 2Nec{λ λ }  present the degree of 

possibility and necessity, respectively.  

Definition 1. A DMU is said to be probabilistic-possibility, probabilistic-necessity and probabilistic-

credibility ( γ,δ) -efficient if the objective function of Models (1)- (4), φ , is equal to unity at the threshold 

level ( γ,δ) ; otherwise, it is said to be probabilistic-possibility, probabilistic-necessity and probabilistic-

credibility ( γ,δ) -inefficient. 

Theorem 2. Consider T ,Pos

k
E (δ, γ)  as the objective function value of DMUk, then  

T ,Pos T ,Pos

k 1 k 2
E (δ , γ) E (δ , γ)  and T ,Pos T ,Pos

k 1 k 2
E (δ, γ ) E (δ, γ )  where 

1 2
δ δ  and 

1 2
γ γ . 

The model related to T ,Pos

k
E (δ, γ)  is feasible for any δ  and γ . 

3| Conclusion 

A DEA model basically draws three critical elements: the model specification, the reference set itself, 

and the definition of the production possibility set. Starting from the latter, the production possibility 

set can either be defined as complete and known (like in conventional DEA) or as potentially extending 

beyond or excluding the reference set (like in stochastic DEA). The reference set, the very observations 

that form the engine of the non-parametric approach, can be either precise (as in conventional DEA), 

outcomes of stochastic processes (as in stochastic frontier analysis), or imprecise (as in the fuzzy DEA 

models). 

Classic DEA models were originally formulated for optimal inputs and outputs, although undesirable 

outputs may also appear during production, which should be minimized. In addition, in the real world, 

there are dimensions and uncertainties in the data. Although DEA has many advantages, one of the 

$

$

   

 

   

 

        

        



α 1 1 β 1

γ γ

α 1 1 β 1

γ γ

δ)y σ ) y u (y R (δ)y σ ), r, j

δ)x σ ) x v (x R (δ)x σ ), i, j   
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disadvantages of this method is that in fact the classic DEA does not lead us to a definite conclusion and 

does not allow random changes in input and output. 

 References 

 Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data 

envelopment analysis literature: two decades in the making. European journal of operational research, 

214(3), 457-472. 

 Sengupta, J. K. (1992). A fuzzy systems approach in data envelopment analysis. Computers & mathematics 

with applications, 24(8-9), 259-266. 

 Triantis, K., & Girod, O. (1998). A mathematical programming approach for measuring technical 

efficiency in a fuzzy environment. Journal of productivity analysis, 10(1), 85-102. 

 Guo, P., & Tanaka, H. (2001). Fuzzy DEA: a perceptual evaluation method. Fuzzy sets and systems, 119(1), 

149-160. 

 Hatami-Marbini, A., Tavana, M., & Ebrahimi, A. (2011). A fully fuzzified data envelopment analysis 

model. International journal of information and decision sciences, 3(3), 252-264. 

 Lertworasirikul, S., Fang, S. C., Joines, J. A., & Nuttle, H. L. (2003). Fuzzy data envelopment analysis 

(DEA): a possibility approach. Fuzzy sets and systems, 139(2), 379-394. 

 Wang, Y. M., Luo, Y., & Liang, L. (2009). Fuzzy data envelopment analysis based upon fuzzy arithmetic 

with an application to performance assessment of manufacturing enterprises. Expert systems with 

applications, 36(3), 5205-5211. 

 Chen, C. B., & Klein, C. M. (1997). A simple approach to ranking a group of aggregated fuzzy utilities. 

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(1), 26-35. 

 Kao, C., & Liu, S. T. (2000). Fuzzy efficiency measures in data envelopment analysis. Fuzzy sets and 

systems, 113(3), 427-437. 

 Saati, S. M., Memariani, A., & Jahanshahloo, G. R. (2002). Efficiency analysis and ranking of DMUs with 

fuzzy data. Fuzzy optimization and decision making, 1(3), 255-267. 

 Parameshwaran, R., Srinivasan, P. S. S., Punniyamoorthy, M., Charunyanath, S. T., & Ashwin, C. (2009). 

Integrating fuzzy analytical hierarchy process and data envelopment analysis for performance 

management in automobile repair shops. European journal of industrial engineering, 3(4), 450-467. 

 Puri, J., & Yadav, S. P. (2014). A fuzzy DEA model with undesirable fuzzy outputs and its application to 

the banking sector in India. Expert systems with applications, 41(14), 6419-6432. 

 Shiraz, R. K., Tavana, M., & Paryab, K. (2014). Fuzzy free disposal hull models under possibility and 

credibility measures. International journal of data dnalysis techniques and strategies, 6(3), 286-306. 

 Momeni, E., Tavana, M., Mirzagoltabar, H., & Mirhedayatian, S. M. (2014). A new fuzzy network slacks-

based DEA model for evaluating performance of supply chains with reverse logistics. Journal of intelligent 

& fuzzy systems, 27(2), 793-804. 

 Payan, A. (2015). Common set of weights approach in fuzzy DEA with an application. Journal of intelligent 

& fuzzy systems, 29(1), 187-194. 

 Aghayi, N., Tavana, M., & Raayatpanah, M. A. (2016). Robust efficiency measurement with common set 

of weights under varying degrees of conservatism and data uncertainty. European journal of industrial 

engineering, 10(3), 385-405. 

 Edalatpanah, S.A., & Smarandache, F. (2020). Traingular single valued neutrosophic analysis: 

application to hospital performance measurement. Symmetry, 12(4), 588. 

 Edalatpanah, S. A. (2020). Data envelopment analysis based on triangular neutrosophic numbers. CAAI 

transactions on intelligence technology, 5(2), 94-98. DOI:  10.1049/trit.2020.0016  

 Edalatpanah, S. A., & Smarandache, F. (2019). Data envelopment analysis for simplified neutrosophic 

sets. Neutrosophic sets and systems, 29. Retrieved from 

https://digitalrepository.unm.edu/nss_journal/vol29/iss1/17 

 Edalatpanah, S. A. (2019). A data envelopment analysis model with triangular intuitionistic fuzzy 

numbers. International journal of data envelopment analysis, 7(4), 47-58. 

 Edalatpanah, S. A. (2018). Neutrosophic perspective on DEA. Journal of applied research on industrial 

engineering, 5(4), 339-345. 

file:///J:/ARTICLES/JFEA/2020/1(4)/10.1049/trit.2020.0016
https://digitalrepository.unm.edu/nss_journal/vol29/iss1/17


 

 

278 

M
o

ta
z
e
ri

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(4
) 

(2
0
2
0
) 

2
7
2
-2

7
8

 

 

 Soltani, M. R., Edalatpanah, S. A., Sobhani, F. M., & Najafi, S. E. (2020). A novel two-stage DEA model 

in fuzzy environment: application to industrial workshops performance measurement. International 

journal of computational intelligence systems, 13(1), 1134-1152. 

 Nasseri, S. H., Ebrahimnejad, A., & Gholami, O. (2018). Fuzzy stochastic data envelopment analysis 

with undesirable outputs and its application to banking industry. International journal of fuzzy 

systems, 20(2), 534-548. 

 Cooper, W. W., Deng, H., Huang, Z., & Li, S. X. (2002). Chance constrained programming approaches 

to technical efficiencies and inefficiencies in stochastic data envelopment analysis. Journal of the 

operational research society, 53(12), 1347-1356. 

 



  Corresponding Author: aurkhb@gmail.com 

 10.22105/JFEA.2021.281500.1061    

 

E-ISSN: 2717-3453 | P-ISSN: 2783-1442 | 

Abstract 

 

1 | Introduction  

Zadeh [1] introduced the concept of fuzzy set for the first time in 1965 which covers all weak aspects 

of the classical set theory. In fuzzy set, the membership value is allocated from the interval [0, 1] to 

all the elements of the universe under consideration. Zadeh [2] used his own concept as a basis for a 

theory of possibility. Dubois and Prade [3] and [4] established relationship between fuzzy sets and 

probability theories and also derive monotonicity property for algebraic operations performed 

between random set-valued variables. Ranking fuzzy numbers in the setting of possibility theory was 

done by Dubois and Prade [5]. This concept was used by Liang et al. in data analysis, similarities 

measures in fuzzy sets were discussed by Beg and Ashraf [6]-[8].  

           Journal of Fuzzy Extension and Applications 

    www.journal-fea.com 

J. Fuzzy. Ext. Appl. Vol. 1, No. 4 (2020) 279–292. 

Paper Type: Research Paper 

A Study on Fundamentals of Refined Intuitionistic Fuzzy 

Set with Some Properties 
 

Atiqe Ur Rahman1,* , Muhammad Rayees Ahmad1, Muhammad Saeed1, Muhammad Ahsan1,

Muhammad Arshad1, Muhammad Ihsan1       
 

Department of Mathematics, University of Management and Technology, Lahore, Pakistan; aurkhb@gmail.com; 

rayeesmalik.ravian@gmail.com; muhammad.saeed@umt.edu.pk; ahsan1826@gmail.com; maakhb84@gmail.com; mihkhb@gmail.com.        

 
 

Citation: 

 Montazeri, F. Z. (2020). An overview of data envelopment analysis models in fuzzy stochastic 

environments. Journal of fuzzy extension and application, 1 (4), 272-292. 

 

Accept: 03/12/2020 Revised: 04/11/2020 Reviewed: 11/09/2020 Received: 01/08/2020 
                                      

Zadeh conceptualized the theory of fuzzy set to provide a tool for the basis of the theory of possibility. Atanassov 

extended this theory with the introduction of intuitionistic fuzzy set. Smarandache introduced the concept of refined 

intuitionistic fuzzy set by further subdivision of membership and non-membership value. The meagerness regarding the 

allocation of a single membership and non-membership value to any object under consideration is addressed with this 

novel refinement. In this study, this novel idea is utilized to characterize the essential elements e.g. subset, equal set, null 

set, and complement set, for refined intuitionistic fuzzy set. Moreover, their basic set theoretic operations like union, 

intersection, extended intersection, restricted union, restricted intersection, and restricted difference, are conceptualized. 

Furthermore, some basic laws are also discussed with the help of an illustrative example in each case for vivid 

understanding. 

Keywords: Fuzzy set, Intuitionistic fuzzy set, Refined intuitionistic fuzzy set. 

Licensee Journal 

of Fuzzy Extension and 

Applications. This  rticle 

is an open access article 

distributed under the 

terms and conditions of 

the Creative Commons 

Attribution (CC BY) 

license 

(http://creativecommons.

org/licenses/by/4.0). 

mailto:dastam66@gmail.com
file:///J:/ARTICLES/JFEA/2020/1(4)/10.22105/jfea.2020.261946.1067
http://www.journal-fea.com/
mailto:aurkhb@gmail.com
mailto:rayeesmalik.ravian@gmail.com
mailto:muhammad.saeed@umt.edu.pk
mailto:ahsan1826@gmail.com
mailto:maakhb84@gmail.com
https://orcid.org/0000-0001-6320-9221


 

 

280 

R
a
h

m
a
n

 e
t 

a
l.

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(4
) 

(2
0
2
0
) 

2
7
9
-2

9
2

 

 

Set difference and symmetric difference of fuzzy sets were established by Vemuri et al., after that, Neog 

and Sut [9] extended the work to complement of an extended fuzzy set. A lot of work is done by 

researchers in fuzzy mathematics and its hybrids [10]-[16].  

In some real life situations, the values are in the form of intervals due to which it is hard to allocate a 

membership value to the element of the universe of discourse. Therefore, the concept of interval-valued 

is introduced which proved a very powerful tool in this area. 

In 1986, Atanassov [17] and [18] introduced the concept of intuitionistic fuzzy set in which the 

membership value and non-membership value is allocated from the interval [0,1] to all the elements of 

the universe under consideration. It is the generalization of the fuzzy set. The invention of intuitionistic 

fuzzy set proved very important tool for researchers. Ejegwa et al. [19] discussed about operations, 

algebra, model operators and normalization on intuitionistic fuzzy sets. Szmidt and Kacprzyk [20] gave 

geometrical representation of an intuitionistic fuzzy set is a point of departure for our proposal of 

distances between intuitionistic fuzzy sets and also discussed properties. Szmidt and Kacprzyk [21] also 

discussed about non-probabilistic-type entropy measure for these sets and used it for geometrical 

interpretation of intuitionistic fuzzy sets. Proposed measure in terms of the ratio of intuitionistic fuzzy 

cardinalities was also defined and discussed. Ersoy and Davvaz [22] discussed the basic definitions and 

properties of intuitionistic fuzzy 𝛤- hyperideals of a 𝛤 - semi-hyperring with examples are introduced 

and described some characterizations of Artinian and Noetherian 𝛤 - semi hyper ring. Bustince and 

Burillo [23] proved that vague sets are intuitionistic fuzzy sets. A lot of work is done by researchers in 

intuitionistic fuzzy environment and its hybrids [24]-[33]. 

In 2019, Smarandache defined the concept of refined intuitionistic fuzzy set [34]. In this paper, we 

extend the concept to refined intuitionistic fuzzy set and defined some fundamental concepts and 

aggregation operations of refined intuitionistic fuzzy set. 

Imprecision is a critical viewpoint in any decision making procedure. Various tools have been invented 

to deal with the uncertain environment. Perhaps the important tool in managing with imprecision is 

intuitionistic fuzzy sets. Besides, the most significant thing is that in real life scenario, it is not sufficient 

to allocate a single membership and non-membership value to any object under consideration. This 

inadequacy is addressed with the introduction of refined intuitionistic fuzzy set. Having motivation from 

this novel concept, essential elements, set theoretic operations and basic laws are characterized for 

refined intuitionistic fuzzy set in this work. 

The remaining article is outlined in such a way that the Section 2 recalls some basic definitions along 

with illustrative example. Section 3 explains basic notions of Refined Intuitionistic Fuzzy Set (RIFS) 

including subset, equal set, null set and complement set along with their examples for the clear 

understanding. Section 4 explains the aggregation operations of RIFS with the help of example, Section 

5 gives some basic laws of RIFS and in the last, Section 6 concludes the work and gives the future 

directions. 

2| Preliminaries 

In this section, some basic concepts of Fuzzy Set (FS), Intuitionistic Fuzzy Set (IFS) and RIFS are 

discussed. 

Let us consider �̆� be a universal set, 𝑁 be a set of natural numbers, 𝐼 ̆represent the interval [0,1], 𝑇𝜂
𝜔 

denotes the degree of sub-truth of type 𝜔 = 1,2,3,… , 𝛼 and 𝐹𝜂
𝜆 denotes the degree of sub-falsity of type 

𝜆 = 1,2,3,… , 𝛽 such that𝛼and 𝛽 are natural numbers. An illustrative example is considered to understand 

these entire basic concepts throughout the paper. 
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Definition 1. [1, 2] The fuzzy set �̆�𝑓 = {< 𝛿 ̆, 𝛼𝜂̆𝑓

(𝛿 ̆) > |𝛿 ̆ ∈ �̆� } on �̆� such that 𝛼𝜂̆𝑓
(𝛿 ̆): �̆�  → 𝐼 ̆ where 

𝛼𝜂̆𝑓
(𝛿 ̆) describes the membership of 𝛿 ̆ ∈ �̆�. 

 

 

 

 

 

Fig. 1. Representation of fuzzy set. 

Example 1. Hamna wants to purchase a dress for farewell party event of her university. She expected to 

purchase such dress which meets her desired requirements according to the event. Let �̆� = {�̆�1, �̆�2, �̆�3, �̆�4}, 

be different well-known brands of clothes in Pakistan such that 

B̆1 = Ideas Gul Ahmad; 

B̆2 = Khaadi; 

B̆3 = Nishat Linen; 

        B̆4 = Junaid jamshaid. 

Then fuzzy set �̆�𝑓 on the universe �̆� is written in such a way that �̆�𝑓 = {
 < �̆�1, 0.45 >,< �̆�2, 0.57 >,

 < �̆�3, 0.6 >, < �̆�4, 0.64 > 
} . 

Definition 2.  [18]. An IFS �̆�𝐼𝐹𝑆 on �̆� is given by �̆�𝐼𝐹𝑆 = {< 𝛿 ̆, 𝑇𝜂̆(𝛿 ̆), 𝐹𝜂̆(𝛿 ̆) > |𝛿 ̆ ∈ �̆� }, 

where 𝑇𝜂̆(𝛿 ̆), 𝐹𝜂̆(𝛿 ̆): �̆�  → 𝑃([0,1]), respectively, with the condition 𝑠𝑢𝑝 𝑇𝜂̆(𝛿 ̆) + 𝑠𝑢𝑝 𝐹𝜂̆(𝛿 ̆) ≤ 1. 

Example 2. Consider the illustrative example, and then the intuitionistic fuzzy set �̆�𝐼𝐹𝑆 on the universe �̆� 

is given as �̆�𝐼𝐹𝑆 = {< �̆�1, 0.75,0.14 >, < �̆�2, 0.57, 0.2 >, < �̆�3, 0.6, 0.3 >, < �̆�4, 0.64, 0.16 >}. 

Definition 3. [34] A RIFS �̆�𝑅𝐼𝐹𝑆 on �̆� is given by �̆�𝑅𝐼𝐹𝑆 = {< 𝛿 ̆,  𝑇�̆�
𝜔(𝛿 ̆), 𝐹𝜂̆

𝜆(𝛿 ̆) > :   𝜔 ∈ 𝑁1
𝛼 ,   𝜆 ∈ 𝑁1

𝛽
, 𝛼 +

𝛽 ≥ 3,    𝛿 ̆ ∈ �̆� }, where 𝛼, 𝛽 ∈  𝐼 ̆such that  𝑇𝜂̆
𝜔 , 𝐹𝜂̆

𝜆    ⊆  𝐼 ,̆ respectively, with the condition 

∑𝑠𝑢𝑝  𝑇�̆�
𝜔(𝛿 ̆)

𝛼

𝜔=1

+ ∑𝑠𝑢𝑝𝐹�̆�
𝜆(𝛿 ̆)

𝛽

𝜆=1

≤ 1. 

It is denoted by(𝛿 ̆, �̆�), where �̆� = ( 𝑇𝜂̆
𝜔 , 𝐹𝜂̆

𝜆 ). 

Example 3. Consider the illustrative example, then the RIFS �̆�
𝑅𝐼𝐹𝑆

 can be written in such a way that 

�̆�𝑅𝐼𝐹𝑆 = { < �̆�1, (0.5, 0.4), (0.3,0.25) >, < �̆�2, (0.35,0.3), (0.15,0.1) >, 

< �̆�3, (0.35,0.25), (0.3,0.2) >, < �̆�4, (0.6,0.1), (0.12,0.2) > }. 
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3| Basic Notions of RIFS 

In this section, some basic notions of subset, equal sets, null set and complement set for RIFS are 

introduced. 

Definition 4. Refined intuitionistic fuzzy subset 

Let �̆�1𝑅𝐼𝐹𝑆
= (�̆�, �̆�1) and �̆�2𝑅𝐼𝐹𝑆

= (�̆�, �̆�2) be two RIFS, then �̆�1𝑅𝐼𝐹𝑆
⊆  �̆�2𝑅𝐼𝐹𝑆

, if 

∑𝑠𝑢𝑝  𝑇�̆�1
𝜔 (𝛿 ̆)

𝛼

𝜔=1

≤ ∑𝑠𝑢𝑝  𝑇𝜂̆2
𝜔 (𝛿 ̆)

𝛼

𝜔=1

,   ∑𝑠𝑢𝑝 𝐹𝜂̆1
𝜆 (𝛿 ̆)

𝛽

𝜆=1

≥  ∑𝑠𝑢𝑝 𝐹𝜂̆2
𝜆 (𝛿 ̆)

𝛽

𝜆=1

  ∀     𝛿 ̆  ∈  𝑈 ̆. 

Remark 1. If   

∑𝑠𝑢𝑝  𝑇�̆�1
𝜔 (𝛿 ̆)

𝛼

𝜔=1

< ∑𝑠𝑢𝑝  𝑇𝜂̆2
𝜔 (𝛿 ̆)

𝛼

𝜔=1

,   ∑𝑠𝑢𝑝 𝐹𝜂̆1
𝜆 (𝛿 ̆)

𝛽

𝜆=1

> ∑𝑠𝑢𝑝 𝐹𝜂̆2
𝜆 (𝛿 ̆)

𝛽

𝜆=1

  ∀     𝛿 ̆  ∈  𝑈 ̆. 

Then it is denoted by (𝛿 ̆, �̆�1) ⊂  (𝛿 ̆, �̆�2). 

Suppose (𝛿 ̆, �̆�1
𝑖 ) ⊂  (𝛿 ̆, �̆�2

𝑖 ) be two families of RIFS, then (𝛿 ̆, �̆�1
𝑖 ) is called family of refined intuitionistic 

fuzzy subset of (𝛿 ̆, �̆�2
𝑖 ), if �̆�1

𝑖 ⊂  �̆�2
𝑖  and  

∑𝑠𝑢𝑝  𝑇�̆�1
𝜔 (𝛿 ̆)

𝛼

𝜔=1

< ∑𝑠𝑢𝑝  𝑇𝜂̆2
𝜔 (𝛿 ̆)

𝛼

𝜔=1

,∑𝑠𝑢𝑝 𝐹𝜂̆1
𝜆 (𝛿 ̆)

𝛽

𝜆=1

> ∑𝑠𝑢𝑝 𝐹𝜂̆2
𝜆 (𝛿 ̆)

𝛽

𝜆=1

, ∀  𝛿 ̆ ∈ 𝑈 ̆. 

We denote it by (𝛿 ̆, �̆�1
𝑖 ) ⊂  (𝛿 ̆, �̆�2

𝑖 )∀     𝑖 = 1, 2, 3, … , 𝑛. 

Example 4. Consider the illustrative example, let �̆�1𝑅𝐼𝐹𝑆
 and �̆�2𝑅𝐼𝐹𝑆

 be two RIFS such that 

η̆1RIFS
= { < B̆1, (0.35, 0.1), (0.22, 0.19) >, < B̆2, (0.25,0.03), (0.15,0.19) >, 

< B̆3, (0.2,0.1), (0.2,0.24) >, < B̆4, (0.3,0.4), (0.06,0.04) > }, 

and  

η̆2RIFS
= { < B̆1, (0.38, 0.11), (0.2, 0.14) >, < B̆2, (0.45,0.04), (0.1,0.14) >, 

< B̆3, (0.3,0.2), (0.01,0.06) >, < B̆4, (0.31,0.41), (0.01,0.011) > }. 

Then from above equations, it is clear that �̆�1𝑅𝐼𝐹𝑆
⊆  �̆�2𝑅𝐼𝐹𝑆

. 

Definition 5. Equal refined intuitionistic fuzzy sets 

Let �̆�1𝑅𝐼𝐹𝑆
= (�̆�, �̆�1) and �̆�2𝑅𝐼𝐹𝑆

= (�̆�, �̆�2) be two RIFS, then �̆�1𝑅𝐼𝐹𝑆
=  �̆�2𝑅𝐼𝐹𝑆

, if �̆�1𝑅𝐼𝐹𝑆
⊆  �̆�2𝑅𝐼𝐹𝑆

 and 

�̆�2𝑅𝐼𝐹𝑆
⊆  �̆�1𝑅𝐼𝐹𝑆

. 

Example 5. Consider the illustrative example, let �̆�1𝑅𝐼𝐹𝑆
 and �̆�2𝑅𝐼𝐹𝑆

 be two RIFS such that  

η̆1RIFS
= (δ̆, Ğ1) = { < B̆1, (0.4, 0.5), (0.03, 0.04) >, < B̆2, (0.5,0.4), (0.05,0.04) >, 

< B̆3, (0.5,0.2), (0.01,0.06) >, < B̆4, (0.3,0.4), (0.06,0.04) > }, 
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and  

η̆2RIFS
= (δ̆, Ğ2) = { < B̆1, (0.4, 0.5), (0.03, 0.04) >, < B̆2, (0.5,0.4), (0.05,0.04) >, 

< B̆3, (0.5,0.2), (0.01,0.06) >, < B̆4, (0.3,0.4), (0.06,0.04) > }. 

Then from above equations, it is clear that �̆�1𝑅𝐼𝐹𝑆
=  �̆�2𝑅𝐼𝐹𝑆

. 

Definition 6. Null refined intuitionistic fuzzy set 

Let RIFS (�̆�, �̆�) is said to be null RIFS if  

∑𝑠𝑢𝑝  𝑇𝜂̆
𝜔(𝛿 ̆)

𝛼

𝜔=1

= 0,   ∑𝑠𝑢𝑝 𝐹𝜂̆
𝜆(𝛿 ̆)

𝛽

𝜆=1

= 0, ∀     𝛿 ̆  ∈  𝑈 ̆. 

It is denoted by(�̆�, �̆�)
𝑛𝑢𝑙𝑙

. 

Example 6. Consider the illustrative example, the null RIFS is given as 

(δ̆, Ğ) = { < B̆1, (0, 0), (0, 0) >, < B̆2, (0,0), (0,0) >, 

< B̆3, (0,0), (0,0) >, < B̆4, (0,0), (0,0) > }. 

Definition 7. Complement of refined intuitionistic fuzzy set 

The complement of RIFS(�̆�, �̆�) is denoted by (�̆�, �̆�𝑐) and is defined that if 

∑sup  Tη̆c
ω(δ ̆)

α

ω=1

= ∑sup Fη̆
λ(δ ̆)

β

λ=1

, ∑sup Fη̆c
λ (δ ̆)

β

λ=1

= ∑sup  Tη̆
ω(δ ̆)

α

ω=1

, ∀     δ ̆  ∈  U ̆. 

Remark 2. The complement of family of RIFS(�̆�, �̆�𝑐 ) is denoted by (�̆�, �̆�𝑐) and is defined in a way that if 

∑sup  Tη̆i
c
ω(δ ̆)

α

ω=1

= ∑sup Fη̆
λ(δ ̆)

β

λ=1

,∑supFη̆i
c

λ (δ ̆)

β

λ=1

= ∑sup  Tη̆
ω(δ ̆)

α

ω=1

, ∀   i = 1,2,3,… , n. 

Example 7. Consider the illustrative example, if there is a RIFS �̆�𝑅𝐼𝐹𝑆 given as 

η̆RIFS = { < B̆1, (0.2, 0.1), (0.3, 0.35) >, < B̆2, (0.05,0.34), (0.45,0.04) >, 

< B̆3, (0.01,0.6), (0.1,0.02) >, < B̆4, (0.3,0.04), (0.12,0.2) > }. 

Then the complement of RIFS�̆�𝑅𝐼𝐹𝑆 given as 

η̆RIFS = { < B̆1(0.3, 0.35), (0.2, 0.1) >, < B̆2, (0.45,0.04), (0.05,0.34) >, 

< B̆3, (0.1,0.02), (0.01,0.6) >, < B̆4, (0.12,0.2), (0.3,0.04) > }. 

4| Aggregation Operators of RIFS 

In this section, union, intersection, extended intersection, restricted union, restricted intersection and 

restricted difference of RIFS is defined with the help of illustrative example. 
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Definition 8. Union of two RIFS 

The union of two RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is denoted by (�̆�, �̆�1) ∪ (�̆�, �̆�2) and it isdefined as (�̆�, �̆�1) ∪

(�̆�, �̆�2) = (�̆�, Ῠ ), where Ῠ = �̆�1 ∪ �̆�2, and truth and falsemembership of (�̆�, Ῠ ̆) is defined in such a 

way that  

TῨ(δ̆) = max ( 
  
  
 

∑sup  Tη̆1

ω(δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

𝐹�̆�(�̆�) = 𝑚𝑖𝑛
( 
  
  
 
 

∑𝑠𝑢𝑝𝐹�̆�1

𝜆 (𝛿 ̆)

𝛽

𝜆=1

,∑𝑠𝑢𝑝𝐹�̆�2

𝜆 (𝛿 ̆)

𝛽

𝜆=1
) 
  
  
 
 

. 

Remark 3. The union of two families of RIFS (�̆�, �̆�1

𝑖
) and (�̆�, �̆�2

𝑖 )is denoted by (�̆�, �̆�1
𝑖 ) ∪ (�̆�, �̆�2

𝑖 ) and it 

is defined as (�̆�, �̆�1
𝑖 ) ∪ (�̆�, �̆�2

𝑖 ) = (�̆�, Ῠ 𝑖), where Ῠ
𝑖
= �̆�1

𝑖
∪ �̆�2

𝑖
,   𝑖 = 1,2,3, … , 𝑛, and truth and false 

membership of (�̆�, Ῠ 𝑖 ) is defined in such a way that 

𝑇�̆� 𝑖(�̆�) = 𝑚𝑎𝑥 ( 
  
  
 

∑𝑠𝑢𝑝  𝑇�̆�1

𝜔 (𝛿 ̆)

𝛼

𝜔=1

,∑𝑠𝑢𝑝  𝑇�̆�2

𝜔 (𝛿 ̆)

𝛼

𝜔=1

) 
  
  
 

, 

𝐹�̆� 𝑖(�̆�) = 𝑚𝑖𝑛
( 
  
  
 
 

∑𝑠𝑢𝑝𝐹�̆�1

𝜆 (𝛿 ̆)

𝛽

𝜆=1

,∑𝑠𝑢𝑝𝐹�̆�2

𝜆 (𝛿 ̆)

𝛽

𝜆=1
) 
  
  
 
 

. 

Example 8. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13,0.19),(0.24, 0.1)>,< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }, 

and 

(δ̆, Ğ2) = { < B̆1, (0.2,0.3),(0.3, 0.15)>,  

< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.01,0.16), (0.5,0.2) >, < B̆4, (0.26,0.15), (0.12,0.2) > }, 

be two RIFS. Then the union of RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is given as 

(δ̆, Ῠ ), = { < B̆1, (0.2, 0.3),(0.24,0.1)>,< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.26,0.15), (0.12,0.2) > }. 

Definition 9. Intersection of two RIFS 

The intersection of two RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is denoted by (�̆�, �̆�1) ∩ (�̆�, �̆�2) and it is defined as 

(�̆�, �̆�1) ∩ (�̆�, �̆�2) = (�̆�, �̆�  ), where Ῠ = �̆�1 ∩ �̆�2, and truth and falsemembership of (�̆�, Ῠ ̆) is defined in 

such a way that 
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TῨ(δ̆) = min ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

FῨ(δ̆) = max
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Remark 4. The intersection of two families of RIFS (�̆�, �̆�1

𝑖
) and (�̆�, �̆�2

𝑖 )is denoted by (�̆�, �̆�1
𝑖 ) ∩ (�̆�, �̆�2

𝑖 ) 

and it is defined as(�̆�, �̆�1
𝑖 ) ∩ (�̆�, �̆�2

𝑖 ) = (�̆�, �̆� 𝑖), where �̆�
𝑖
= �̆�1

𝑖
∩ �̆�2

𝑖
,   𝑖 = 1,2,3, … , 𝑛, and truth and false 

membership of (�̆�, �̆� 𝑖 ) is defined in such a way that 

TῨi(δ̆) = min ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

FῨi(δ̆) = max
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Example 9. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13, 0.19),(0.24,0.1)>, 

 < B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }, 

and 

(𝛿, �̆�2) = { < �̆�1, (0.2,0.3),(0.3, 0.15)>,  

< �̆�2, (0.32,0.38), (0.1,0.04) >, 

< �̆�3, (0.01,0.16), (0.5,0.2) >, < �̆�4, (0.26,0.15), (0.12,0.2) > }, 

be two RIFS. Then the intersection of RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is given as 

(δ̆, Ῠ ) = { < B̆1, (0.13, 0.19),(0.24, 0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.01,0.16), (0.5,0.2) >, < B̆4, (0.16,0.14), (0.23,0.37) > }. 

Definition 10. Extended intersection of two RIFS 

The intersection of two RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is denoted by (�̆�, �̆�1) ∩휀 (�̆�, �̆�2) and it is defined as 

(�̆�, �̆�1) ∩휀 (�̆�, �̆�2) = (�̆�, Ῠ ), where Ῠ = �̆�1 ∪ �̆�2, and truth and falsemembership of (�̆�, Ῠ ̆) is defined in 

such a way that 

TῨ(δ̆) = min ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω(δ ̆)

α

ω=1

) 
  
  
 

, 
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FῨ(δ̆) = max
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Remark 5. The extended intersection of two families of RIFS (�̆�, �̆�1

𝑖
) and (�̆�, �̆�2

𝑖 )is denoted by (�̆�,

�̆�1
𝑖 ) ∩휀 (�̆�, �̆�2

𝑖 ) and it isdefined as(�̆�, �̆�1
𝑖 ) ∩휀 (�̆�, �̆�2

𝑖 ) = (�̆�, �̆� 𝑖), where �̆� 𝑖 = �̆�1
𝑖 ∪ �̆�2

𝑖 ,   𝑖 = 1,2,3, … , 𝑛, and 

truth and false membership of (�̆�, �̆� 𝑖 ) is defined in such a way that 

TῨi(δ̆) = min ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

FῨi(δ̆) = max
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Example 10. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) > }, 

and 

(�̆�, �̆�2) = {< �̆�3, (0.01,0.16), (0.5,0.2) >, < �̆�4, (0.26,0.15), (0.12,0.2) > }, be two RIFS. Then the extended 

intersection of RIFS (�̆�, �̆�1) and (�̆�, �̆�2) is given as 

(δ̆, Ῠ ) = { < B̆1, (0.13,0.19),(0.24,0.1)>,< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.01,0.16), (0.5,0.2) >, < B̆4, (0.26,0.15), (0.12,0.2) > }. 

Definition 11. Restricted union of two RIFS 

The restricted union of two RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is denoted by (�̆�, �̆�1) ∪𝑅 (�̆�, �̆�2) and it isdefined 

as (�̆�, �̆�1) ∪𝑅 (�̆�, �̆�2) = (�̆�, �̆�  ), where �̆� = �̆�1 ∩𝑅 �̆�2, and truth and falsemembership of (�̆�, �̆�  ̆) is 

defined in such a way that 

TῨ(δ̆) = max ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

. 

FῨ(δ̆) = min
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Remark 6. The restricted union of two families of RIFS (�̆�, �̆�1

𝑖
) and (�̆�, �̆�2

𝑖 )is denoted by 

(�̆�, �̆�1
𝑖 ) ∪𝑅 (�̆�, �̆�2

𝑖 ) and it is defined as (�̆�, �̆�1
𝑖 ) ∪𝑅 (�̆�, �̆�2

𝑖 ) = (�̆�, �̆� 𝑖), where �̆� 𝑖 = �̆�1
𝑖 ∩𝑅 �̆�2 

𝑖 , 𝑖 =

1,2,3, … , 𝑛, and truth and false membership of (�̆�, �̆� 𝑖 ) is defined in such a way that 
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TῨi(δ̆) = max ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

FῨi(δ̆) = min
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 

Example 11. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) > }, 

and (�̆�, �̆�2) = {< �̆�3, (0.01,0.16), (0.5,0.2) >, < �̆�4, (0.26,0.15), (0.12,0.2) > }, be two RIFS. Then the restricted 

union of RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is given as 

(δ̆, Ῠ ) = {< B̆3, (0.1,0.36), (0.34,0.12) > }. 

Definition 12. Restricted intersection of two RIFS 

The restricted intersection of two RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is denoted by (�̆�, �̆�1) ∩𝑅 (�̆�, �̆�2) and it isdefined 

as (�̆�, �̆�1) ∩𝑅 (�̆�, �̆�2) = (�̆�, �̆�  ), where �̆� = �̆�1 ∩𝑅 �̆�2, and truth and false membership of (�̆�, �̆�  ̆) is defined 

in such a way that 

TῨ(δ̆) = min (∑ sup  Tη̆1

ω (δ ̆)

α

ω=1

, ∑ sup  Tη̆2

ω (δ ̆)

α

ω=1

), 

FῨ(δ̆) = max (∑ sup Fη̆1

λ (δ ̆)

β

λ=1

, ∑ sup Fη̆2

λ (δ ̆)

β

λ=1

). 

Remark 7. The restricted intersection of two families of RIFS (�̆�, �̆�1

𝑖
) and (�̆�, �̆�2

𝑖 )is denoted by 

(�̆�, �̆�1
𝑖 ) ∩𝑅 (�̆�, �̆�2

𝑖 ) and it isdefined as (�̆�, �̆�1
𝑖 ) ∩𝑅 (�̆�, �̆�2

𝑖 ) = (�̆�, �̆� 𝑖), where �̆� 𝑖 = �̆�1
𝑖 ∩𝑅 �̆�2 

𝑖 , 𝑖 = 1,2,3,… , 𝑛, 

and truth and false membership of (�̆�, �̆� 𝑖 ) is defined in such a way that 

TῨi(δ̆) = min ( 
  
  
 

∑sup  Tη̆1

ω (δ ̆)

α

ω=1

,∑sup  Tη̆2

ω (δ ̆)

α

ω=1

) 
  
  
 

, 

FῨi(δ̆) = max
( 
  
  
 
 

∑supFη̆1

λ (δ ̆)

β

λ=1

,∑supFη̆2

λ (δ ̆)

β

λ=1
) 
  
  
 
 

. 
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Example 12. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) > }, 

and (�̆�, �̆�2) = {< �̆�2, (0.32,0.38), (0.1,0.04) >, < �̆�4, (0.26,0.15), (0.12,0.2) > }, 

be two RIFS. Then the restricted intersection of RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is given as 

(δ̆, Ῠ ) = {< B̆2, (0.2,0.25), (0.15,0.24) > }. 

Definition 13. Restricted difference of two RIFS 

The restricted difference of two RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is denoted by (�̆�, �̆�1)−𝑅(�̆�, �̆�2) and it is 

defined as (�̆�, �̆�1)−𝑅(�̆�, �̆�2) = (�̆�, �̆�  ), where �̆� = �̆�1−𝑅�̆�2. 

Example 13. Consider the illustrative example, suppose that 

(δ̆, Ğ1) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }, 

and 

(δ̆, Ğ2) = { < B̆1, (0.2,0.3),(0.3, 0.15)>,< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.01,0.16), (0.5,0.2) > }, 

be two RIFS. Then the restricted difference of RIFS (�̆�, �̆�1) and (�̆�, �̆�2)is given as 

(δ̆, Ῠ ) = {< B̆4, (0.16,0.14), (0.23,0.37) > }. 

5|Some Basic Laws of RIFS 

In this section, we prove some basic fundamental laws including idempotent law, identity law, 

domination law, De-Morgan law and commutative law with the help of illustrative example. 

5.1| Idempotent Law 

(δ̆, Ğ)  ∪ (δ̆, Ğ) =  (δ̆, Ğ) =  (δ̆, Ğ) ∪R (δ̆, Ğ). 

(δ̆, Ğ)  ∩ (δ̆, Ğ) =  (δ̆, Ğ) =  (δ̆, Ğ) ∩ε (δ̆, Ğ). 

Example 14. To prove (1) law, we consider illustrative example. For this, suppose that 
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(δ̆, Ğ) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }. 

One can observe 

(δ̆, Ğ)  ∪ (δ̆, Ğ) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > } = (δ̆, Ğ) =  (δ̆, Ğ) ∪R (δ̆, Ğ). 

Similarly, we can prove (2). 

5.2| Identity Law 

(δ̆, Ğ)  ∪ ∅̆ =  (δ̆, Ğ) =  (δ̆, Ğ) ∪R ∅̆. 

(δ̆, Ğ)  ∩ Ŭ =  (δ̆, Ğ) =  (δ̆, Ğ) ∩ε U.̆ 

Example 15. To prove (1) law, we consider illustrative example. For this, suppose that 

(δ̆, Ğ) = { < B̆1, (0.13, 0.19),(0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }. 

One can observe 

(δ̆, Ğ)  ∪ ∅̆ = { < B̆1, (0.13, 0.19),(0.24,0.1)>, 

 < B̆2, (0.2,0.25), (0.15,0.24) >, 

< �̆�3, (0.1,0.36), (0.34,0.12) >, < �̆�4, (0.16,0.14), (0.23,0.37) > } = (�̆�, �̆�) =  (�̆�, �̆�) ∪𝑅 ∅̆. 

Similarly, we can Prove (2). 

5.3| Domination Law 

(δ̆, Ğ)  ∪ Ŭ =  Ŭ =  (δ̆, Ğ) ∪R Ŭ. 

(δ̆, Ğ)  ∩ ∅̆ =  ∅̆ =  (δ̆, Ğ) ∩ε ∅̆. 

Example 16. To Prove (1) law, we consider illustrative example. For this, suppose that 

(δ̆, Ğ) = { < B̆1, (0.13, 0.19), (0.24,0.1)>,  

< B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }. 
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One can observe 

(δ̆, Ğ)  ∪ Ŭ = { < B̆1, (0.13, 0.19),(0.24,0.1)>, 

 < B̆2, (0.2,0.25), (0.15,0.24) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.16,0.14), (0.23,0.37) > }  ∪ Ŭ 

= Ŭ =  (δ̆, Ğ) ∪R Ŭ. 

Similarly, we can Prove (2). 

5.4| De-Morgan Law 

((δ̆, Ğ1)  ∪ (δ̆, Ğ2))
c

= (δ̆, Ğ1)
c
∩ε (δ̆, Ğ2)

c
. 

((δ̆, Ğ1) ∩ε (δ̆, Ğ2))
c

= (δ̆, Ğ1)
c
∪ (δ̆, Ğ2)

c
. 

Example 17. To prove (1) law, we consider illustrative example. For this, suppose that L.H.S is 

(δ̆, Ğ1)  ∪ (δ̆, Ğ2) = { < B̆1, (0.2, 0.3),(0.24,0.1)>,  

< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.26,0.15), (0.12,0.2) > }. 

Then 

((δ̆, Ğ1)  ∪ (δ̆, Ğ2))
c

= { < B̆1, (0.24,0.1), (0.2,0.3)>,  

< B̆2, (0.1,0.04), (0.32,0.38) >, 

< B̆3, (0.34,0.12), (0.1,0.36) >, < B̆4, (0.12,0.2), (0.26,0.15) >}. 

Now consider R.H.S. 

(δ̆, Ğ1)
c
∩ε (δ̆, Ğ2)

c
= { < B̆1, (0.24,0.1), (0.2,0.3)>,  

< B̆2, (0.1,0.04), (0.32,0.38) >, 

< B̆3, (0.34,0.12), (0.1,0.36) >, < B̆4, (0.12,0.2), (0.26,0.15) >}. 

From this, it is clear that L.H.S.=R.H.S. Similarly, we can prove (2). 

5.5| Commutative Law 

(δ̆, Ğ1)  ∪ (δ̆, Ğ2) =  (δ̆, Ğ2)  ∪ (δ̆, Ğ1). 

(δ̆, Ğ1) ∪R (δ̆, Ğ2) = (δ̆, Ğ2) ∪R (δ̆, Ğ1). 

(δ̆, Ğ1)  ∩ (δ̆, Ğ2) = (δ̆, Ğ2)  ∩ (δ̆, Ğ1). 
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(δ̆, Ğ1) ∩ε (δ̆, Ğ2) = (δ̆, Ğ2) ∩ε (δ̆, Ğ1). 

Example 18. To Prove (1) law, we consider illustrative example. For this, suppose that 

L.H.S: 

(δ̆, Ğ1)  ∪ (δ̆, Ğ2) = { < B̆1, (0.2, 0.3),(0.24,0.1)>,  

< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.26,0.15), (0.12,0.2) > }. 

R.H.S: 

(δ̆, Ğ2)  ∪ (δ̆, Ğ1) = { < B̆1, (0.2, 0.3), (0.24,0.1)>,  

< B̆2, (0.32,0.38), (0.1,0.04) >, 

< B̆3, (0.1,0.36), (0.34,0.12) >, < B̆4, (0.26,0.15), (0.12,0.2) > }. 

From above equation, we meet the required result. Similarly, we can prove the remaining. 

6| Conclusion 

In this article, the basic fundamentals of refined intuitionistic fuzzy Set (RIFS) i.e. RIF subset, Equal RIFS, 

Complement of RIFS, Null RIFS and aggregation operators i.e. union, intersection, restricted intersection, 

extended union, extended intersection and restricted difference of two RIFS is defined. All these 

fundamentals are explained using an illustrative example. Further extension can be sought through 

developing similarity measures for comparison purposes. 
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Abstract 

 

1 | Introduction  

In 1965, Zadeh [18] and [19] introduced the concept of a fuzzy set. He also developed the notion of 

interval-valued fuzzy set in 1975, which extends the fuzzy set. A semigroup is an algebraic structure 

comprising a non-empty set together with an associative binary operation. Atanassov [2] introduced 

the intuitionistic fuzzy set with some properties. Atanassov [3] developed the concept of interval-

valued intuitionistic fuzzy set. Thillaigovindan and Chinnadurai [15, 16] discussed interval-valued 

fuzzy ideals in algebraic structures. In 2018, Chen [4] and [5] introduced the concept of interval-

valued Pythagorean fuzzy outranking of various methods in the application. Garg [8] and [9] 

presented the notion of interval-valued Pythagorean fuzzy sets of multi-criteria decision-making 

methods. In 2013, Yager [17] started the notion of Pythagorean fuzzy set, the sum of the squares of 

membership and non-membership belongs to the unit interval [0, 1]. Peng [13] developed the new 

operations for an interval-valued Pythagorean fuzzy set. Peng and Yang [14] presented the notion of 

interval-valued Pythagorean fuzzy set.  
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In 2019, Hussain et al. [10] started the notions of rough Pythagorean fuzzy ideals in the semigroups. 

Akram[1] established the properties of fuzzy lie algebras. Kumar et al. [11] approached transportation 

decision making problems using Pythagorean fuzzy set. Das and Edalatpanah [6] studied the concept of 

fuzzy linear fractional progress with trapezoidal fuzzy numbers. Edalatpanah [7] used triangular 

intuitionistic fuzzy numbers to deal with data envelopment analysis model. Najafi and Edalatpanah [12] 

used iterative methods to study linear complementarily problems. In this paper, we discuss some of the 

properties of interval-valued Pythagorean fuzzy ideals in the semigroups. 

2| Preliminaries   

Definition 1. [12]. Let 𝑋 be a universe of discourse, A Pythagorean Fuzzy Set (PFS) 𝑃 =

{𝑤, 𝜙𝑝(𝑤), 𝜓𝑝(𝑤)/𝑤 ∈ 𝑋} where 𝜙:𝑋 → [0,1] and 𝜓:𝑋 → [0,1] represent the degree of membership and 

non-membership of the object 𝑤 ∈ 𝑋 to the set 𝑃 subset to the condition 0 ≤ (𝜙𝑝(𝑤))
2
+ (𝜓𝑝(𝑤))

2
≤ 1 

for all 𝑤 ∈ 𝑋. For the sake of simplicity a PFS is denoted as 𝑃 = (𝜙𝑝(𝑤), 𝜓𝑝(𝑤)). 

3| Interval-Valued Pythagorean Fuzzy Ideals in Semigroups   

Definition 2. An Interval-Valued Pythagorean Fuzzy Set (IVPFS) �̃� = [𝜙�̃�, 𝜓�̃�] on S is known to be an 

interval-valued Pythagorean fuzzy sub-semigroup of S. If for all  𝑤1, 𝑤2 ∈ 𝑆, it holds. 

 ϕp̃(w1w2) ≥ min{ϕp̃(w1), ϕp̃(w2)}, 

ψp̃(w1w2) ≤ max{ψp̃(w1), ψp̃(w2)}. 

Example 1. Consider a semigroup 𝑆 = {𝑢, 𝑣, 𝑤, 𝑥, 𝑦} with the Cayley Table. 

Table 1. Cayley table.  

 

 

 

 

 

 Define an interval-valued Pythagorean fuzzy set(IVPFS) �̃� = [𝜙�̃�, 𝜓�̃�] in 𝑆 as follows. 

 

 

 

 

 

 

• u v w x y 

𝑢 u u u u u 

𝑣 u v u x u 

𝑤 u y w w y 

𝑥 u v x x v 

𝑦 u y u w u 

S [ϕp̃(w1), ψp̃(w1)], 

u [0.7,0.8], [0.1,0.2], 

v [0.4,0.6], [0.4,0.5], 

w [0.3,0.5], [0.5,0.6], 

x [0.1,0.2], [0.3,0.5], 

y [0.3,0.5], [0.5,0.6]. 
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 ϕp̃(uv) ≥ min{ϕp̃(u), ϕp̃(v)} 

([0.7,0.8],[0.1,0.2]) ≥[0.4,0.6],[0.1,0.2]. 

ψp̃(uv) ≤ max{ψp̃(u), ψp̃(v)}. 

([0.7,0.8],[0.1,0.2])≤[0.7,0.8],[0.4,0.5]. 

Thus �̃� = [𝜙�̃�, 𝜓�̃�] is an Interval-Valued Pythagorean Fuzzy Sub-Semigroup (IVPFSS) of 𝑆.   

Definition 3. An IVPFS �̃� = (𝜙�̃�, 𝜓�̃�) on semigroup 𝑆, is said to be an interval-valued Pythagorean fuzzy 

left (P̃LI)(resp.right(P̃RI)) ideal of S. If for all 𝑤1, 𝑤2 ∈ 𝑆, it holds. 

 ϕp̃(w1w2) ≥ ϕp̃(w2); 

     ψp̃(w1w2) ≤ ψp̃(w2) (resp.right(P̃RI)); 

ϕp̃(w1w2) ≥ ϕp̃(w1); 

     ψp̃(w1w2) ≤ ψp̃(w1).   

Definition 4. An IVPFS �̃� = [𝜙�̃�, 𝜓�̃�] on S is called IVPFI (�̃�I) of S. If for all 𝑤1, 𝑤2 ∈ 𝑆 , it 𝑃 ̃is both a left 

and right IVPFI of 𝑆. 

(w1w2) ≥ max{ϕp̃(w1), ϕp̃(w2)}; 

 ψp̃(w1w2) ≤ min{ψp̃(w1), ψp̃(w2)}.    

Definition 5. An IVPFS �̃� = [𝜙�̃�, 𝜓�̃�] on S is known to be an interval-Valued Pythagorean Fuzzy Bi-Ideal 

(IVPFBI) (�̃�𝐵𝐼) of S. If for all  𝑎,𝑤1, 𝑤2 ∈ 𝑆 and satisfy. 

ϕp̃(w1aw2) ≥ min{ϕp̃(w1), ϕp̃(w2)}; 

ψp̃(w1aw2) ≤ max{ψp̃(w1), ψp̃(w2)}. 

Example 2. Consider a semigroup 𝑆 = {𝑢, 𝑣, 𝑤, 𝑥, 𝑦} with the Cayley Table. 

Define an interval-valued Pythagorean fuzzy set �̃� = [𝜙�̃�, 𝜓�̃�] in 𝑆 as follows.  

 

 

 

 

Thus �̃� = [𝜙�̃�, 𝜓�̃�] is an interval valued Pythagorean fuzzy bi-ideal of 𝑆.   

S [ϕp̃(w1), ψp̃(w1)], 

u [0.8,0.9], [0.1,0.3], 

v [0.3,0.5], [0.7,0.9], 

w [0.4,0.6], [0.6,0.7], 

x [0.3,0.5], [0.7,0.9], 

y [0.7,0.8], [0.4,0.5]. 
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Definition 7. An IVPFS �̃� = ⟨[𝜙�̃�, 𝜓�̃�]⟩ on S is known to be an interval-valued Pythagorean fuzzy 

interior ideal (IVPFII) (�̃�𝐼𝐼) of S. If for all  𝑎,𝑤1, 𝑤2 ∈ 𝑆 and satisfy. 

ϕp̃(w1aw2) ≥ ϕp̃(a); 

ψp̃(w1aw2) ≤ ψp̃(a).   

Definition 8. For any non-empty subset 𝑁 of a semigroup 𝑆 is defined to be a structure 𝜒𝑁 =

{𝑤1, [�̃�𝜒𝑁
(𝑤1), �̃�𝜒𝑁

(𝑤1)]|𝑤1 ∈ 𝑆} which is briefly denoted by 𝜒𝑁 = [�̃�𝜒𝑁
, �̃�𝜒𝑁

]  

where,  �̃�𝜒𝑁
(𝑤1) = { 

 
  
 
 
1 ̃𝑖𝑓 𝑥 ∈ 𝑁

0̃ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   �̃�𝜒𝑁
(𝑤1) = {

0̃ 𝑖𝑓 𝑥 ∈ 𝑁

1 ̃𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

Theorem 1. Let 𝑆 be a semigroup. Then the following are equivalent. 

The intersection of two interval-valued Pythagorean fuzzy sub-semigroup of 𝑆, is an interval-valued 

Pythagorean fuzzy sub-semigroup of 𝑆. 

The intersection of two interval-valued Pythagorean fuzzy left (resp. right) ideal of 𝑆, is IVPFLI (resp. 

IVPFRI) of 𝑆.  

Proof. Let 𝑃1̃ = [�̃�𝑝1
, �̃�𝑝1

] and 𝑃2̃ = [�̃�𝑝2
, �̃�𝑝2

] be two interval-valued Pythagorean fuzzy sub-semigroup 

of S. Let 𝑤1, 𝑤2 ∈ 𝑆. 

Then, 

(ϕ̃p1 ∩ ϕ̃p2)(w1,w2) = min{ϕ̃p1(w1,w2), ϕ̃p2(w1, w2)} 

≥ min {min{ϕ̃p1(w1), ϕ̃p1(w2)},min{ϕ̃p2(w1), ϕ̃p2(w2)}} 

= min {min{ϕ̃p1(w1), ϕ̃p2(w1)},min{ϕ̃p1(w2), ϕ̃p2(w2)}} 

= min{ϕ̃p1 ∩ ϕ̃p2(w1), ϕ̃p1 ∩ ϕ̃p2(w2)}; 

(ψ̃p1 ∪ ψ̃p2
)(w1, w2) = max{ψ̃p1

(w1,w2), ψ̃p2
(w1,w2)} 

≤ max {max{ψ̃p1
(w1), ψ̃p1

(w2)},max{ψ̃p2
(w1), ψ̃p2

(w2)}} 

= max {max{ψ̃p1
(w1), ψ̃p2

(w1)},max{ψ̃p1
(w2), ψ̃p2

(w2)}} 

= max{ψ̃p1 ∪ ψ̃p2
(w1), ψ̃p1 ∪ ψ̃p2

(w2)}. 

Therefore, P̃1 ∩ P̃2 = {⟨(ϕ̃p1
∩ ϕ̃p2

), (ψ̃p1
∪ ψ̃p2

)⟩}. 

Interval-valued Pythagorean fuzzy sub-semigroup of 𝑆. 
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(ϕ̃p1 ∩ ϕ̃p2)(w1,w2) = min{ϕ̃p1(w1, w2), ϕ̃p2(w1, w2)}   

 ≥ min{ϕ̃p1(w2), ϕ̃p2(w2)} 

= (ϕ̃p1 ∩ ϕ̃p2)(w2); 

(ψ̃p1 ∪ ψ̃p2
)(w1,w2) = max{ψ̃p1

(w1, w2), ψ̃p2
(w1, w2)} 

≤ max{ψ̃p1
(w2), ψ̃p2

(w2)} 

= (ψ̃p1 ∪ ψ̃p2
)(w2). 

Therefore, �̃�1 ∩ �̃�2 = {⟨(�̃�𝑝1
∩ �̃�𝑝2

), (�̃�𝑝1
∪ �̃�𝑝2

)⟩} is an interval-valued Pythagorean fuzzy left (resp. right) 

ideal of 𝑆.   

Theorem 2. An IVPFS �̃� = [�̃�𝑝, �̃�𝑝] of a semigroup 𝑆 is an IVPFBI of S, if and only if ⟨(𝜙𝑝
𝐿, 𝜙𝑝

𝑈), (𝜓𝑝
𝐿, 𝜓𝑝

𝑈)⟩ 

of 𝑆.  

Proof. Let  �̃� = [�̃�𝑝, �̃�𝑝] be an interval-valued Pythagorean fuzzy bi-ideal of 𝑆, for any 𝑤1, 𝑤2 ∈ 𝑆. 

Then, we have membership 

[ϕp
L(w1w2), ϕp

U(w1w2)] = ϕ̃p(w1w2) 

≥ min{ϕ̃p(w1), ϕ̃p(w2)} 

= min{[ϕp
L(w1), ϕp

U(w1)], [ϕp
L(w2), ϕp

U(w2)]} 

= min{[ϕp
L(w1), ϕp

L(w2)], [ϕp
U(w1), ϕp

U(w2)]}. 

It follows that 𝜙𝑝
𝐿(𝑤1𝑤2) ≥ 𝑚𝑖𝑛{𝜙𝑝

𝐿(𝑤1), 𝜙𝑝
𝐿(𝑤2)} and 𝜙𝑝

𝑈(𝑤1𝑤2) ≥ 𝑚𝑖𝑛{𝜙𝑝
𝑈(𝑤1), 𝜙𝑝

𝑈(𝑤2)}and non-

membership 

[ψp
L(w1w2), ψp

U(w1w2)] = ψ̃p(w1w2) 

≤ max{ψ̃p(w1), ψ̃p(w2)} 

= max{[ψp
L(w1), ψp

U(w1)], [ψp
L(w2), ψp

U(w2)]} 

= max{[ψp
L(w1), ψp

L(w2)], [ψp
U(w1), ψp

U(w2)]}. 

It follows that 𝜓𝑝
𝐿(𝑤1𝑤2) ≤ 𝑚𝑎𝑥{𝜓𝑝

𝐿(𝑤1), 𝜓𝑝
𝐿(𝑤2)} and 𝜓𝑝

𝑈(𝑤1𝑤2) ≤ 𝑚𝑎𝑥{𝜓𝑝
𝑈(𝑤1), 𝜙𝑝

𝑈(𝑤2)} 

Therefore,  �̃� = ⟨(𝜙𝑝
𝐿, 𝜙𝑝

𝑈), (𝜓𝑝
𝐿, 𝜓𝑝

𝑈)⟩ are Pythagorean fuzzy ideal of 𝑆. 
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Conversely, suppose that ([𝜙𝑝
𝐿, 𝜙𝑝

𝑈], [𝜓𝑝
𝐿, 𝜓𝑝

𝑈]) are Pythagorean fuzzy ideal of S, le𝑤1, 𝑤2 ∈ 𝑆 t. 

ϕ̃p(w1w2) = [ϕp
L(w1w2), ϕp

U(w1w2)] 

≥ [min{ϕp
L(w1), ϕp

L(w2)},min{ϕp
U(w1), ϕp

U(w2)}] 

= min{[ϕp
L(w1), ϕp

U(w1)], [ϕp
L(w2), ϕp

U(w2)]} 

= min{ϕ̃p(w1), ϕ̃p(w2)}; 

ψ̃p(w1w2) = [ψp
L(w1w2), ψp

U(w1w2)] 

≤ [max{ψp
L(w1), ψp

L(w2)},max{ψp
U(w1), ψp

U(w2)}] 

= max{[ψp
L(w1), ψp

U(w1)], [ψp
L(w2), ψp

U(w2)]} 

= max{ψ̃p(w1), ψ̃p(w2)}. 

�̃� = [�̃�𝑝, �̃�𝑝] is an interval-valued Pythagorean fuzzy sub-semigroup of  𝑆. 

ϕ̃p(w1aw2) = [ϕp
L(w1aw2), ϕp

U(w1aw2)] 

≥ [min{ϕp
L(w1), ϕp

L(w2)},min{ϕp
U(w1), ϕp

U(w2)}] 

= min{[ϕp
L(w1), ϕp

U(w1)], [ϕp
L(w2), ϕp

U(w2)]} 

= min{ϕ̃p(w1), ϕ̃p(w2)}; 

ψ̃p(w1aw2) = [ψp
L(w1aw2), ψp

U(w1aw2)] 

≤ [max{ψp
L(w1), ψp

L(w2)},max{ψp
U(w1), ψp

U(w2)}] 

= max{[ψp
L(w1), ψp

U(w1)], [ψp
L(w2), ψp

U(w2)]} 

= max{ψ̃p(w1), ψ̃p(w2)}. 

�̃� = [�̃�𝑝, �̃�𝑝] is an interval-valued Pythagorean fuzzy bi-ideal of 𝑆.  

Theorem 3. If {𝑃𝑖}𝑖∈𝐼 is a family of interval-valued Pythagorean fuzzy bi-ideal of a semigroup 𝑆. Then 

∩ 𝑃𝑖 is an interval-valued Pythagorean fuzzy bi-ideal of S. Where ∩ 𝑃𝑖 = (∩ �̃�𝑝𝑖
,∪ �̃�𝑝𝑖

). 

∩ (�̃�𝑝𝑖
) = 𝑖𝑛𝑓{(�̃�𝑝𝑖

)(𝑤1)/𝑖 ∈ 𝐼, 𝑤1 ∈ 𝑆}, ∪ (�̃�𝑝𝑖
) = 𝑠𝑢𝑝{(�̃�𝑝𝑖

)(𝑤1)/𝑖 ∈ 𝐼, 𝑤1 ∈ 𝑆} and 𝑖 ∈ 𝐼 is any index set.  

Proof. Since  �̃�𝑖 = ⟨[�̃�𝑝𝑖
, �̃�𝑝𝑖

]|𝑖 ∈ 𝐼⟩ is a family of interval-valued Pythagorean fuzzy bi-ideal of 𝑆.  

Let 𝑎, 𝑤1, 𝑤2 ∈ 𝑆. 
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∩ ϕ̃pi(w1, w2) = inf{ϕ̃pi(w1, w2)/i ∈ I,w1, w2 ∈ S} 

≥ inf {min{ϕ̃pi(w1), ϕ̃pi(w2)}} 

= min {inf (ϕ̃pi(w1)) , inf (ϕ̃pi(w2))} 

= min{∩ ϕ̃pi(w1),∩ ϕ̃pi(w2)}; 

∪ ψ̃pi
(w1w2) = sup{ψ̃pi

(w1w2)/i ∈ I,w1, w2 ∈ S} 

≤ sup {max{ψ̃pi
(w1), ψ̃pi

(w2)}} 

= max {sup (ψ̃pi
(w1)) , sup (ψ̃pi

(w2))} 

= max{∪ ψ̃pi
(w1),∪ ψ̃pi

(w2)}. 

Hence, ∩  �̃�𝑖 = (∩ �̃�𝑝𝑖
,∪ �̃�𝑝𝑖

) is an interval-valued Pythagorean fuzzy sub-semigorup of 𝑆. 

∩ ϕ̃pi(w1aw2) = inf{ϕ̃pi(w1aw2)/i ∈ I, a,w1, w2 ∈ S} 

≥ inf {min{ϕ̃pi(w1), ϕ̃pi(w2)}} 

= min {inf (ϕ̃pi(w1)) , inf (ϕ̃pi(w2))} 

= min{∩ ϕ̃pi(w1),∩ ϕ̃pi(w2)}. 

∪ ψ̃pi
(w1aw2) = sup{ψ̃pi

(w1aw2)/i ∈ I, a,w1, w2 ∈ S} 

≤ sup {max{ψ̃pi
(w1), ψ̃pi

(w2)}} 

= max {sup (ψ̃pi
(w1)) , sup (ψ̃pi

(w2))} 

          = max{∪ ψ̃pi
(w1),∪ ψ̃pi

(w2)}. 

Hence, ∩ 𝑃𝑖 = (∩ �̃�𝑝𝑖
,∪ �̃�𝑝𝑖

) is an interval-valued Pythagorean fuzzy bi-ideals of 𝑆.  

Theorem 4. Let N be any non-empty subset of a semigroup 𝑆. Then 𝑁 is a bi-ideal of 𝑆, if and only if the 

characteristic interval-valued Pythagorean fuzzy set 𝜒𝑁 = [�̃�𝑝𝜒𝑁
, �̃�𝑝𝜒𝑁

] is IVPFBI of 𝑆.  

Proof. Assume that 𝑁 is a bi-ideal of 𝑆.  Let 𝑎, 𝑤1, 𝑤2 ∈ 𝑆. 

Suppose that �̃�𝑝𝜒𝑁
(𝑤1𝑤2) < 𝑚𝑖𝑛{�̃�𝑝𝜒𝑁

(𝑤1), �̃�𝑝𝜒𝑁
(𝑤2)} and �̃�𝑝𝜒𝑁

(𝑤1𝑤2) > 𝑚𝑎𝑥{�̃�𝑝𝜒𝑁
(𝑤1), �̃�𝑝𝜒𝑁

(𝑤2)} it follows 
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 that �̃�𝑝𝜒𝑁
(𝑤1𝑤2) = 0, 𝑚𝑖𝑛{�̃�𝑝𝜒𝑁

(𝑤1), �̃�𝑝𝜒𝑁
(𝑤2)} = 1, �̃�𝑝𝜒𝑁

(𝑤1𝑤2) = 1, 𝑚𝑎𝑥{�̃�𝑝𝜒𝑁
(𝑤1), �̃�𝑝𝜒𝑁

(𝑤2)} = 0.  

This implies that 𝑤1, 𝑤2 ∈ 𝑁 by 𝑤1, 𝑤2 ∉ 𝑁 a contradiction to 𝑁.  

So �̃�𝑝𝜒𝑁
(𝑤1𝑤2) ≥ 𝑚𝑖𝑛{�̃�𝑝𝜒𝑁

(𝑤1), �̃�𝑝𝜒𝑁
(𝑤2)}, �̃�𝑝𝜒𝑁

(𝑤1𝑤2) ≤ 𝑚𝑎𝑥{�̃�𝑝𝜒𝑁
(𝑤1), �̃�𝑝𝜒𝑁

(𝑤2)}.  

Suppose that �̃�𝑝𝜒𝑁
(𝑤1𝑎𝑤2) < 𝑚𝑖𝑛{�̃�𝑝𝜒𝑁

(𝑤1), �̃�𝑝𝜒𝑁
(𝑤2)} and �̃�𝑝𝜒𝑁

(𝑤1𝑎𝑤2) > 𝑚𝑎𝑥{�̃�𝑝𝜒𝑁
(𝑤1), �̃�𝑝𝜒𝑁

(𝑤2)} it 

follows that �̃�𝑝𝜒𝑁
(𝑤1𝑎𝑤2) = 0, 𝑚𝑖𝑛{�̃�𝑝𝜒𝑁

(𝑤1), �̃�𝑝𝜒𝑁
(𝑤2)} = 1, �̃�𝑝𝜒𝑁

(𝑤1𝑤2) = 1,

𝑚𝑎𝑥{�̃�𝑝𝜒𝑁
(𝑤1), �̃�𝑝𝜒𝑁

(𝑤2)} = 0.  

This implies that 𝑎,𝑤1, 𝑤2 ∈ 𝑁 by 𝑎,𝑤1, 𝑤2 ∉ 𝑁 a contradiction to 𝑁. 

So �̃�𝑝𝜒𝑁
(𝑤1𝑎𝑤2) ≥ 𝑚𝑖𝑛{�̃�𝑝𝜒𝑁

(𝑤1), �̃�𝑝𝜒𝑁
(𝑤2)},  �̃�𝑝𝜒𝑁

(𝑤1𝑎𝑤2) ≤ 𝑚𝑎𝑥{�̃�𝑝𝜒𝑁
(𝑤1), �̃�𝑝𝜒𝑁

(𝑤2)}. 

This shows that 𝜒𝑁  is an interval-valued Pythagorean fuzzy bi-ideal of 𝑆.  

Conversely, 𝜒𝑁 = [�̃�𝑝𝜒𝑁
, �̃�𝑝𝜒𝑁

] is an IVPFBI of 𝑆 for any subset 𝑁 of 𝑆. 

Let 𝑤1, 𝑤2 ∈ 𝑁 then �̃�𝑝𝜒𝑁
(𝑤1) = �̃�𝑝𝜒𝑁

(𝑤2) = 1̃, �̃�𝑝𝜒𝑁
(𝑤1) = �̃�𝑝𝜒𝑁

(𝑤2) = 0̃, since 𝜒𝑁  is an IVPFBI of 𝑆. 

 �̃�𝑝𝜒𝑁
(𝑤1𝑤2) ≥ 𝑚𝑖𝑛{�̃�𝑝𝜒𝑁

(𝑤1), �̃�𝑝𝜒𝑁
(𝑤2)} ≥ 𝑚𝑖𝑛{1̃, 1̃} = 1̃, �̃�𝑝𝜒𝑁

(𝑤1𝑤2) ≤ 𝑚𝑎𝑥{�̃�𝑝𝜒𝑁
(𝑤1), �̃�𝑝𝜒𝑁

(𝑤2)} ≤

𝑚𝑎𝑥{0̃, 0̃} = 0̃.  

This implies that 𝑤1,𝑤2 ∈ 𝑁. 

Let 𝑎, 𝑤1, 𝑤2 ∈ 𝑁 then �̃�𝑝𝜒𝑁
(𝑤1) = �̃�𝑝𝜒𝑁

(𝑎) = �̃�𝑝𝜒𝑁
(𝑤2) = 1̃, 

 �̃�𝑝𝜒𝑁
(𝑤1) = �̃�𝑝𝜒𝑁

(𝑎) = �̃�𝑝𝜒𝑁
(𝑤2) = 0̃, since 𝜒𝑁  is an IVPFBI of 𝑆. 

 �̃�𝑝𝜒𝑁
(𝑤1𝑎𝑤2) ≥ 𝑚𝑖𝑛{�̃�𝑝𝜒𝑁

(𝑤1), �̃�𝑝𝜒𝑁
(𝑤2)} ≥ 𝑚𝑖𝑛{1̃, 1̃} = 1̃, �̃�𝑝𝜒𝑁

(𝑤1𝑎𝑤2) ≤ 𝑚𝑎𝑥{�̃�𝑝𝜒𝑁
(𝑤1), �̃�𝑝𝜒𝑁

(𝑤2)} ≤

𝑚𝑎𝑥{0̃, 0̃} = 0̃.  

Which implies that 𝑤1, 𝑤2 ∈ 𝑁. Hence 𝑁 is a bi- ideal of 𝑆.  

Theorem 5. If { �̃�𝑖}
𝑖∈𝐼

 is a family of interval-valued Pythagorean fuzzy interior ideal of a semigroup 𝑆. 

Then ∩  �̃�𝑖 is an interval-valued Pythagorean fuzzy interior ideal (IVPFII) of 𝑆.  

Where ∩  �̃�𝑖 = (∩ �̃�𝑝𝑖
,∪ �̃�𝑝𝑖

); 

∩ (�̃�𝑝𝑖
) = 𝑖𝑛𝑓{(�̃�𝑝𝑖

)(𝑤1)/𝑖 ∈ 𝐼, 𝑤1 ∈ 𝑆}, ∪ (�̃�𝑝𝑖
) = 𝑠𝑢𝑝{(�̃�𝑝𝑖

)(𝑤1)/𝑖 ∈ 𝐼, 𝑤1 ∈ 𝑆} and 𝑖 ∈ 𝐼 is any index set.   

Theorem 6. Let 𝑁 be any non-empty subset of a semigroup 𝑆. Then 𝑁 is a interior ideal of 𝑆, if and 

only if the characteristic interval-valued Pythagorean fuzzy set 𝜒𝑁 = [�̃�𝑝𝜒𝑁
, �̃�𝑝𝜒𝑁

] is IVPFII of 𝑆.   

4| Homomorphism of Interval-Valued Pythagorean Fuzzy Ideals in 

Semigroups 

Let 𝑅 and 𝑇 be two non-empty sets of semigroup S. A mapping 𝑓: 𝑅 → 𝑇 is called a homomorphism if 

(𝑟𝑡) = 𝑓(𝑟)𝑓(𝑡) ∀𝑟, 𝑡 ∈ 𝑅.   
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Definition 9. Let f be a mapping from a set 𝑅 to a set 𝑇 and �̃� = [�̃�𝑝, �̃�𝑝] be an interval-valued Pythagorean 

fuzzy set 𝑅 the image of 𝑅 (i.e.) 𝑓(�̃�) = (𝑓(�̃�𝑝), 𝑓(�̃�𝑝)) is an interval-valued Pythagorean fuzzy set of 𝑇 is 

defined by  

f(P̃)(r) =

{ 
  
  
  
  
  
 
  
  
  
  
  
  
 
 

f(ϕP̃)(r) =
{ 
  
  
  
 
sup
t∈f′(r)

(ϕP̃)(t), iff −1(r) = 0

  [0,0] otherwise

f(ψP̃)(r) =
{ 
  
  
  
 
inf
t∈f′(r)

(ψP̃)(t), iff −1(r) = 0

  [1,1] otherwise

 

Let 𝑓 be a mapping from a set 𝑅 to 𝑇 and �̃� = [�̃�𝑝, �̃�𝑝] be an interval-valued Pythagorean fuzzy set of 𝑇 

then the preimage of 𝑇 (i.e.) 𝑓−1(�̃�) = {(𝑓−1(�̃�𝑝), 𝑓
−1(�̃�𝑝))} is an interval-valued Pythagorean fuzzy set of 𝑅 

is defined as  

f −1(P̃)(r) = { 
  
 
f −1(ϕp̃)(r) = ϕp̃(f(r))

f −1(ψp̃)(r) = ψp̃(f(r))
. 

Theorem 7. Let 𝑅, 𝑇 be a semigroups, 𝑓: 𝑅 → 𝑇 be a homomorphism of semigroups. 

If �̃� = [�̃�𝑝, �̃�𝑝] is an interval-valued Pythagorean fuzzy sub-semigroup of 𝑇 the the preimage 𝑓−1(�̃�) =

(𝑓−1(�̃�𝑝), 𝑓
−1(�̃�𝑝)) is an interval-valued Pythagorean fuzzy sub-semigroup of 𝑅. 

If �̃� = [�̃�𝑝, �̃�𝑝] is an interval-valued Pythagorean fuzzy left (resp.right) ideal of 𝑇 the the preimage 𝑓−1(�̃�) =

(𝑓−1(�̃�
𝑝
), 𝑓−1(�̃�

𝑝
)) is an interval-valued Pythagorean fuzzy left ideal (resp. right ideal) of 𝑅.  

Proof. Assume that �̃� = [�̃�𝑝, �̃�𝑝] is an interval-valued Pythagorean fuzzy sub-semigroup of 𝑇 and 𝑟, 𝑡 ∈ 𝑅. 

Then 

f −1(ϕ̃p)(rt) = ϕ̃p(f(rt)) 

= ϕ̃p(f(r)f(t)) 

 ≥ min{ϕ̃p(f(r)), ϕ̃p(f(t))} 

 = min{f −1(ϕ̃p)(r), f
−1(ϕ̃p)(f(t))}; 

f −1(ψ̃p)(rt) = ψ̃p(f(rt)) 

= ψ̃p(f(r)f(t)) 

 ≤ max{ψ̃p(f(r)), ψ̃p(f(t))} 

        = max{f −1(ψ̃p)(r), f
−1(ψ̃p)(f(t))}. 

Hence, 𝑓−1(�̃�) = (𝑓−1(�̃�𝑝), f
−1(ψ̃p)) is an interval-valued Pythagorean fuzzy sub-semigroup of 𝑅. 
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 f −1(ϕ̃p)(rt) = ϕ̃p(f(rt)) 

= ϕ̃p(f(r)f(t)) 

≥ ϕ̃p(f(t)) 

= f −1(ϕ̃p)(f(t)); 

f −1(ψ̃p)(rt) = ψ̃p(f(rt)) 

= ψ̃p(f(r)f(t)) 

≤ ψ̃p(f(t)) 

= f −1(ψ̃p)(f(t)). 

Hence, 𝑓−1(�̃�) = (𝑓−1(�̃�𝑝), 𝑓
−1(�̃�𝑝)) is an interval-valued Pythagorean fuzzy left (resp.right) ideal of 𝑅.  

Theorem 8. Let 𝑅, 𝑇 be a semigroups, 𝑓: 𝑅 → 𝑇 be a homomorphism of semigroups. If �̃� = [�̃�𝑝, �̃�𝑝] is 

an interval-valued Pythagorean fuzzy bi-ideal of 𝑇 the the preimage 𝑓−1(�̃�) = (𝑓−1(�̃�
𝑝
), 𝑓−1(�̃�

𝑝
)) is an 

interval-valued Pythagorean fuzzy bi-ideal of 𝑅.  

Proof. Assume that �̃� = [�̃�𝑝, �̃�𝑝] is an interval-valued Pythagorean fuzzy sub-semigroup of 𝑇 and 𝑎, 𝑟, 𝑡 ∈

𝑅. Then 

f −1(ϕ̃p)(rat) = ϕ̃p(f(rat)) 

= ϕ̃p(f(r)f(a)f(t)) 

≥ min{ϕ̃p(f(r)), ϕ̃p(f(t))} 

 = min{f −1(ϕ̃p)(r), f
−1(ϕ̃p)(f(t))}; 

f −1(ψ̃p)(rat) = ψ̃p(f(rat)) 

= ψ̃p(f(r)f(a)f(t)) 

≤ max{ψ̃p(f(r)), ψ̃p(f(t))} 

= max{f −1(ψ̃p)(r), f
−1(ψ̃p)(f(t))}. 

Hence 𝑓−1(�̃�) = (𝑓−1(�̃�𝑝), 𝑓
−1(�̃�𝑝)) is an interval-valued Pythagorean fuzzy bi-ideal of 𝑅.  

Theorem 9. Let 𝑅, 𝑇 be a semigroups, 𝑓: 𝑅 → 𝑇 be a homomorphism of semigroups. If �̃� = [�̃�
𝑝
, �̃�

𝑝
] is 

an interval-valued Pythagorean fuzzy interior ideal of 𝑇 the preimage 𝑓−1(𝑃) = (𝑓−1(�̃�𝑝), 𝑓
−1(�̃�𝑝)) is an 

interval-valued Pythagorean fuzzy interior ideal of R.   
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5| Conclusion 

In this paper interval valued Pythagorean fuzzy sub-semigroup, interval valued Pythagorean fuzzy left 

(resp. right) ideal, interval valued Pythagorean fuzzy ideal, interval valued Pythagorean fuzzy bi-ideal, 

interval valued Pythagorean fuzzy interior ideal and Homomorphism of interval valued Pythagorean fuzzy 

ideal in semigroups are studied and investigated some properties with suitable examples. 
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Peng and Yang [9] introduced the concept of interval Pythagorean fuzzy sets which is a generalization of 

Pythagorean fuzzy sets and interval valued fuzzy sets. Hussain et al. [2] introduced the concept of rough 

Pythagorean fuzzy sets. The Pythagorean fuzzy set has been investigated from different perspectives, 

including decision-making technologies [8], medical diagnosis [10], and transportation problem [6]. In 

particular, an extension of Pythagorean fuzzy set, named Interval-Valued Pythagorean Fuzzy Sets in 

decision making [8], complex Pythagoren fuzzy set in pattern recognition [12]. 

To facilitate our discussion, the remainder of this paper is organized as follows.  In Section 2 we review 

some fundamental conceptions rough sets, interval valued fuzzy sets, Pythgorean fuzzy sets. In Section 3 

we propose cosine similarity measure of rough interval Pythagorean fuzzy sets and some properties of this 

similarity measure discussed. Sections 4 and 5 deals with jaccard, dice similarity measures. In Section 6 we 

present algorithm for proposed measures. Section 7 deals with numerical example of proposed measures. 

2| Basic Concepts 

In this section we list some basic concepts. 

Definition 1. Let x be a nonempty set. A mapping  �̃�: 𝑥 → 𝐷[0,1]  is called an interval valued fuzzy subset 

of x, where �̃�(𝑥) = [𝛺−(𝑥), 𝛺+(𝑥)], 𝑥 ∈ 𝑋, and 𝛺− and 𝛺+ are the fuzzy subets in X such that 𝛺−(𝑥) ≤ 𝛺+(𝑥) 

𝑥 ∈ 𝑋. 𝐷[0,1] denotes the set of closed subsets of [0,1]. 

Definition 2. [5]. Let 𝜗 be a congruence relation on X.  Le Ʌ t be any nonempty subset of X. The sets 

𝜗(Ʌ) = {𝑥 ∈ 𝑋/[𝑥]𝜗 ⊆ Ʌ}  and 𝜗(Ʌ) = {𝑥 ∈ 𝑋/[𝑥]𝜗 ∩ 𝜗 ≠ ∅} are called the lower and upper approximations of 

Ʌ. Then 𝜗(Ʌ) = (𝜗(Ʌ), 𝜗(Ʌ)) is called rough set in  (𝑋, 𝜗) ⟺ 𝜗(Ʌ) ≠ 𝜗(Ʌ). 

Definition 3. [3]. Let 𝜗 be an congruence relation on X.  Let Ʌ fuzzy subset of 𝑋. The upper and lower 

approximations of Ʌ defined by  𝜗(Ʌ)(𝑥) = ∨
𝑎∈[𝑥]𝜗

Ʌ(𝑎) and   𝜗(Ʌ)(𝑥) = ∧
𝑎∈[𝑥]𝜗

Ʌ(𝑎). 𝜗(Ʌ) = (𝜗(Ʌ), 𝜗(Ʌ)) is called a 

rough fuzzy set of Ʌ with respect to 𝜗 if  𝜗(Ʌ) ≠ 𝜗(Ʌ). 

Definition 4. [4]. Let �̃� be an interval-valued fuzzy subset of X and let 𝜗 be the complete congruence 

relation on X. Let 𝜗(�̃�) and 𝜗(�̃�) be the interval-valued fuzzy subset of X defined by, 𝜗(�̃�)(𝑛) =

∧𝑛∈[𝑦]𝜗 �̃�(𝑛) and  𝜗(�̃�)(𝑛) =∨𝑛∈[𝑦]𝜗
�̃�(𝑛). Then 𝜗(�̃�) = ( 𝜗(�̃�), 𝜗(�̃�)) is called an interval-valued rough 

fuzzy subset of X if  𝜗(�̃�) ≠ 𝜗(�̃�). 

Definition 5. [1]. Let X be a nonempty set then an Intutionistic fuzzy set can be defined as Ʌ𝛺 =

{(𝑥, 𝜇
𝛺

(𝑥), 𝛾
𝛺Ʌ

(𝑥)) /𝑥 ∈ 𝑋} where 𝜇𝛺Ʌ
(𝑥) 𝑎𝑛𝑑 𝛾Ʌ(𝑥) are mapping from X to [0,1] also 0 ≤ 𝜇𝛺Ʌ

(𝑥) ≤ 1,0 ≤

𝛾𝛺ɅɅ
(𝑥) ≤ 1,0 ≤ 𝜇𝛺Ʌ

(𝑥) + 𝛾𝛺Ʌ
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋  and represent the degrees of membership and non-

membership of element 𝑥 ∈ 𝑋 to set X. 

Definition 6. [11]. Let X be a nonempty set then an Pythagorean fuzzy set can be defined as 𝛺 =

{(𝑥, 𝜇𝛺(𝑥), 𝛾𝛺Ʌ
(𝑥)) /𝑥 ∈ 𝑋} where 𝜇𝛺(𝑥) 𝑎𝑛𝑑 𝛾𝛺Ʌ

(𝑥) are mapping from X to [0,1] also 0 ≤ 𝜇𝛺Ʌ
(𝑥) ≤ 1,0 ≤

𝛾𝛺(𝑥) ≤ 1,0 ≤ 𝜇𝛺
2
Ʌ
(𝑥) + 𝛾𝛺

2
Ʌ
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋 , and represent the degrees of membership and non 

membership of element 𝑥 ∈ 𝑋 to set X. 

Definition 7. [7]. Let X be a non-empty set then an Interval Pythagorean fuzzy set can be defined as 

follows �̃� = {(𝑥, 𝜇�̃�(𝑥), 𝛾�̃�(𝑥))/𝑥 ∈ 𝑋} where 𝜇�̃�(𝑥) = [𝜇�̃�
−(𝑥), 𝜇�̃�

+(𝑥)] and  𝛾�̃�(𝑥) = [𝛾�̃�
−(𝑥), 𝛾�̃�

+(𝑥)] are the 

intervals in [0,1] also 0 ≤ (𝜇+
�̃�
(𝑥))2 + (𝛾+

�̃�
(𝑥))2 ≤ 1. 
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3| Cosine Similarity Measures (CSM) of Rough Interval Pythagorean  

Fuzzy (RIPF) Sets.  

In this section we introduce the notion of CSM of RIPF sets also discuss some properties of RIPF sets. 

Also weighted CSM of RIPF sets are discussed.  

Definition 8. Let X be a nonempty set. Let �̃� = {(𝑛, 𝜇�̃�(𝑛), 𝛾�̃�(𝑛))/𝑛 ∈ 𝑋} be a pythagorean fuzzy set of 

X. Then rough interval Pythagorean fuzzy set is defined as 𝜗(�̃�) = (𝜗(�̃�), 𝜗(�̃�)) where  

𝜗(�̃�) = {〈𝑛, 𝜗(𝜇�̃�), 𝜗(𝛾�̃�)〉, 𝑛 ∈ 𝑋} and 𝜗(�̃�) = {〈𝑛, 𝜗(𝜇�̃�), 𝜗(𝛾�̃�)〉, 𝑛 ∈ 𝑋},  

with the condition that 0 ≤ (𝜗(𝜇�̃�))
2
+ (𝜗(𝛾�̃�))

2
≤ 1, 0 ≤ (𝜗(𝜇�̃�))

2
+ (𝜗(𝛾�̃�))

2
≤ 1. 

Here,  𝜗(𝜇
�̃�
)(𝑛) =∧𝑛∈[𝑦]𝜗 𝜇

�̃�
(𝑦) and  𝜗(𝛾�̃�)(𝑛) =∨𝑛∈[𝑦]𝜗

𝛾�̃�(𝑦) also, 

𝜗(𝜇�̃�)(𝑛) =∨𝑛∈[𝑦]𝜗
𝜇�̃�(𝑦) and  𝜗(𝛾�̃�)(𝑛) =∧𝑛∈[𝑦]𝜗

𝛾�̃�(𝑦). 

Definition 9. Let 𝜗 be an congruence relation on X. Consider two RIPF sets 𝜗(𝛺1̃), 𝜗(𝛺2̃) in 𝑋 =

{𝑥1, 𝑥2 ……𝑥𝑛}.  A CSM between 𝜗(𝛺1̃) and 𝜗(𝛺2̃) is defined as follows: 

 

Where 

 δμϑ(Ω1̃)
(xi) =

(ϑ(μ−(xi))+ϑ(μ+(xi))+ϑ(μ−(xi))+ϑ(μ+(xi)))

4
; 

δγϑ(Ω1̃)
(xi) =

(ϑ(γ−(xi)) + ϑ(γ+(xi)) + ϑ(γ−(xi)) + ϑ(γ+(xi)))

4
; 

δμϑ(Ω2̃)
(xi) =

(ϑ(μ−(xi)) + ϑ(μ+(xi)) + ϑ(μ−(xi)) + ϑ(μ+(xi)))

4
; 

δγϑ(Ω2̃)
(xi) =

(ϑ(γ−(xi)) + ϑ(γ+(xi)) + ϑ(γ−(xi)) + ϑ(γ+(xi)))

4
. 

Proposition 1. A RIPCSM between 𝜗(𝛺1̃) and 𝜗(𝛺2̃) satisfies the following properties: 

0 ≤ 𝐶𝑅𝐼𝑃𝐹 (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1; 

𝐶𝑅𝐼𝑃𝐹 (ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺  ϑ(Ω1̃) = ϑ(Ω2̃); 

𝐶𝑅𝐼𝑃𝐹 (ϑ(Ω1̃), ϑ(Ω2̃)) = 𝐶𝑅𝐼𝑃𝐹 (ϑ(Ω2̃), ϑ(Ω1̃)). 

CRIPF(ϑ(Ω1̃), ϑ(Ω2̃) )

=
1

n
∑

(δμϑ(Ω1̃)(xi)δμϑ(Ω1̃)(xi) + δγϑ(Ω1̃)(xi)δγϑ(Ω2̃)(xi))

√(δμϑ(Ω1̃)(xi))2 + (δγϑ(Ω1̃)(xi))2√(δμϑ(Ω2̃)(xi))2 + (δγϑ(Ω2̃)(xi))2

n

i=1

 . (1) 



307 

 

S
o

m
e
 s

im
il

a
ri

ty
 m

e
a
su

re
s 

o
f 

ro
u

g
h

 i
n

te
rv

a
l 

p
y
th

a
g

o
re

a
n

 f
u

z
z
y
 s

e
ts

 
  

Proof. It is obvious because all positive values of cosine function are within 0 and 1; it is obvious; for any 

two RIPF sets  𝜗(𝛺1̃) and 𝜗(𝛺2̃) , if  𝜗(𝛺1̃) =  𝜗(𝛺2̃) then,  

𝛿𝜇𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝜇𝜗(𝛺2̃)

(𝑥𝑖)  and 𝛿𝛾𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝛾𝜗(𝛺2̃)

(𝑥𝑖). Hence 𝑐𝑜𝑠(0) = 1. Conversely, if  

𝐶𝑅𝐼𝑃𝐹 (𝜗(𝛺1̃), 𝜗(𝛺2̃)) = 1, then 𝛿𝜇𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝜇𝜗(𝛺2̃)

(𝑥𝑖) and 𝛿𝛾𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝛾𝜗(𝛺1̃)

(𝑥𝑖). Hence  𝜗(𝛺1̃) =

 𝜗(𝛺2̃). 

If we consider weight 𝜔𝑖 of each element𝑥𝑖, a weighted RICSM between RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) is 

defined as follows: 

 

𝜔𝑖 ∈ [0,1], 𝑖 = 1,2,3… 𝑛 and ∑ 𝜔𝑖
𝑛
𝑖=1 = 1. If we take 𝜔𝑖 =

1

𝑛
, 𝑖 = 1,2,… . 𝑛 then 

𝐶𝑊𝑅𝐼𝑃𝐹 (𝜗(𝛺1̃), 𝜗(𝛺2̃)) = 𝐶𝑅𝐼𝑃𝐹 (𝜗(𝛺2̃), 𝜗(𝛺1̃)). 

The weighted RICSM between two RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) also satisfies the following properties. 

Proposition 2. 

0 ≤ CWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1; 

CWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺ ϑ(Ω1̃) = ϑ(Ω2̃); 

CWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = CWRIPF (ϑ(Ω2̃), ϑ(Ω1̃)). 

4| Jaccard Similarity Measure (JSM) of Rough Interval Pythagorean 

Fuzzy (RIPF) Set 

In this section we introduce the concept of JSM of RIPF sets. Weighted JSM of RIPF also derived. 

Definition 10. Let 𝜗 be an congruence relation on X. Consider two RIPF sets 𝜗(𝛺1̃), 𝜗(𝛺2̃) in 𝑋 =

{𝑥1, 𝑥2 ……𝑥𝑛}.   A JSM between 𝜗(𝛺1̃)and 𝜗(𝛺2̃) is defined as follows: 

 

CWRIPF(ϑ(Ω1̃), ϑ(Ω2̃) )

=
1

n
∑

(δμϑ(Ω1̃)(xi)δμϑ(Ω1̃)(xi) + δγϑ(Ω1̃)(xi)δγϑ(Ω2̃)(xi))

√(δμϑ(Ω1̃)(xi))2 + (δγϑ(Ω1̃)(xi))2√(δμϑ(Ω2̃)(xi))2 + (δγϑ(Ω2̃)(xi))2

n

i=1

 . (2) 

JIRPF(ϑ(Ω1̃), ϑ(Ω2̃) )

=   
1

n
∑

(δμϑ(Ω1̃)
(xi)δμ ϑ(Ω2̃)

(xi) + δγ ϑ(Ω1̃)
(xi)δγ ϑ(Ω2̃)

(xi))

[(δμ ϑ(Ω1̃)
(xi))2 + (δγ ϑ(Ω1̃)

(xi))

2

+ (δμ ϑ(Ω2̃)
(xi))

2

+ (δγ ϑ(Ω2̃)
(xi))

2

+

δμ ϑ(Ω1̃)
(xi)δμ ϑ(Ω2̃)

(xi) + δγ ϑ(Ω1̃)
(xi)δγ ϑ(Ω2̃)

(xi)]

n

i=1

 , (3) 
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where 

 𝛿𝜇 𝜗(𝛺1̃)
(𝑥𝑖) =

( 𝜗(𝜇−(𝑥𝑖))+ 𝜗(𝜇+(𝑥𝑖))+ 𝜗(𝜇−(𝑥𝑖))+ 𝜗(𝜇+(𝑥𝑖)))

4
, 

𝛿𝛾 𝜗(𝛺1̃)
(𝑥𝑖) =

( 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖))+ 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖))) 

4
 and  

𝛿𝜇 𝜗(𝛺2̃)
(𝑥𝑖) =

( 𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)) +  𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)))

4
, 

𝛿𝛾 𝜗(𝛺2̃)
(𝑥𝑖) =

( 𝜗(𝛾−(𝑥𝑖)) +  𝜗(𝛾+(𝑥𝑖)) +  𝜗(𝛾−(𝑥𝑖)) +  𝜗(𝛾+(𝑥𝑖)))

4
. 

Proposition 3. A RIPJSM between 𝜗(𝛺1̃) and 𝜗(𝛺2̃) satisfies the following properties: 

 0 ≤ JRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1, 

JRIPF(ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺ ϑ(Ω1̃) = ϑ(Ω2̃), 

JRIPF(ϑ(Ω1̃), ϑ(Ω2̃)) = JIRPF(ϑ(Ω2̃), ϑ(Ω1̃)). 

Proof. It is obvious because all positive values of cosine function are within 0 and 1; it is obvious; for 

any two RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃), if 𝜗(𝛺1̃) =  𝜗(𝛺2̃) then, 𝛿𝜇𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝜇𝜗(𝛺2̃)

(𝑥𝑖) and  𝛿𝛾
𝜗(𝛺1̃)

(𝑥𝑖) =

𝛿𝛾
𝜗(𝛺2̃)

(𝑥𝑖). Hence 𝑐𝑜𝑠(0) = 1. Conversely, if  𝐽𝑅𝐼𝑃𝐹(𝜗(𝛺1̃), 𝜗(𝛺2̃)) = 1, then 𝛿𝜇𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝜇𝜗(𝛺2̃)

(𝑥𝑖) and 

𝛿𝛾𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝛾𝜗(𝛺2̃)

(𝑥𝑖). Hence  𝜗(𝛺1̃) =  𝜗(𝛺2̃). 

If we consider weight 𝜔𝑖 of each element 𝑥𝑖, a weighted RIPJSM between RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) is 

defined as follows:  

𝜔𝑖 ∈ [0,1], 𝑖 = 1,2,3…𝑛 and ∑ 𝜔𝑖
𝑛
𝑖=1 = 1. If we take 𝜔𝑖 =

1

𝑛
, 𝑖 = 1,2,… . 𝑛 then 𝐽𝑊𝑅𝐼𝑃𝐹 (𝜗(𝛺1̃), 𝜗(𝛺2̃)) =

𝐽𝑅𝐼𝑃𝐹 (𝜗(𝛺2̃), 𝜗(𝛺1̃)). 

The weighted RIPJSM between two RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) also satisfies the following properties. 

Proposition 4. 

0 ≤ JWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1; 

JWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺ ϑ(Ω1̃) = ϑ(Ω2̃); 

JIRPF(ϑ(Ω1̃), ϑ(Ω2̃) )

=
1

n
∑ωi

(δμϑ(Ω1̃)
(xi)δμ ϑ(Ω2̃)

(xi) + δγ ϑ(Ω1̃)
(xi)δγ ϑ(Ω2̃)

(xi))

[(δμ ϑ(Ω1̃)
(xi))2 + (δγ ϑ(Ω1̃)

(xi))

2

+ (δμ ϑ(Ω2̃)
(xi))

2

+ (δγ ϑ(Ω2̃)
(xi))

2

+

δμ ϑ(Ω1̃)
(xi)δμ ϑ(Ω2̃)

(xi) + δγ ϑ(Ω1̃)
(xi)δγ ϑ(Ω2̃)

(xi)]

n

i=1

 . (4) 
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JWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = JWRIPF (ϑ(Ω2̃), ϑ(Ω1̃)). 

5| Dice Similarity Measure (DSM) of Rough Interval Pythagorean 

Fuzzy (RIPF) Set 

This section deals with DSM of RIPF sets. Some properties of this similarity measure are discussed. 

Definition 11. Let  𝜗(𝛺1̃) and 𝜗(𝛺2̃) be two RIPF set in𝑋 = {𝑥1, 𝑥2 ……𝑥𝑛}.  A DSM between 

𝜗(𝛺1̃)and  𝜗(𝛺2̃) is defined as follows: 

Where  

𝛿𝜇 𝜗(𝛺1̃)
(𝑥𝑖) =

( 𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)) +  𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)))

4
, 

𝛿𝛾 𝜗(𝛺1̃)
(𝑥𝑖) =

( 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖))+ 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖)))

4
 and  

𝛿𝜇 𝜗(𝛺2̃)
(𝑥𝑖) =

( 𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)) +  𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)))

4
, 

𝛿𝛾 𝜗(𝛺2̃)
(𝑥𝑖) =

( 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖))+ 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖)))

4
. 

Proposition 5. A RIPJSM between 𝜗(𝛺1̃) and 𝜗(𝛺2̃) satisfies the following properties: 

 0 ≤ DRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1; 

DRIPF(ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺ ϑ(Ω1̃) = ϑ(Ω2̃); 

DRIPF(ϑ(Ω1̃), ϑ(Ω2̃)) = DIRPF(ϑ(Ω2̃), ϑ(Ω1̃)). 

 Proof. Proof is similar to Proposition 3. 

If we consider weight 𝜔𝑖 of each element𝑥𝑖, a weighted RIPDSM between RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) is 

defined ∑ 𝜔𝑖
𝑛
𝑖=1 = 1.as follows: 

𝜔𝑖 ∈ [0,1], 𝑖 = 1,2,3… 𝑛 and  If we take 𝜔𝑖 =
1

𝑛
, 𝑖 = 1,2,… . 𝑛 then 𝐷𝑊𝑅𝐼𝑃𝐹 (𝜗(𝛺1̃), 𝜗(𝛺2̃)) =

𝐷𝑅𝐼𝑃𝐹 (𝜗(𝛺2̃), 𝜗(𝛺1̃)).  

DRIPF(ϑ(Ω1̃), ϑ(Ω2̃))

=
1

n
∑

2 (δμϑ(Ω1̃)(xi)δμϑ(Ω2̃)(xi) + δγϑ(Ω1̃)(xi)δγϑ(Ω2̃)(xi))

√(δμϑ(Ω1̃)(xi))2 + (δγϑ(Ω1̃)(xi))2√(δμϑ(Ω2̃)(xi))2 + (δγϑ(Ω2̃)(xi))2

n

i=1

. (5) 

𝐷𝑅𝐼𝑃𝐹(ϑ(Ω1̃), ϑ(Ω2̃)) =

1

𝑛
∑ 𝜔𝑖

2(𝛿𝜇ϑ(Ω1̃)(𝑥𝑖)𝛿𝜇ϑ(Ω2̃)(𝑥𝑖)+𝛿𝛾ϑ(Ω1̃)(𝑥𝑖)𝛿𝛾ϑ(Ω2̃)(𝑥𝑖))

√(𝛿𝜇ϑ(Ω1̃)(𝑥𝑖))2+(𝛿𝛾ϑ(Ω1̃)(𝑥𝑖))2√(𝛿𝜇ϑ(Ω2̃)(𝑥𝑖))2+(𝛿𝛾ϑ(Ω2̃)(𝑥𝑖))2

𝑛
𝑖=1  .         

(6) 
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The weighted RIPDSM between two RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) also satisfies the following properties. 

Proposition 6. 

0 ≤ DWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1; 

DWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺ ϑ(Ω1̃) = ϑ(Ω2̃); 

DWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = DWRIPF (ϑ(Ω2̃), ϑ(Ω1̃)). 

6| Decision Making Based on CSM, JSM and DSM under RIPF 

Environment  

This section deals with RIPSM between RIPF sets to the multi-criteria decision making problem. 

Assume that 𝐾 = {𝐾1, 𝐾2, … . 𝐾𝑚} be the set of attributes and 𝑄 = {𝑄1, 𝑄2, … . 𝑄𝑛} be the set of 

alternatives. The proposed decision making approach is described by the following steps. 

Algorithm 1. (See Fig. 1). 

Step 1. Construct the Decision Matrix with RIPF Number. The decision maker forms a decision matrix 

with respect to n alternatives and m attributes in terms of RIPF numbers.  

Step 2. Determine RIP Mean Operator. 

 〈δμ(xi), δγ(xi)〉 =
( 
  
  
  
  
 
(ϑ(μ−(xi))+ϑ(μ+(xi))+ϑ(μ−(xi))+ϑ(μ+(xi)))

4
,

(ϑ(γ−(xi))+ϑ(γ+(xi))+ϑ(γ−(xi))+ϑ(γ+(xi)))

4

) 
  
  
  
  
 

 

for 𝑖 = 1,2,… . 𝑛. 

 Step 3. Determine the Weights of the Attributes. Assume that the weight of the attributes 𝐾𝑗(j=1,2,…m) 

considered by the decision maker is 𝜔𝑗 (j=1,2,…m) where all 𝜔𝑗 ∈ [0,1], 𝑗 = 1,2,3…𝑚 and ∑ 𝜔𝑗
𝑚
𝑗=1 = 1. 

Step 4. Determine the Benefit Type Attributes and Cost Type Attributes  . Generally, the evaluation 

attribute can be categorized into two types: benefit type attribute and cost type attribute. 

For benefit type attribute: 𝑍∗ = {𝑚𝑎𝑥(𝜇𝑄𝑖
) , 𝑚𝑖𝑛(𝛾𝑄𝑖

)}. 

For cost type attribute: 𝑍∗ = {𝑚𝑖𝑛(𝜇𝑄𝑖
) , 𝑚𝑎𝑥(𝛾𝑄𝑖

)}. 

Step 5. Determine the Weighted RIPSM of the Alternatives. 

CWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) =  ∑ωi

n

i=1

CRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ; 

JWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) =  ∑ ωi
n
i=1 JRIPF (ϑ(Ω1̃), ϑ(Ω2̃)); 
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DWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) =  ∑ωi

n

i=1

DRIPF (ϑ(Ω1̃), ϑ(Ω2̃)). 

Step 6. Ranking the Alternatives. The ranking order of all alternatives can be determined based on the 

descending order of similarity measures. 

Step 7. End.  

Fig 1. A flowchart of the proposed decision making. 

 

7| Numerical Example for RIPCSM, RIPJSM and RIPDSM 

 Let us consider a decision maker wants to select the house from 𝑄 = {𝑄1, 𝑄2, 𝑄3} by considering four 

attributes, namely expensive (𝐾1), reasonable price (𝐾2), low price (𝐾3) and the risk factor (𝐾4). By proposed 

approach discussed above, the considered problem solved by the following steps: 

Step 1. The decision maker forms a decision matrix with respect to the three alternatives and four attributes 

in terms of RIP number as follows.                                     

Table 1. Decision matrix. 

 

 

 

Step 2. Determine the 

RIP mean operator. 

𝐊𝟏 𝐊𝟐 𝐊𝟑 𝐊𝟒 
𝐐𝟏 ([.3,.4],[.5,.7])

, 
([.3,.4],[.5,.7]) 

([.5,.6],[.8,.9])
, 

([.5,.6],[.8,.9]) 

([.1,.2],[.7,.8])
, 

([.5,.8],[.4,.6]) 

([.1,.2],[.7,.8])
, 

([.5,.8],[.4,.6]) 
𝐐𝟐 ([.7,.8],[.6,.7])

, 
([.7,.8],[.6,.7]) 

([.7,.8],[.6,.7])
, 

([.8,.9],[.4,.5]) 

([.5,.6],[.4,.5])
, 

([.5,.6],[.4,.5]) 

([.7,.8],[.6,.7])
, 

([.8,.9],[.4,.5]) 
𝐐𝟑 ([.5,.7],[.3,.4])

, 
([.8,.9],[.1,.2]) 

([.5,.7],[.3,.4])
, 

([.8,.9],[.1,.2]) 

([.5,.7],[.3,.4])
, 

([.8,.9],[.1,.2]) 

([.8,.9],[.1,.2])
, 

([.8,.9],[.1,.2]) 
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Table 2. Transformed decision matrix. 

Step 3. The weight vectors considered by 

the decision maker are 0.35, 0.25, 0.25 and 0.15 respectively. 

Step 4. Determine the benefit type attribute and cost type attribute. Here three benefit types 

attributes  𝐾1,𝐾2,𝐾3 and one cost type attribute 𝐾4. 

      Z ∗ = {[0.75,0.25], [. 8, .25], [. 725, .25], [.825, .15]}.  

Step 5. Calculate the weighted RIP similarity measures of the alternatives. Calculated values of 

weighted RIP similarity values are 

𝐶𝑊𝐼𝑅𝑃𝐹(𝑄1, 𝑍
∗) = .7582; 

𝐶𝑊𝐼𝑅𝑃𝐹(𝑄2, 𝑍
∗) = .9336; 

𝐶𝑊𝐼𝑅𝑃𝐹(𝑄3, 𝑍
∗) = .9999; 

𝐽𝑊𝐼𝑅𝑃𝐹(𝑄1, 𝑍
∗) = .6046; 

𝐽𝑊𝐼𝑅𝑃𝐹(𝑄2, 𝑍
∗) = .8538; 

𝐽𝑊𝐼𝑅𝑃𝐹(𝑄3, 𝑍
∗) = .9975; 

𝐷𝑊𝐼𝑅𝑃𝐹(𝑄1, 𝑍
∗) = .7018; 

𝐷𝑊𝐼𝑅𝑃𝐹(𝑄2, 𝑍
∗) = .9208; 

𝐷𝑊𝐼𝑅𝑃𝐹(𝑄3, 𝑍
∗) = .9988. 

Step 6. Ranking the alternatives is prepared based on the descending order of similarity measures. 

Highest value reflects the best alternative. Henc𝑄3e is the best alternative.    

8| Conclusion 

In this paper, we have defined Cosine, Jaccard, Dice similarity measure, Weighted Cosine, Jaccard and 

Dice similarity measures. We have also proved their basic properties. We have developed MADM 

strategies based on the proposed measures respectively. We have presented an example for select a best 

house for live. The thrust of the concept presented in this article will be in pattern recognition, medical 

diagnosis etc. in rough interval Pythagorean fuzzy sets. 
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1 | Introduction  

The Fuzzy Set (FS) was introduced by Zadeh [14] in 1965. It is identified as better tool for the 

scientific study of uncertainty, and came as a boost to the researchers working in the field of 

uncertainty. Many extensions and generalizations of FS was conceived by a number of researchers 

and a large number of real-life applications were developed in a variety of areas. In addition to this, 

parallel analysis of the classical results of many branches of Mathematics was also carried out in the 

fuzzy settings. Properties of fuzzy ideals in near-rings was studied by Hong et al. [3]. The monograph 

by Chinnadurai [1] gives a detailed discussion on fuzzy ideals in algebraic structures. Fuzzy ideals in 

Gamma near-ring ℛ  was discussed by Jun et al. [6] and [7] and Satyanarayana [8]. Thillaigovindan et 

al. [13] studied the interval valued fuzzy quasi-ideals of semigroups. Meenakumari and Tamizh 

chelvam [9] have defined fuzzy bi-ideal in ℛ  and established some properties of this structure. 

Srinivas and Nagaiah [11] have proved some results on 𝑇-fuzzy ideals of 𝛤 -near-rings.  
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Thillaigovindan et al. [12] worked on interval valued fuzzy ideals of near-rings. Chinnadurai and Kadalarasi 

[2] have defined the direct product of fuzzy ideals in near-rings. Kutlu Gündoğdu and Kahraman [8] 

introduced spherical fuzzy sets as an extension of picture fuzzy sets. Chinnadurai and Shakila [3] and [4] 

discussed T-fuzzy bi-ideal of gamma near-ring and spherical fuzzy bi-ideals of gamma near-rings.  

In this research work, we introduce the notion of Spherical Interval-Valued Fuzzy Bi-Ideal (SIVFBI) of 

gamma near-ring ℛ  as a generalization of spherical fuzzy bi-ideals of gamma near-rings ℛ . We will discuss 

some of the  properties of spherical interval-valued fuzzy bi-ideal of gamma near-ring ℛ . 

2| Preliminaries  

In this section we present some definitions which are used for this research. Let ℛ be a near-ring and 𝛤 

be a non-empty set such tha ℛ  t is a Gamma near-ring. A subgroup 𝐻 of (ℛ , +) is a Bi-Ideal (BI) if and 

only if 𝐻𝛤ℛ𝛤𝐻 ⊆ 𝐻. A Spherical Fuzzy Set (SFS) 𝐴̃
𝑠 of the universe of discourse 𝑈 is given by, 

𝐴̃
𝑠 = {𝑢, (�̃�(𝑢), 𝜈(̃𝑢), 𝜉(̃𝑢))|𝑢 ∈ 𝑈} where �̃�(𝑢): 𝑈 ⟶ [0,1], 𝜈̃(𝑢): 𝑈 ⟶ [0,1] and 𝜉(̃𝑢): 𝑈 ⟶ [0,1] and 0 ≤

�̃�2(𝑢) + 𝜈̃2(𝑢) + 𝜉2̃(𝑢) ≤ 1, 𝑢 ∈ 𝑈. 

For each 𝑢, the numbers �̃�(𝑢), 𝜈(̃𝑢) and 𝜉(̃𝑢) are the degree of membership, non-membership and hesitancy 

of 𝑢 to 𝐴�̃�, respectively. 

A SFS 𝐴𝑠 = (𝜇, 𝜈, 𝜉), where 𝜇: ℛ ⟶ [0,1], 𝜈: ℛ ⟶ [0,1] and 𝜉: ℛ ⟶ [0,1] of ℛ  is said to be a Spherical 

Fuzzy Bi-Ideal (SFBI) of ℛ  if the following conditions are satisfied  

  μ(u − v) ≥ min{μ(u), μ(v)},  

 ν(u − v) ≥ min{ν(u), ν(v)},  

  ξ(u − v) ≤ max{ξ(u), ξ(v)},  

 μ(uαvβw) ≥ min{μ(u), μ(w)},  

  ν(uαvβw) ≥ min{ν(u), ν(w)},  

 ξ(uαvβw) ≤ max{ξ(u), ξ(w)},  

for all 𝑢, 𝑣, 𝑤 ∈ ℛ  and 𝛼, 𝛽 ∈ 𝛤 .  

3| Spherical Interval-Valued Fuzzy Bi-Ideals of Gamma Near-Rings 

In this section we define SIVFBI of ℛ  and study some of it properties. We obtain the condition for an 

arbitrary fuzzy subset of ℛ  is said to be SIVFBI.  

Definition 1.  A spherical fuzzy set 𝐴̃
𝑠 = (�̃�, 𝜈,̃ 𝜉)̃ of ℛ  is to be SIVFBI of ℛ  if the following conditions 

are satisfied  

 μ̃(u − v) ≥ min i{μ̃(u), μ̃(v)},  

  ν̃(u − v) ≥ min i{ν̃(u), ν̃(v)},  

 ξ̃(u − v) ≤ max i{ξ̃(u), ξ̃(v)},  

  μ̃(uαvβw) ≥ min i{μ̃(u), μ̃(w)},  
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 ν̃(uαvβw) ≥ min i{ν̃(u), ν̃(w)},  

  ξ̃(uαvβw) ≤ max i{ξ̃(u), ξ̃(w)},  

for all 𝑢, 𝑣, 𝑤 ∈ ℛ and 𝛼, 𝛽 ∈ 𝛤, where �̃�: ℛ ⟶ 𝐷[0,1], 𝜈̃: ℛ ⟶ 𝐷[0,1] and 𝜉:̃ ℛ ⟶ 𝐷[0,1]. Here 

𝐷[0,1] denotes the family of closed subintervals of [0,1]. 

Example 1.  Let ℛ = {0,1,2,3} with binary operation  + " on ℛ , 𝛤 = {0,1} and ℛ × 𝛤 × ℛ ⟶ ℛ  be a 

mapping. From the cayley table, 

 

  

 

 

 

 

 

 

Define SFS �̃�: ℛ ⟶ 𝐷[0,1] by �̃�(0) = [0.2,0.3], �̃�(1) = [0.3,0.6], �̃�(2) = [0.7,0.9], �̃�(3) = [0.5,0.9]; 

𝜈:̃ ℛ ⟶ 𝐷[0,1] by 𝜈(̃0) = [0.2,0.4], 𝜈̃(1) = [0.5,0.6], 𝜈(̃2) = [0.6,0.7], 𝜈̃(3) = [0.7,0.9]; 𝜉:̃ ℛ ⟶ 𝐷[0,1] by 

𝜉(̃0) = [0.1,0.3], 𝜉(̃1) = [0.4,0.6], 𝜉(̃2) = [0.8,0.9], 𝜉(̃3) = [0.5,0.7]. Then 𝐴̃
𝑠 is SIVFBI of ℛ .  

Theorem 1. Let 𝐴�̃� = [𝐴𝑠
−; 𝐴𝑠

+] be a Spherical interval-valued fuzzy subset of a gamma near-ring ℛ , 

then 𝐴̃
𝑠 is a SIVFBI of ℛ  if and only if 𝐴𝑠

−, 𝐴𝑠
+ are SFBI of ℛ .  

Proof. If 𝐴�̃� is a SIVFBI of ℛ . For any 𝑢, 𝑣, 𝑤 ∈ ℛ . Now,  

[μ−(u − v), μ+(u − v)] = μ̃(u − v) 

≥ min i{μ̃(u), μ̃(v)} 

= min i{[μ−(u), μ+(u)], [μ−(v), μ+(v)]} 

= min i{[μ−(u), μ−(v)]}, min i{[μ+(u), μ+(v)]}, 

[ν−(u − v), ν+(u − v)] = ν̃(x − y) 

≥ min i{ν̃(u), ν̃(v)} 

= min i{[ν−(u), ν+(u)], [ν−(v), ν+(v)]} 

= min i{[ν−(u), ν−(v)]}, min i{[ν+(u), ν+(v)]}, and 

[ξ−(u − v), ξ+(u − v)] = ξ̃(u − v) 

+ 0 1 2 3 

0 0 1 2 3 
1 1 0 3 2 
2 2 3 1 0 
3 3 2 0 1 

0 0 1 2 3 

0 0 0 0 0 
1 0 1 1 1 
2 0 2 2 2 
3 0 3 3 3 

1 0  1  2  3 

0 0  0  0  0 

1 0  0  0  0 

2 0  0  0  0 

3 0  0  0  0 
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≤ max i{ξ̃(u), ξ̃(v)} 

= max i{[ξ−(u), ξ+(u)], [ξ−(v), ξ+(v)]} 

= max i{[ξ−(u), ξ−(v)]}, max i{[ξ+(u), ξ+(v)]}; 

[μ−(uαvβw), μ+(uαvβw)] = μ̃(uαvβw) 

≥ min i{μ̃(u), μ̃(w)} 

= min i{[μ−(u), μ+(u)], [μ−(w), μ+(w)]} 

= min i{[μ−(u), μ−(w)]}, min i{[μ+(u), μ+(w)]}; 

[ν−(uαvβw), ν+(uαvβw)] = ν̃(uαvβw) 

≥ min i{ν̃(u), ν̃(w)} 

= min i{[ν−(u), ν+(u)], [ν−(w), ν+(w)]} 

= min i{[ν−(u), ν−(w)]}, min i{[ν+(u), ν+(w)]}, and 

[ξ−(uαvβw), ξ+(uαvβw)] = ξ̃(uαvβw) 

≤ max i{ξ̃(u), ξ̃(w)} 

= max i{[ξ−(u), ξ+(u)], [ξ−(w), ξ+(w)]} 

= max i{[ξ−(u), ξ−(w)]}, max i{[ξ+(u), ξ+(w)]}. 

Therefore 𝐴𝑠
−, 𝐴𝑠

+ are SFBI o ℛ f. 

Conversely let 𝐴𝑠
−, 𝐴𝑠

+ are SFBI of ℛ . Let 𝑢, 𝑣, 𝑤 ∈ ℛ . Now, 

μ̃(u − v) = [μ−(u − v), μ+(u − v)] 

≥ [min i{μ−(u), μ−(v)}, min i{μ+(u), μ+(v)}] 

= min i{μ−(u), μ+(u)}, min i{μ−(v), μ+(v)} 

= min i{μ̃(u), μ̃(v)}; 

ν̃(u − v) = [ν−(u − v), ν+(u − v)] 

≥ [min i{ν−(u), ν−(v)}, min i{ν+(u), ν+(v)}] 

= min i{ν−(u), ν+(u)}, min i{ν−(v), ν+(v)} 

= min i{ν̃(u), ν̃(v)}, and 

ξ̃(u − v) = [ξ−(u − v), ξ+(u − v)] 
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≤ [max i{ξ−(u), ξ−(v)}, max i{ξ+(u), ξ+(v)}] 

= max i{ξ−(u), ξ+(u)}, max i{ξ−(v), ξ+(v)} 

= max i{ξ̃(u), ξ̃(v)}; 

μ̃(uαvβw) = [μ−(uαvβw), μ+(uαvβw)] 

≥ [min i{μ−(u), μ−(w)}, min i{μ+(u), μ+(w)}] 

= min i{μ−(u), μ+(u)}, min i{μ−(w), μ+(w)} 

= min i{μ̃(u), μ̃(w)}; 

ν̃(uαvβw) = [ν−(uαvβw), ν+(uαvβw)] 

≥ [min i{ν−(u), ν−(w)}, min i{ν+(u), ν+(w)}] 

= min i{ν−(u), ν+(u)}, min i{ν−(w), ν+(w)} 

= min i{ν̃(u), ν̃(w)}, and 

ξ̃(uαvβw) = [ξ−(uαvβw), ξ+(uαvβw)] 

≤ [max i{ξ−(u), ξ−(w)}, max i{ξ+(u), ξ+(w)}] 

= max i{ξ−(u), ξ+(u)}, max i{ξ−(w), ξ+(w)} 

= max i{ξ̃(u), ξ̃(w)}. 

So 𝐴�̃� is a SIVFBI of ℛ . 

Hence the proof. 

Theorem 2. If {�̃�𝑠𝑖
; 𝑖 ∈ 𝐼} be a family of SIVFBI of a gamma near-ring ℛ , then ⋂

𝑖∈𝐼
𝐴̃

𝑠𝑖
 is also SIVFBI of 

ℛ , where 𝐼 is an index set.  

 Proof. Let {𝐴�̃�𝑖
; 𝑖 ∈ 𝐼} be a family of SIVFBI of a gamma near-ring ℛ . For any 𝑢, 𝑣, 𝑤 ∈ ℛ  and 𝛼, 𝛽 ∈ 𝛤 . 

⋂
i∈I

μ̃i(u − v) = infi∈I
i μ̃i(u − v)  

≥ infi∈I
i min i{μ̃i(u), μ̃i(v)} 

= min i{infi∈I
i μ̃i(u), infi∈I

i μ̃i(v)} 

= min i{⋂
i∈I

μ̃i(u), ⋂
i∈I

μ̃i(v)}; 

⋂
i∈I

ν̃i(u − v) = infi∈I
i ν̃i(u − v)  
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≥ infi∈I
i min i{ν̃i(u), ν̃i(v)} 

= min i{infi∈I
i ν̃i(u), infi∈I

i ν̃i(v)} 

= min i{⋂
i∈I

ν̃i(u), ⋂
i∈I

ν̃i(v)}; 

⋂
i∈I

ξ̃i(u − v) = infi∈I
i ξ̃i(u − v)  

≤ infi∈I
i max i{ξ̃i(u), ξ̃i(v)} 

= max i{infi∈I
i ξ̃i(u), infi∈I

i ξ̃i(v)} 

= max i{⋂
i∈I

ξ̃i(u), ⋂
i∈I

ξ̃i(v)}; 

⋂
i∈I

μ̃i(uαvβw) = infi∈I
i μ̃i(uαvβw)  

≥ infi∈I
i min i{μ̃i(u), μ̃i(w)} 

= min i{infi∈I
i μ̃i(u), infi∈I

i μ̃i(w)} 

= min i{⋂
i∈I

μ̃i(u), ⋂
i∈I

μ̃i(w)}; 

⋂
i∈I

ν̃i(uαvβw) = infi∈I
i ν̃i(uαvβw)  

≥ infi∈I
i min i{ν̃i(u), ν̃i(w)} 

= min i{infi∈I
i ν̃i(u), infi∈I

i ν̃i(w)} 

= min i{⋂
i∈I

ν̃i(u), ⋂
i∈I

ν̃i(w)}, and 

⋂
i∈I

ξ̃i(uαvβw) = infi∈I
i ξ̃i(uαvβw)  

≤ infi∈I
i max i{ξ̃i(u), ξ̃i(w)} 

= max i{infi∈I
i ξ̃i(u), infi∈I

i ξ̃i(w)} 

= max i{⋂
i∈I

ξ̃i(u), ⋂
i∈I

ξ̃i(w)}. 

Hence the proof. 

Theorem 3. If {�̃�𝑠𝑖
; 𝑖 ∈ 𝐼} be a family of SIVFBI of a gamma near-ring ℛ , then ⋃

𝑖∈𝐼
𝐴̃

𝑠𝑖
 is also SIVFBI of 

ℛ , where I is an index set.  

Proof. Let {𝐴�̃�𝑖
; 𝑖 ∈ 𝐼} be a family of SIVFBI of a gamma near-ring ℛ . For any 𝑢, 𝑣, 𝑤 ∈ ℛ  and 𝛼, 𝛽 ∈ 𝛤 . 
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⋃
i∈I

μ̃i(u − v) = supi∈I
i μ̃i(u − v)  

≥ supi∈I
i min i{μ̃i(u), μ̃i(v)} 

= min i{supi∈I
i μ̃i(u), supi∈I

i μ̃i(v)} 

= min i{⋃
i∈I

μ̃i(u), ⋃
i∈I

μ̃i(v)}; 

⋃
i∈I

ν̃i(u − v) = supi∈I
i ν̃i(u − v)  

≥ supi∈I
i min i{ν̃i(u), ν̃i(v)} 

= min i{supi∈I
i ν̃i(u), supi∈I

i ν̃i(v)} 

= min i{⋃
i∈I

ν̃i(u), ⋃
i∈I

ν̃i(v)}; 

⋃
i∈I

ξ̃i(u − v) = infi∈I
i ξ̃i(u − v)  

≤ supi∈I
i max i{ξ̃i(u), ξ̃i(v)} 

= max i{supi∈I
i ξ̃i(u), supi∈I

i ξ̃i(v)} 

= max i{⋃
i∈I

ξ̃i(u), ⋃
i∈I

ξ̃i(v)}; 

⋃
i∈I

μ̃i(uαvβw) = supi∈I
i μ̃i(uαvβw)  

≥ supi∈I
i min i{μ̃i(u), μ̃i(w)} 

= min i{supi∈I
i μ̃i(u), supi∈I

i μ̃i(w)} 

= min i{⋂
i∈I

μ̃i(u), ⋃
i∈I

μ̃i(w)}; 

⋃
i∈I

ν̃i(uαvβw) = supi∈I
i ν̃i(uαvβw)  

≥ supi∈I
i min i{ν̃i(u), ν̃i(w)} 

= min i{supi∈I
i ν̃i(u), supi∈I

i ν̃i(w)} 

= min i{⋃
i∈I

ν̃i(u), ⋃
i∈I

ν̃i(w)}, and 

⋃
i∈I

ξ̃i(uαvβw) = supi∈I
i ξ̃i(uαvβw)  

≤ infi∈I
i max i{ξ̃i(u), ξ̃i(w)} 

  = max i{supi∈I
i ξ̃i(u), supi∈I

i ξ̃i(w)} 
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= max i{⋃
i∈I

ξ̃i(u), ⋃
i∈I

ξ̃i(w)}. 

Hence the proof. 

Theorem 4. If 𝐴�̃� and �̃�𝑠 are SIVFBIs of ℛ , then 𝐴̃
𝑠 ∧ �̃�𝑠 is SIVFBI of ℛ .  

Proof. Let  and �̃�𝑠 are SFBIs of ℛ . Let 𝑢, 𝑣, 𝑤 ∈ ℛ  and 𝛼, 𝛽 ∈ 𝛤 . Then, 

(�̃� ∧ �̃�𝑠)(𝑢 − 𝑣) = 𝑚𝑖𝑛𝑖{�̃�(𝑢 − 𝑣), �̃�𝑠(𝑢 − 𝑣)}, since by (�̃� ∧ �̃�)(𝑢) = 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑢)}  

≥ min i{min i{μ̃(u), μ̃(v)}, min i{σ̃s(u), σ̃s(v)}} 

= min i{min i{min i{μ̃(u), μ̃(v), σ̃s(u)}, σ̃s(v)}} 

= min i{min i{min i{μ̃(u), σ̃s(u)}, μ̃(v)}, σ̃s(v)} 

= min i{min i{μ̃(u), σ̃s(u)}, min i{μ̃(v), σ̃s(v)} 

= min i{μ̃ ∧ σ̃(u)), (μ̃ ∧ σ̃(v))}. 

Also (ν̃ ∧ σ̃s)(u − v) ≥ min i{ν̃ ∧ σ̃(u)), (ν̃ ∧ σ̃(v))} and (ξ̃ ∧ σ̃s)(u − v) ≤ max i{ξ̃ ∧ σ̃(u)), (ξ̃ ∧

σ̃(v))}. 

Since  (�̃�(𝑢𝛼𝑣𝛽𝑤) ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)).  

(μ̃ ∧ σ̃s)(uαvβw) = min i{μ̃(uαvβw), σ̃s(uαvβw))  

≥ min i{min i{μ̃(u), Ã s(w)}, min i{σ̃s(u), σ̃s(w)}} 

= min i{min i{μ̃(u), σ̃s(u)}, min i{μ̃(w)}, σ̃s(w)}} 

= min i{(μ̃ ∧ σ̃s)(u), (μ̃ ∧ σ̃s)(w)}. 

Also (𝜈̃ ∧ �̃�𝑠)(𝑢𝛼𝑣𝛽𝑤) ≥ 𝑚𝑖𝑛𝑖{(𝜈̃ ∧ �̃�𝑠)(𝑢), (𝜈̃ ∧ �̃�𝑠)(𝑤) and (𝜉̃ ∧ �̃�𝑠)(𝑢𝛼𝑣𝛽𝑤) ≤ 𝑚𝑎𝑥𝑖{(𝜉̃ ∧ �̃�𝑠)(𝑢), (𝜉̃ ∧ �̃�𝑠)(𝑤)). 

Hence (𝐴�̃� ∧ �̃�𝑠) is a SIVFBI of ℛ . 

Lemma 1. Let A be BI of ℛ . For any 0 < m < 1, there exists a SIVFBI 𝐴𝑠 of ℛ  such that 𝐴̃
𝑠𝑚

= 𝐴.  

 Proof. Let 𝐴 be BI of ℛ . Define 𝐴�̃�: ℛ ⟶ [0,1] by  

Ã s(u) = {
m, if   u ∈ A
0, if   u ∉ A.

 

where 𝑚 be a constant in (0,1). Clearly �̃�𝑠𝑚
= 𝐴. Let 𝑢, 𝑣 ∈ ℛ . If 𝑢, 𝑣 ∈ 𝐴, then �̃�(𝑢 − 𝑣) = 𝑚 ≥

𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)}, �̃�(𝑢 − 𝑣) = 𝑚 ≥ 𝑚𝑖𝑛𝑖{𝜈(̃𝑢), 𝜈(̃𝑣)} and 𝜉(̃𝑢 − 𝑣) = 𝑚 ≤ 𝑚𝑎𝑥𝑖{𝜉(̃𝑢), 𝜉(̃𝑣)}. 

 

If at least one of 𝑢 and 𝑣 is not in 𝐴, then 𝑢 − 𝑣 ∉ 𝐴 and so �̃�(𝑢 − 𝑣) = 0 = 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)}, 𝜈̃(𝑢 − 𝑣) = 0 =

𝑚𝑖𝑛𝑖{𝜈(̃𝑢), 𝜈(̃𝑣)} and 𝜉(̃𝑢 − 𝑣) = 0 = 𝑚𝑎𝑥𝑖{𝜉(̃𝑢), 𝜉(̃𝑣)}.  
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Let 𝑢, 𝑣, 𝑤 ∈ ℛ  and 𝛼, 𝛽 ∈ 𝛤 . If 𝑢, 𝑤 ∈ 𝐴, then �̃�(𝑢), 𝜈(̃𝑢), 𝜉(̃𝑢) = 𝑚; �̃�(𝑤), 𝜈̃(𝑤), 𝜉(̃𝑤) = 𝑚. Also 

�̃�(𝑢𝛼𝑣𝛽𝑤) = 𝑚 ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑤)}, 𝜈(̃𝑢𝛼𝑣𝛽𝑤) = 𝑚 ≥ 𝑚𝑖𝑛𝑖{𝜈(̃𝑢), 𝜈(̃𝑤)} and 𝜉(̃𝑢𝛼𝑣𝛽𝑤) = 𝑚 ≤

𝑚𝑎𝑥𝑖{𝜉(̃𝑢), 𝜉(̃𝑤)}. 

If at least one of 𝑢 and 𝑤 is not in 𝐴, then �̃�(𝑢𝛼𝑣𝛽𝑤) ≥ 0 = 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑤)}, 𝜈̃(𝑢𝛼𝑣𝛽𝑤) ≥ 0 =

𝑚𝑖𝑛𝑖{𝜈(̃𝑢), 𝜈(̃𝑤)} and 𝜉(̃𝑢𝛼𝑣𝛽𝑤) ≤ 0 = 𝑚𝑎𝑥𝑖{𝜉(̃𝑢), 𝜉(̃𝑤)} .  

Thus �̃�𝑠 is SIVFBI of ℛ . 

Theorem 5. If 𝐴�̃� be SIVFBI of ℛ, then the complement 𝐴̃
𝑠 is also SIVFBI o ℛ f.  

Proof. For 𝑢, 𝑣, 𝑤 ∈ ℛ  and 𝛼, 𝛽 ∈ 𝛤 , we have  

�̃�(𝑢 − 𝑣) = 1 − �̃�(𝑢 − 𝑣) ≥ 1 − 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)}=𝑚𝑖𝑛𝑖{1 − �̃�(𝑢),1 − �̃�(𝑣)}= 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)}, and also 𝜈(̃𝑢 −

𝑣) ≥ 𝑚𝑖𝑛𝑖{𝜈(̃𝑢), 𝜈(̃𝑣)},  𝜉(̃𝑢 − 𝑣) ≤ 𝑚𝑎𝑥𝑖{𝜉(̃𝑢), 𝜉(̃𝑣)}. 

�̃�(𝑢𝛼𝑣𝛽𝑤) = 1 − �̃�(𝑢𝛼𝑣𝛽𝑤) ≥ 1 − 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑤)}=𝑚𝑖𝑛𝑖{1 − �̃�(𝑢),1 − �̃�(𝑤)}= 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑤)), and also  

𝜈(̃𝑢𝛼𝑣𝛽𝑤) ≥ 𝑚𝑖𝑛𝑖{𝜈(̃𝑢), 𝜈̃(𝑤)},  𝜉(̃𝑢𝛼𝑣𝛽𝑤) ≤ 𝑚𝑎𝑥𝑖{𝜉(̃𝑢), 𝜉(̃𝑤)}.  

Hence 𝐴�̃� is also SIVFBI of ℛ .  

Lemma 6. Let 𝑈 is fuzzy subset of ℛ . Then 𝑈 is BI of ℛ  if and only if 𝐴̃
𝑠𝑈

 is SIVFBI of ℛ .  

Proof. Let 𝑈 be BI of ℛ . For 𝑢, 𝑣 ∈ 𝑈, 𝑢 − 𝑣 ∈ 𝑈. 

Let 𝑢, 𝑣 ∈ ℛ . 

case(a): If 𝑢, 𝑣 ∈ 𝑈, then �̃�𝑈(𝑢) = 1 and �̃�𝑈(𝑣) = 1. Thus �̃�𝑈(𝑢 − 𝑣) = 1 ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)}. 

case(b): If 𝑢 ∈ 𝑈 and 𝑣 ∉ 𝑈, then �̃�𝑈(𝑢) = 1 and �̃�𝑈(𝑣) = 0. Thus �̃�𝑈(𝑢 − 𝑣) = 0 ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)). 

case(c): If 𝑢 ∉ 𝑈 and 𝑣 ∈ 𝑈, then �̃�𝑈(𝑢) = 0 and �̃�𝑈(𝑣) = 1. Thus �̃�𝑈(𝑢 − 𝑣) = 0 ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)}. 

case(d): If 𝑢 ∉ 𝑈 and 𝑣 ∉ 𝑈, then �̃�𝑈(𝑢) = 0 and �̃�𝑈(𝑣𝜉�̃�(𝑢 − 𝑣) ≤ 𝑚𝑎𝑥𝑖{𝜉(̃𝑢), 𝜉(̃𝑣)}) = 0. Thu �̃�𝑈(𝑢 − 𝑣) =

0s  ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)}. 

In the above four cases �̃�𝑈(𝑢 − 𝑣) ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)}. 

Let 𝑢, 𝑣, 𝑤 ∈ ℛ . 

case(a): If  𝑢 ∈ 𝑈 and 𝑤 ∈ 𝑈, then  �̃�𝑈(𝑢) = 1 and �̃�𝑈(𝑤) = 1 . Thus  �̃�𝑈(𝑢𝛼𝑣𝛽𝑤) = 1 ≥

𝑚𝑖𝑛𝑖{�̃�𝑠𝑈
�̃�(𝑢), �̃�(𝑤)}. 

case(b): If  𝑢 ∈ 𝑈 an 𝑤 ∉ 𝑈 d, then �̃�𝑈(𝑢) = 1  and �̃�𝑈(𝑤) = 0. Thus �̃�
𝑈

(𝑢𝛼𝑣𝛽𝑤) = 0  ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑤)}. 

case(c): If 𝑢 ∉ 𝑈 and 𝑤 ∈ 𝑈, then �̃�𝑈(𝑢) = 0 and �̃�𝑈(𝑤) = 1. Thus 𝜇𝑈(𝑢𝛼𝑣𝛽𝑤) = 0 ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑤)}. 

case(d): If 𝑢 ∉ 𝑈 and 𝑤 ∉ 𝑈, then �̃�𝑈(𝑢) = 0 and �̃�𝑈(𝑤) = 0. Thus �̃�𝑈(𝑢𝛼𝑣𝛽𝑤) = 0 ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑤)}. 

Also 𝜈̃𝑈(𝑢𝛼𝑣𝛽𝑤) ≥ 𝑚𝑖𝑛𝑖{𝜈(̃𝑢), 𝜈̃(𝑤)} and𝜉�̃�(𝑢𝛼𝑣𝛽𝑤) ≤ 𝑚𝑎𝑥𝑖{𝜉(̃𝑢), 𝜉(̃𝑤)}  Thus 𝐴̃
𝑠𝑈

 is a SIVFBI of ℛ . 

Conversely, suppose  is a SIVFBI of ℛ . Then by Lemma 4 𝐴̃
𝑠𝑈

 has only two elements. 
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Hence 𝑈 is BI of ℛ . 

Theorem 7. If ℛ  be a gamma near-ring and 𝐴�̃� be SIVFBI of ℛ , then the set ℛ𝐴̃𝑠
= {𝑢 ∈ ℛ |𝐴̃

𝑠(𝑢) =

𝐴̃
𝑠(0)} is BI of ℛ .   

Proof. Let 𝐴̃
𝑠 be SIVFBI of and le 𝑢, 𝑣, 𝑤 ∈ ℛ t. Then 

�̃�(𝑢 − 𝑣) ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑣)} = 𝑚𝑖𝑛𝑖{�̃�(0), �̃�(0)} = �̃�(0). So  �̃�(𝑢 − 𝑣) = �̃�(0), then 𝑢 − 𝑣 ∈ ℛ𝐴̃𝑠
. 

𝜈(̃𝑢 − 𝑣) ≥ 𝑚𝑖𝑛𝑖{𝜈(̃𝑢), 𝜈(̃𝑣)} = 𝑚𝑖𝑛𝑖{𝜈(̃0), 𝜈(̃0)} = 𝜈̃(0). So  𝜈(̃𝑢 − 𝑣) = 𝜈(̃0), then 𝑢 − 𝑣 ∈ ℛ𝐴̃𝑠
. 

𝜉(̃𝑢 − 𝑣) ≤ 𝑚𝑎𝑥𝑖{𝜉(̃𝑢), 𝜉(̃𝑣)} = 𝑚𝑎𝑥𝑖{𝜉(̃0), 𝜉(̃0)} = 𝜉(̃0). So 𝜉(̃𝑢 − 𝑣) = 𝜉(̃0), then 𝑢 − 𝑣 ∈ ℛ𝐴̃𝑠
. 

�̃�(𝑢𝛼𝑣𝛽𝑤) ≥ 𝑚𝑖𝑛𝑖{�̃�(𝑢), �̃�(𝑤)} = 𝑚𝑖𝑛𝑖{�̃�(0), �̃�(0)} = �̃�(0). So �̃�(𝑢𝛼𝑣𝛽𝑤) = �̃�(0), then 𝑢𝛼𝑣𝛽𝑤 ∈ ℛ𝐴̃𝑠
. 

𝜈(̃𝑢𝛼𝑣𝛽𝑤) ≥ 𝑚𝑖𝑛𝑖{𝜈(̃𝑢), 𝜈̃(𝑤)} = 𝑚𝑖𝑛𝑖{𝜈(̃0), 𝜈̃(0)} = 𝜈(̃0). So 𝜈(̃𝑢𝛼𝑣𝛽𝑤) = 𝜈(̃0), then 𝑢𝛼𝑣𝛽𝑤 ∈ ℛ𝐴̃𝑠
. 

𝜉(̃𝑢𝛼𝑣𝛽𝑤) ≤ 𝑚𝑎𝑥𝑖{𝜉(̃𝑢), 𝜉(̃𝑤)} = 𝑚𝑎𝑥𝑖{𝜉(̃0), 𝜉(̃0)} = 𝜉(̃0). So 𝜉(̃𝑢𝛼𝑣𝛽𝑤) = 𝜉(̃0), then 𝑢𝛼𝑣𝛽𝑤 ∈ ℛ𝐴̃𝑠
.  

Then ℛ𝐴̃𝑠
 is BI of ℛ . 

Theorem 8. If 𝐵 be a non-empty subset of ℛ  and �̃�𝑠𝐵
  be a Spherical Interval-Valued Fuzzy Set (SIVFS) 

ℛ  defined by  

Ã sB
(u) = {

p̃, if  u ∈ B
q̃, otherwp̃ ≥ q̃ise.

 

for 𝑢 ∈ ℛ , �̃�, �̃� ∈ 𝐷[0,1] and. Then 𝐴̃
𝑠𝐵

(𝑢) is a SIVFBI of ℛ  if and only if 𝐵 is a BI of ℛ . Alsℛ𝐴̃𝑠𝐵
= 𝐵 o.  

Proof. Let �̃�𝑠𝐵
t  be a SIVFS ℛ and le 𝑢, 𝑣, 𝑤 ∈ 𝐵 t. Then 𝐴�̃�𝐵

(𝑢) = �̃� = 𝐴̃
𝑠𝐵

(𝑣) = 𝐴̃
𝑠𝐵

(𝑤). Now, 

Ã sB
(u − v) ≥ min i{Ã sB

(u), Ã sB
(v)} 

= min i{p̃, p̃} = p̃. 

Ã sB
(u − v) = p̃, so u − v ∈ B. 

Ã sB
(uαvβw) ≥ min i{Ã sB

(u), Ã sB
(w)} 

= min i{p̃, p̃} = p̃. 

Ã sB
𝐵(uαvβw) = p̃, so uαvβw ∈ B. 

Then is a BI of ℛ .  

Conversely let 𝐵 be a BI of ℛ  and le 𝑢, 𝑣, 𝑤 ∈ ℛ t. 

If at 𝐴�̃�𝐵
(𝑢) least one 𝑢, 𝑣 is not in 𝐵, then 𝑢 − 𝑣 ∉ 𝐵 and so𝐴�̃�𝐵

(𝑢 − 𝑣) ≥ 𝑚𝑖𝑛𝑖{𝐴̃
𝑠𝐵

(𝑢), 𝐴�̃�𝐵
(𝑣)}  = �̃�. 

If at least one 𝑢, 𝑤 is not in 𝐵, then 𝑢𝛼𝑣𝛽𝑤 ∉ 𝐵 and so 𝐴�̃�𝐵
(𝑢𝛼𝑣𝛽𝑤) ≥ 𝑚𝑖𝑛𝑖{𝐴�̃�𝐵

(𝑢), 𝐴̃
𝑠𝐵

(𝑤)} = �̃�.  
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Thus  is a SIVFBI of ℛ . 

4| Conclusion 

We obtained the union and intersection of the spherical interval-valued fuzzy bi-ideal of gamma near-

ring  ℛ  is also a spherical  interval-valued fuzzy bi-ideal of gamma near-ring. And for that condition, 

𝐴̃
𝑠𝑚

= 𝐴, for any 0 < m < 1, bi-ideal of  gamma near-ring ℛ  becomes spherical interval-valued fuzzy bi-

ideal of  gamma near-ring ℛ . In future we will discuss the spherical fuzzy sets in some other algebraic 

structures. 
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Abstract 

 

1 | Introduction  

Dar and Akram [12] proposed a novel logical algebra known as K-algebra. The algebraic structure of 

a group G which K-algebra was built on should have a right identity element and satisfy the properties 

of non-commutative and non-associative. Furthermore this group G is of the type where each non-

identity element is not of order 2 and K-algebra was built by adjoining the induced binary operation 

on G [11]-[13]. Zadeh’s fuzzy set theory [22] was a powerful framework which deals the concept of 

uncertainty, imprecision and also it represented by membership function which lies in a unit interval 

of [0,1]. Fuzzy K-algebra was introduced by Akram et al. [2], [3], [5] and also they established this in 

a wide-reaching way through other researchers. Later Atanassov [9] introduced the concept of  

intuitionistic fuzzy set in 1983. It has an additional degree called the degree of nonmembership. 

Intuitionistic fuzzy K-subalgebras was proposed by Akram et al. [4] and [6]. Intuitionistic fuzzy Ideals 

of BCK-Algebras was proposed by Jun and Kim [14]. 
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Neutrosophic set which is a generalization of fuzzy set and intuitionistic fuzzy set was introduced by 

Smarandache [20] in 1998. Along with membership and non-membership function neutrosophic set has 

one more extra component called indeterminacy membership function. Also all the values of these three 

components lie in the real standard or non-standard subset of unit interval ]−0,1+[ where −0 = 0 − ϵ, 

1+ = 1 + ϵ, ϵ is an infinitesimal number. In neutrosophic set theory algebraic structures were studied in 

soft topological K-algebras [7]. Agboola and Davvaz [1] presented the introduction to neutrosophic 

BCI/BCK algebras. Smarandache and Wang et al. [21] introduced single-valued neutrosophic set which 

plays a vital place in many real life problems and it takes the values from the subset of [0,1]. Akram et al. 

[8] studied K-algebras on single valued neutrosophic sets and also discussed homomorphisms between 

the single valued neutrosophic K-subalgebras. Belnap [10] introduced the concept of four valued logic 

that is the information are represented by four components T, F, None, Both which denote true, false, 

neither true nor false, both true and false, respectively. Based on this concept, Smarandache proposed 

four numerical valued neutrosophic logic where indeterminacy is splitted into two terms known as 

Contradiction (C) and Unknown (U). Chatterjee et al. [19] introduced Quadripartitioned Single Valued 

Neutrosophic (QSVN)  set in which we have four components T, C, U, and F, respectively, and also it 

lies in the real unit interval of [0,1]. K. Mohana and M. Mohanasundari [15] and [17] studied the concept 

of Quadripartitioned Single Valued Neutrosophic Relations (QSVNR) as well as some properties of 

quadripartitioned single valued neutrosophic rough sets and its axiomatic characterizations. Under QSVN 

environment multicriteria decision making problems has been discussed in [16] and [18]. 

In this paper Section 2 deals with the basic definitions of QSVN set and the concept of K-algebras on 

single valued neutrosophic set. Section 3 discusses about K-algebras on QSVN, level subset of QSVN 

and also studies some of the results. Section 4 defines the homomorphism of quadripartitioned single 

valued neutrosophic K-algebras, characteristic and fully invariant K-subalgebras. Section 5 concludes the 

paper. 

2| Preliminaries 

This section deals with the basic definitions of QSVNS and K-algebra of single valued neutrosophic set 

that helps us to study the rest of the paper. 

Definition 1. [19]. Let X be a non-empty set. A quadripartitioned neutrosophic set 𝐴 over 𝑋 

characterizes each element x  in 𝑋 by a truth-membership function 
A

T , a contradiction membership  

function , an ignorance – membership function 
A

U , and a falsity membership function 
A

F  such that 

for each 
A A A A

x X ,T ,C ,U ,F 0,1    
 and 

A A A A
0 T ( x) C ( x) U ( x) F ( x) 4     . When 𝑋 is 

discrete 𝐴 is represented as, 
n

A i A i A i A i i i
i 1

A T ( x ) ,C ( x ),U ( x ) , F ( x ) / x , x X .


   

However, when the universe of discourse is continuous 𝐴 is represented as

X A A A A
A T ( x) ,C ( x),U ( x) , F ( x ) / x , x X  . 

Definition 2. [19]. Consider two QSVNS A and B over X. A is said to be contained in B, denoted by 

A B A B A B A B
A B iff T ( x) T ( x) ,C ( x) C ( x) ,U ( x) U ( x) and F ( x) F ( x)     . 
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Definition 3. [19]. The complement of a QSVNS A is denoted by CA and is defined as,

n
C

A i A i A i A i i i
i 1

A F ( x ) ,U ( x ),C ( x ),T ( x ) / x , x X ,


   

    
 

Definition 4. [19]. The union of two QSVNS A and B is denoted by A B  and is defined as,

n
i 1 A i B i A i B i A i B i A i B i i i

A B T ( x ) T ( x ) ,C ( x ) C ( x ) ,U ( x ) U ( x ) , F ( x ) F ( x ) / x , x X.        

Definition 5. [19]. The intersection of two QSVNS A and B is denoted by A B and is defined as,

n
i 1 A i B i A i B i A i B i A i B i i i

A B T ( x ) T ( x ) ,C ( x ) C ( x ) ,U ( x ) U ( x ) , F ( x ) F ( x ) / x , x X.        

Definition 6. [12]. Let (G , , ʘ, e)  be a group in which each non-identity element is not of order 2. 

Then a K-algebra is a structure Ꝁ= (G , , ʘ, e)  on a group G in which induced binary operation 

ʘ: 𝐺⨉𝐺 → 𝐺 is defined b ʘ(𝑥, 𝑦) = 𝑥ʘ𝑦 = 𝑥𝑦−1y and satisfies the following axioms: 

(xʘy)ʘ(xʘz) = (xʘ((eʘz)ʘ(eʘy)))ʘx, 

xʘ(xʘy) = (xʘ(eʘy))ʘx, 

xʘx = e, 

xʘe = x, 

𝑒ʘ𝑥 = 𝑥−1, for all 𝑥, 𝑦, 𝑧 ∈ 𝐺.  

Definition 7. [8]. A single-valued neutrosophic set 𝐴 = (𝑇𝐴, 𝐼𝐴, 𝐹𝐴) in a K-algebra Ꝁ is called a single-

valued neutrosophic K-subalgebra of Ꝁ if it satisfies the following conditions: 

TA(sʘt) ≥ min{TA(s), TA(t)}, 

IA(sʘt) ≥ min{IA(s), IA(t)}, 

FA(sʘt) ≤ max{FA(s), FA(t)}, for all s, t ∈ G. 

Note that 𝑇𝐴(𝑒) ≥ 𝑇𝐴(𝑠), 𝐼𝐴(𝑒) ≥ 𝐼𝐴(𝑠), 𝐹𝐴(𝑒) ≤ 𝐹𝐴(𝑠), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝐺. 

3| Quadripartitioned Single Valued Neutrosophic K-Algebras 

Definition 8. A quadripartitioned single valued neutrosophic set  X X X X
X T ,C ,U , F  in a K-algebra Ꝁ 

is called a quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ if it satisfies the following 

conditions: 

X X X X X X X X
T (e) T (u) ,C (e) C (u) ,U (e) U (u) ,F (e) F (u)    for all u G . 
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X
T (u ʘ v) min

 
  
 
   

X X
T (u),T (v) , 

X
C (u ʘ v) min

 
  
 
   

X X
C (u),C (v) , 

X
U (u ʘ v) max

 
  
 
   

X X
U (u),U (v) , 

X
F (u ʘ v) max

 
  
 
   

X X
F (u),F (v)  for all u, v G.  

Example 1. Let 
2 3 4G e, g , g , g , g

 
  

 
   

 is the cyclic group of order 5 in a K-algebra Ꝁ= ( G , , ʘ, e) . 

The Cayley’s table for ʘ is given as follows. 

We define a quadripartitioned single valued neutrosophic set  X X X X
X T ,C ,U , F  in K-algebra as 

follows: 

   

   

X X X X

X X X X

T (e) 0.5, C (e) 0.7, U (e) 0.3, F (e) 0.5

T (u) 0.2, C (u) 0.4, U (u) 0.5, F (u) 0.8
 

for all u e G.   Clearly, it shows that  X X X X
X T ,C ,U , F  is a quadripartitioned single valued 

neutrosophic K-algebras of  Ꝁ. 

Proposition 1.  If  X X X X
X T ,C ,U , F  denotes a quadripartitioned single valued neutrosophic K-

algebras of  Ꝁ then, 

𝑎)  (∀  u, v ∈ G), (TX(uʘv) = TX(v) ⇒ TX(u) = TX(e)) 

(∀  u, v ∈ G), (TX(u) = TX(e) ⇒ TX(uʘv) ≥ TX(v)); 

𝑏)  (∀  u, v ∈ G), (CX(uʘv) = CX(v) ⇒ CX(u) = CX(e)) 

(∀  u, v ∈ G), (CX(u) = CX(e) ⇒ CX(uʘv) ≥ CX(v)); 

𝑐)  (∀  u, v ∈ G), (UX(uʘv) = UX(v) ⇒ UX(u) = UX(e)) 

(∀  u, v ∈ G), (UX(u) = UX(e) ⇒ UX(uʘv) ≤ UX(v)); 

𝑑)  (∀  u, v ∈ G), (FX(uʘv) = FX(v) ⇒ FX(u) = FX(e)) 

(∀  u, v ∈ G), (FX(u) = FX(e) ⇒ FX(uʘv) ≥ FX(v)); 
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Proof.  We only prove (a) and (c). (b) and (d) proved in a similar way. 

(a) First we assume that  𝑇𝑋(𝑢ʘ𝑣) = 𝑇𝑋(𝑣) ∀  𝑢, 𝑣 ∈ 𝐺. Put 𝑣 = 𝑒 and use (iii) of Definition 6 we get 

 𝑇𝑋(𝑢) = 𝑇𝑋(𝑢ʘ𝑒) = 𝑇𝑋(𝑒). Let for 𝑢, 𝑣 ∈ 𝐺 be such that 𝑇𝑋(𝑢) = 𝑇𝑋(𝑒) then𝑇𝑋(𝑢ʘ𝑣) ≥

𝑚𝑖𝑛{𝑇𝑋(𝑢), 𝑇𝑋(𝑣)} = 𝑚𝑖𝑛{𝑇𝑋(𝑒), 𝑇𝑋(𝑣)} = 𝑇𝑋(𝑣).  

Now to prove (c) consider that  𝑈𝑋(𝑢ʘ𝑣) = 𝑈𝑋(𝑣) ∀  𝑢, 𝑣 ∈ G. Put 𝑣 = 𝑒 and use (iii) of Definition 6, we 

have  𝑈𝑋(𝑢) = 𝑈𝑋(𝑢ʘ𝑒) = 𝑈𝑋(𝑒). Let for 𝑢, 𝑣 ∈ 𝐺 be such that 𝑈𝑋(𝑢) = 𝑈𝑋(𝑒) then, 𝑈𝑋(𝑢ʘ𝑣) ≤

𝑚𝑎𝑥{𝑈𝑋(𝑢), 𝑈𝑋(𝑣)} = 𝑚𝑎𝑥{𝑈𝑋(𝑒), 𝑈𝑋(𝑣)} = 𝑈𝑋(𝑣). Hence the proof. 

Definition 9. Let 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) be a quadripartitioned single valued neutrosophic set in a K-

algebra of Ꝁ and let (𝜆, 𝜇, 𝜗, 𝜉) ∈ [0,1] × [0,1] × [0,1] × [0,1] with 𝜆 + 𝜇 + 𝜗 + 𝜉 ≤ 4. Then the sets, 

X(λ,μ,ϑ,ξ) = {u ∈ G| TX(u) ≥ λ,  CX(u) ≥ μ,  UX(u) ≤ ϑ,  FX(u) ≤ ξ}, 

(𝜆, 𝜇, 𝜗, 𝜉)X(λ,μ,ϑ,ξ) = U(TX, λ) ∩ U ′(CX, μ) ∩ L(UX, ϑ) ∩ L′(FX, ξ)   

are called (𝜆, 𝜇, 𝜗, 𝜉) level subsets of quadripartitioned single valued neutrosophic set 𝑋. 

And also the set 𝑋(𝜆,𝜇,𝜗,𝜉) = {𝑢 ∈ 𝐺| 𝑇𝑋(𝑢) > 𝜆,  𝐶𝑋(𝑢) > 𝜇,  𝑈𝑋(𝑢) < 𝜗,  𝐹𝑋(𝑢) < 𝜉} is known as strong  

level subset of 𝑋. 

Note. The set of all (𝜆, 𝜇, 𝜗, 𝜉) ∈ 𝐼𝑚(𝑇𝑋) × 𝐼𝑚(𝐶𝑋) × 𝐼𝑚(𝑈𝑋) × 𝐼𝑚(𝐹𝑋) is known as image of 𝑋 =

(𝑇𝑋, 𝐶𝑋,𝑈𝑋 , 𝐹𝑋). 

Proposition 2. If 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) is a quadripartitioned single valued neutrosophic K-algebra of Ꝁ 

then the level subsets, 

U(TX, λ) = {u ∈ G| TX(u) ≥ λ}, U ′(CX, μ) = {u ∈ G| CX(u) ≥ μ}, 

L(UX, ϑ) = {u ∈ G| UX(u) ≤ ϑ}, L′(FX, ξ) = {u ∈ G| FX(u) ≤ ξ} 

are K-subalgebras of  Ꝁ for every (𝜆, 𝜇, 𝜗, 𝜉) ∈ 𝐼𝑚(𝑇𝑋) × 𝐼𝑚(𝐶𝑋) × 𝐼𝑚(𝑈𝑋) × 𝐼𝑚(𝐹𝑋) ⊆ [0,1] 

where 𝐼𝑚(𝑇𝑋), 𝐼𝑚(𝐶𝑋), 𝐼𝑚(𝑈𝑋) 𝑎𝑛𝑑 𝐼𝑚(𝐹𝑋) are sets of values 𝑇(𝑋), 𝐶(𝑋), 𝑈(𝑋) 𝑎𝑛𝑑 𝐹(𝑋), respectively. 

Proof.  Let 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) be a quadripartitioned single valued neutrosophic set in a  K-algebra of  

Ꝁ and(𝜆, 𝜇, 𝜗, 𝜉) ∈ 𝐼𝑚(𝑇𝑋) × 𝐼𝑚(𝐶𝑋) × 𝐼𝑚(𝑈𝑋) × 𝐼𝑚(𝐹𝑋)  be such that 𝑈(𝑇𝑋, 𝜆) ≠ ∅, 𝑈′(𝐶𝑋, 𝜇) ≠ ∅,

𝐿(𝑈𝑋, 𝜗) ≠ ∅ 𝑎𝑛𝑑 𝐿′(𝐹𝑋, 𝜉) ≠ ∅. We have to show that 𝑈, 𝑈′, 𝐿 𝑎𝑛𝑑 𝐿′ are level K-subalgebras. Let for 

𝑢, 𝑣 ∈ 𝑈(𝑇𝑋, 𝜆),  𝑇𝑋(𝑢) ≥ 𝜆 𝑎𝑛𝑑  𝑇𝑋(𝑣) ≥ 𝜆. Then from Definition 8 we get 𝑇𝑋(𝑢ʘ𝑣) ≥

𝑚𝑖𝑛{ 𝑇𝑋(𝑢),  𝑇𝑋(𝑣)} ≥ 𝜆. It shows that 𝑢ʘ𝑣 ∈  𝑈(𝑇𝑋, 𝜆). Hence 𝑈(𝑇𝑋, 𝜆) is a level K-subalgebra of Ꝁ. 

Similarly, we can prove for 𝑈′(𝐶𝑋, 𝜇), 𝐿(𝑈𝑋, 𝜗) 𝑎𝑛𝑑 𝐿′(𝐹𝑋, 𝜉). 

Theorem 1. Let 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋 , 𝐹𝑋) be a quadripartitioned single valued neutrosophic set in a K-algebra 

of Ꝁ. Then  𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) is a quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ if 

and only if 𝑋(𝜆,𝜇,𝜗,𝜉) is a K-subalgebra of Ꝁ for every (𝜆, 𝜇, 𝜗, 𝜉) ∈ 𝐼𝑚(𝑇𝑋) × 𝐼𝑚(𝐶𝑋) × 𝐼𝑚(𝑈𝑋) × 𝐼𝑚(𝐹𝑋) 

with 𝜆 + 𝜇 + 𝜗 + 𝜉 ≤ 4. 

Proof. First assume tha𝑋(𝜆,𝜇,𝜗,𝜉)t  is a K-subalgebra of Ꝁ. If the conditions in Definition 8 fail, then there 

exist 𝑠, 𝑡 ∈ 𝐺 such that, 
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TX(sʘt) < min{TX(s), TX(t)}, 

CX(sʘt) < min{CX(s), CX(t)}, 

UX(sʘt) > max{UX(s), UX(t)}, 

FX(sʘt) > max{FX(s), FX(t)}. 

Now let 𝜆1 =
1

2
(𝑇𝑋(𝑠ʘ𝑡) + 𝑚𝑖𝑛{𝑇𝑋(𝑠), 𝑇𝑋(𝑡)}), 𝜇1 =

1

2
(𝐶𝑋(𝑠ʘ𝑡) + 𝑚𝑖𝑛{𝐶𝑋(𝑠), 𝐶𝑋(𝑡)}), 

𝜗1 =
1

2
(𝑈𝑋(𝑠ʘ𝑡) + 𝑚𝑎𝑥{𝑈𝑋(𝑠), 𝑈𝑋(𝑡)}), 𝜉1 =

1

2
(𝐹𝑋(𝑠ʘ𝑡) + 𝑚𝑎𝑥{𝐹𝑋(𝑠), 𝐹𝑋(𝑡)}). 

Now we have, 

TX(sʘt) < λ1 < min{TX(s), TX(t)}, 

CX(sʘt) < μ1 < min{CX(s), CX(t)}, 

UX(sʘt) > ϑ1 > max{UX(s), UX(t)}, 

FX(sʘt) > ξ1 > max{FX(s), FX(t)}. 

This implies that 𝑠, 𝑡 ∈ 𝑋(𝜆,𝜇,𝜗,𝜉) 𝑎𝑛𝑑 𝑠ʘ𝑡 ∉ 𝑋(𝜆,𝜇,𝜗,𝜉)  which is a contradiction. This proves that the 

conditions of Definition 8 is true. Hence 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋 , 𝐹𝑋) is a quadripartitioned single valued 

neutrosophic K-subalgebra of Ꝁ. 

Now assume that 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) be a quadripartitioned single valued neutrosophic K-subalgebra 

of Ꝁ. Let for (𝜆, 𝜇, 𝜗, 𝜉) ∈ 𝐼𝑚(𝑇𝑋) × 𝐼𝑚(𝐶𝑋) × 𝐼𝑚(𝑈𝑋) × 𝐼𝑚(𝐹𝑋) with 𝜆 + 𝜇 + 𝜗 + 𝜉 ≤ 4 such that 

𝑋(𝜆,𝜇,𝜗,𝜉) ≠ ∅. Let 𝑢, 𝑣 ∈ 𝑋(𝜆,𝜇,𝜗,𝜉) be such that, 

TX(u) ≥ λ, TX(v) ≥ λ′, 

CX(u) ≥ μ, CX(v) ≥ μ′, 

UX(u) ≤ ϑ, UX(v) ≤ ϑ′, 

FX(u) ≤ ξ, FX(v) ≤ ξ′. 

Now assume that 𝜆 ≤ 𝜆′, 𝜇 ≤ 𝜇′, 𝜗 ≥ 𝜗′ 𝑎𝑛𝑑 𝜉 ≥ 𝜉′.  It follows from Definition 8 that, 

TX(uʘv) ≥ λ = min{TX(u), TX(v)}, 

CX(uʘv) ≥ μ = min{CX(u), CX(v)}, 

UX(uʘv) ≤ ϑ = max{UX(u), UX(v)}, 

FX(uʘv) ≤ ξ = max{FX(u), FX(v)}. 

This shows that 𝑢ʘ𝑣 ∈ 𝑋(𝜆,𝜇,𝜗,𝜉). Hence 𝑋(𝜆,𝜇,𝜗,𝜉) is a K-subalgebra of Ꝁ. 

Theorem 2. Let 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋 , 𝐹𝑋) be a quadripartitioned single valued neutrosophic K-subalgebra 

and (𝜆1,𝜇1, 𝜗1, 𝜉1), (𝜆2,𝜇2, 𝜗2, 𝜉2) ∈  𝐼𝑚(𝑇𝑋) × 𝐼𝑚(𝐶𝑋) × 𝐼𝑚(𝑈𝑋) × 𝐼𝑚(𝐹𝑋) with 𝜆𝑖 + 𝜇𝑖 + 𝜗𝑖 + 𝜉𝑖 ≤ 4 for 𝑖 =

1,2. Then 𝑋(𝜆1,𝜇1,𝜗1,𝜉1) = 𝑋(𝜆2,𝜇2,𝜗2,𝜉2) if (𝜆1,𝜇1, 𝜗1, 𝜉1) = (𝜆2,𝜇2, 𝜗2, 𝜉2). 
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Proof. When (𝜆1,𝜇1, 𝜗1, 𝜉1) = (𝜆2,𝜇2, 𝜗2, 𝜉2) then the result is obvious for 𝑋(𝜆1,𝜇1,𝜗1,𝜉1) = 𝑋(𝜆2,𝜇2,𝜗2,𝜉2). 

Conversely assume that 𝑋(𝜆1,𝜇1,𝜗1,𝜉1) = 𝑋(𝜆2,𝜇2,𝜗2,𝜉2). Since  (𝜆
1,

𝜇
1
, 𝜗1, 𝜉1) ∈  𝐼𝑚(𝑇𝑋) × 𝐼𝑚(𝐶𝑋) × 𝐼𝑚(𝑈𝑋) ×

𝐼𝑚(𝐹𝑋) there exists 𝑢 ∈ 𝐺 such that 𝑇𝑋(𝑢) = 𝜆1, 𝐶𝑋(𝑢) = 𝜇1, 𝑈𝑋(𝑢) = 𝜗1 𝑎𝑛𝑑 𝐹𝑋(𝑢) = 𝜉1. This implies that 

𝑢 ∈ 𝑋(𝜆1,𝜇1,𝜗1,𝜉1) = 𝑋(𝜆2,𝜇2,𝜗2,𝜉2). Hence 𝜆1 = 𝑇𝑋(𝑢) ≥ 𝜆2, 𝜇1 = 𝐶𝑋(𝑢) ≥ 𝜇2, 𝜗1 = 𝑈𝑋(𝑢) ≤ 𝜗2 𝑎𝑛𝑑 𝜉1 =

𝐹𝑋(𝑢) ≤ 𝜉2. Also (𝜆2,𝜇2, 𝜗2, 𝜉2) ∈  𝐼𝑚(𝑇𝑋) × 𝐼𝑚(𝐶𝑋) × 𝐼𝑚(𝑈𝑋) × 𝐼𝑚(𝐹𝑋) there exists 𝑣 ∈ 𝐺 such that 

𝑇𝑋(𝑣) = 𝜆2, 𝐶𝑋(𝑣) = 𝜇2, 𝑈𝑋(𝑣) = 𝜗2 𝑎𝑛𝑑 𝐹𝑋(𝑣) = 𝜉2. This implies that 𝑣 ∈ 𝑋(𝜆2,𝜇2,𝜗2,𝜉2) = 𝑋(𝜆1,𝜇1,𝜗1,𝜉1). 

Hence 𝜆2 = 𝑇𝑋(𝑣) ≥ 𝜆1, 𝜇2 = 𝐶𝑋(𝑣) ≥ 𝜇1, 𝜗2 = 𝑈𝑋(𝑣) ≤ 𝜗1 𝑎𝑛𝑑 𝜉2 = 𝐹𝑋(𝑣) ≤ 𝜉1. Hence (𝜆1,𝜇1, 𝜗1, 𝜉1) =

(𝜆2,𝜇2, 𝜗2, 𝜉2). 

Theorem 3.  Let 𝐼 be a K-subalgebra of K-algebra Ꝁ. Then there exists a quadripartitioned single valued 

neutrosophic K-subalgebra 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋 , 𝐹𝑋) of K-algebra Ꝁ such that 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋 , 𝐹𝑋) = 𝐼 for 

some 𝜆, 𝜇 ∈ (0,1] 𝑎𝑛𝑑 𝜗, 𝜉 ∈ [0,1). 

Proof. Let 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) be a quadripartitioned single valued neutrosophic set in K-algebra Ꝁ 

given by, 

TX(u) = {
λ ∈ (0,1], if u ∈ I

0, otherwise
 

CX(u) = {
μ ∈ (0,1], if u ∈ I

0, otherwise
 

UX(u) = {
ϑ ∈ [0,1), if u ∈ I

0, otherwise
 

FX(u) = {
ξ ∈ [0,1), if u ∈ I

0, otherwise
. 

Let 𝑢, 𝑣 ∈ 𝐺. If 𝑢, 𝑣 ∈ 𝐼, then 𝑢ʘ𝑣 ∈ 𝐼 and so, 

TX(uʘv) ≥ min{TX(u), TX(v)}, 

CX(uʘv) ≥ min{CX(u), CX(v)}, 

UX(uʘv) ≤ max{UX(u), UX(v)} , 

FX(uʘv) ≤ max{FX(u), FX(v)}. 

Suppose 𝑢 ∉ 𝐼 𝑜𝑟 𝑣 ∉ 𝐼 then, 

TX(u) = 0 or TX(v), CX(u) = 0 or CX(v), UX(u) =   0 or UX(v) and FX(u) = 0 or FX(v). 

It implies that, 

TX(uʘv) ≥ min{TX(u), TX(v)}, 

CX(uʘv) ≥ min{CX(u), CX(v)}, 

UX(uʘv) ≤ max{UX(u), UX(v)}, 

FX(uʘv) ≤ max{FX(u), FX(v)}. 

Hence 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) is a quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ. 
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Consequently 𝑋(𝜆,𝜇,𝜗,𝜉) = 𝐼 

Theorem 4. Let Ꝁ be a K-algebra. Let a chain of K-subalgebras: 𝑋0 ⊂ 𝑋1 ⊂ 𝑋2 ⊂ ⋯ ⊂ 𝑋𝑛 = 𝐺. 

Then the level K-subalgebras of the quadripartitioned single valued neutrosophic K-subalgebra 

remains same as the K-subalgebras of this chain. 

Proof. Let {𝜆𝑖|𝑖 = 0,1, … , 𝑛}, {𝜇𝑖|𝑖 = 0,1, … , 𝑛} be finite decreasing sequences and  {𝜗𝑖|𝑖 =

0,1, … , 𝑛},  {𝜉𝑖|𝑖 = 0,1, … , 𝑛} be finite increasing sequences in [0,1] such that 𝜆𝑘 + 𝜇𝑘 + 𝜗𝑘 + 𝜉𝑘 ≤

4 for 𝑘 = 0,1,2, … , 𝑛. Let 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) be a quadripartitioned single valued neutrosophic 

set in Ꝁ defined by 𝑇𝑋(𝑋0) = 𝜆0, 𝐶𝑋(𝑋0) = 𝜇0, 𝑈𝑋(𝑋0) = 𝜗0 𝑎𝑛𝑑 𝐹𝑋(𝑋0) = 𝜉0, 

𝑇𝑋(𝑋𝑖\𝑋𝑖−1) = 𝜆𝑖, 𝐶𝑋(𝑋𝑖\𝑋𝑖−1) = 𝜇𝑖, 𝑈𝑋(𝑋𝑖\𝑋𝑖−1) = 𝜗𝑖 𝑎𝑛𝑑 𝐹𝑋(𝑋𝑖\𝑋𝑖−1) = 𝜉𝑖 𝑓𝑜𝑟 0 < 𝑖 ≤ 𝑛. 

We have t 𝑢ʘ𝑣 ∈ 𝑋𝑖−1o prove that 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) is a quadripartitioned single valued 

neutrosophic K-subalgebra of Ꝁ. Let 𝑢, 𝑣 ∈ 𝐺. If 𝑢, 𝑣 ∈ 𝑋𝑖\𝑋𝑖−1 then it implies that 𝑇𝑋(𝑢) = 𝜆𝑖 =

𝑇𝑋(𝑣), 𝐶𝑋(𝑢) = 𝜇𝑖 = 𝐶𝑋(𝑣), 𝑈𝑋(𝑢) = 𝜗𝑖 = 𝑈𝑋(𝑣) and 𝐹𝑋(𝑢) = 𝜉
𝑖

= 𝐹𝑋(𝑣). Since each 𝑋𝑖 is a K-

subalgebra, we get 𝑢ʘ𝑣 ∈ 𝑋𝑖. So that either 𝑢ʘ𝑣 ∈ 𝑋𝑖\𝑋𝑖−1 or. In any of the above case it follows 

that, 

TX(uʘv) ≥ λi = min{TX(u), TX(v)}, 

CX(uʘv) ≥ μi = min{CX(u), CX(v)}, 

UX(uʘv) ≤ ϑi = max{UX(u), UX(v)}, 

FX(uʘv) ≤ ξi = max{FX(u), FX(v)}. 

For 𝑘 > 𝑙 if 𝑢 ∈ 𝑋𝑘\𝑋𝑘−1 and 𝑣 ∈ 𝑋𝑙\𝑋𝑙−1 then, 

TX(u) = λk, TX(v) = λl, 

CX(u) = μk, CX(v) = μl, 

UX(u) = ϑk, UX(v) = ϑl, 

FX(u) = ξk, FX(v) = ξl, 

and 𝑢ʘ𝑣 ∈ 𝑋𝑘 because 𝑋𝑘 is a K-subalgebra and 𝑋𝑙 ⊂ 𝑋𝑘. It follows that, 

TX(uʘv) ≥ λk = min{TX(u), TX(v)}, 

CX(uʘv) ≥ μk = min{CX(u), CX(v)}, 

UX(uʘv) ≤ ϑk = max{UX(u), UX(v)}, 

FX(uʘv) ≤ ξk = max{FX(u), FX(v)}. 

Hence 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) is a quadripartitioned single valued neutrosophic K-subalgebra of 

Ꝁ and all its non-empty level subsets are level K-subalgebras of Ꝁ. Since 𝐼𝑚(𝑇𝑋) =

{𝜆0, 𝜆1, … , 𝜆𝑛}, 𝐼𝑚(𝐶𝑋) = {𝜇0, 𝜇1, … , 𝜇𝑛}, 𝐼𝑚(𝑈𝑋) = {𝜗0, 𝜗1, … , 𝜗𝑛} 𝑎𝑛𝑑 𝐼𝑚(𝐹𝑋) = {𝜉0, 𝜉1, … , 𝜉𝑛}. 

Therefore, the level K-subalgebras of 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) are given by the chain of K-

subalgebras: 



333 

 

K
-a

lg
e
b

ra
s 

o
n

 q
u

a
d

ri
p

a
rt

it
io

n
e
d

 s
in

g
le

 v
a
lu

e
d

 n
e
u

tr
o

so
p

h
ic

 s
e
ts

 

 
U(TX, λ0) ⊂ U(TX, λ1) ⊂ ⋯ ⊂ U(TX, λn) = G, 

U ′(CX, μ0) ⊂ U ′(CX, μ1) ⊂ ⋯ ⊂ U ′(CX, μn) = G, 

L(UX, ϑ0) ⊂ L(UX, ϑ1) ⊂ ⋯ ⊂ L(UX, ϑn) = G, 

L′(FX, ξ0) ⊂ L′(FX, ξ1) ⊂ ⋯ ⊂ L′(FX, ξn) = G, 

respectively. Indeed, 

U(TX, λ0) = {u ∈ G| TX(u) ≥ λ0} = X0, 

U ′(CX, μ0) = {u ∈ G| CX(u) ≥ μ0} = X0, 

L(UX, ϑ0) = {u ∈ G| UX(u) ≤ ϑ0} = X0, 

L′(FX, ξ0) = {u ∈ G| FX(u) ≤ ξ0} = X0. 

Now we have to prove that, 

𝑈(𝑇𝑋, 𝜆𝑖) = 𝑋𝑖, 𝑈′(𝐶𝑋, 𝜇𝑖) = 𝑋𝑖, 𝐿(𝑈𝑋, 𝜗𝑖) = 𝑋𝑖 𝑎𝑛𝑑 𝐿′(𝐹𝑋, 𝜉𝑖) = 𝑋𝑖 𝑓𝑜𝑟 0 < 𝑖 ≤ 𝑛. Clearly 𝑋𝑖 ⊆

𝑈(𝑇𝑋, 𝜆𝑖), 𝑋𝑖 ⊆  𝑈′(𝐶𝑋, 𝜇𝑖), 𝑋𝑖 ⊆  𝐿(𝑈𝑋, 𝜗𝑖)  𝑎𝑛𝑑 𝑋𝑖 ⊆ 𝐿′(𝐹𝑋, 𝜉𝑖). If 𝑢 ∈  𝑈(𝑇𝑋, 𝜆𝑖) then 𝑇𝑋(𝑢) ≥ 𝜆𝑖 and so 

𝑢 ∉ 𝐴𝑘 𝑓𝑜𝑟 𝑘 > 𝑖. Hence 𝑇𝑋(𝑢) ∈ {𝜆0, 𝜆1, … , 𝜆𝑖} which shows that 𝑢 ∈ 𝑋𝑘 𝑓𝑜𝑟 𝑘 ≤ 𝑖, since 𝑋𝑘 ⊆ 𝑋𝑖. It 

follows that 𝑢 ∈ 𝑋𝑖 . Consequently 𝑈(𝑇𝑋, 𝜆𝑖) = 𝑋𝑖 for some 0 < 𝑖 ≤ 𝑛. Similarly, it is proved for 

𝑈′(𝐶𝑋, 𝜇𝑖) = 𝑋𝑖. Now if 𝑣 ∈  𝐿(𝑈𝑋, 𝜗𝑖) then 𝑈𝑋(𝑣) ≤ 𝜗𝑖 and so 𝑣 ∉ 𝑋𝑘 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ≤ 𝑘. Thus 𝑈𝑋(𝑢) ∈

{𝜗0, 𝜗1, … , 𝜗𝑖} which shows that 𝑢 ∈ 𝑋𝑙 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑙 ≤ 𝑖, since 𝑋𝑙 ⊆ 𝑋𝑖. It follows that 𝑣 ∈ 𝑋𝑖 . Consequently, 

𝐿(𝑈𝑋, 𝜗𝑖) = 𝑋𝑖 for some 0 < 𝑖 ≤ 𝑛. Similarly, it is proved for 𝐿′(𝐹𝑋, 𝜉𝑖) = 𝑋𝑖. Hence the proof. 

4| Homomorphism of Quadripartitioned Single Valued Neutrosophic 

K-Algebras 

Definition 10. Consider two K-algebras Ꝁ1 = (𝐺1,∙,ʘ, 𝑒1) 𝑎𝑛𝑑 Ꝁ2 = (𝐺2,∙,ʘ, 𝑒2) and 𝑓 be a function from 

Ꝁ1into Ꝁ2. If 𝑌 = (𝑇𝑌, 𝐶𝑌, 𝑈𝑌 , 𝐹𝑌) is a quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ2, 

then the preimage of 𝑌 = (𝑇𝑌, 𝐶𝑌, 𝑈𝑌, 𝐹𝑌) under 𝑓 is a quadripartitioned single valued neutrosophic K-

subalgebra of Ꝁ1 defined by, 

f −1(TY)(u) = TY(f(u)), f −1(CY)(u) = CY(f(u)), 

f −1(UY)(u) = UY(f(u)), f −1(FY)(u) = FY(f(u)), 

for all 𝑢 ∈ 𝐺. 

Definition 11. A quadripartitioned single valued neutrosophic K-subalgebra 𝑋 = (𝑇𝑋, 𝐶𝑋, 𝑈𝑋, 𝐹𝑋) of a 

K-algebra Ꝁ is called characteristic if 𝑇𝑋(𝑓(𝑢)) = 𝑇𝑋(𝑢), 𝐶𝑋(𝑓(𝑢)) = 𝐶𝑋(𝑢), 𝑈𝑋(𝑓(𝑢)) =

𝑈𝑋(𝑢) 𝑎𝑛𝑑 𝐹𝑋(𝑓(𝑢)) = 𝐹𝑋(𝑢) for all 𝑢 ∈ 𝐺 and 𝑓 ∈ 𝐴𝑢𝑡(𝐾). 

Definition 12. A K-subalgebra 𝑈 of a K-algebra Ꝁ is said to be fully invariant if 𝑓(𝑈) ⊆ 𝑈 for all 𝑓 ∈

𝐸𝑛𝑑(𝐾) where 𝐸𝑛𝑑(𝐾) is the set of all endomorphisms of a K-algebra Ꝁ. A quadripartitioned single valued 

neutrosophic K-subalgebra 𝑋 = (𝑇𝑋, 𝐶𝑋, 𝑈𝑋 , 𝐹𝑋) of a K-algebra Ꝁ is called fully invariant if 𝑇𝑋(𝑓(𝑢)) ≤

𝑇𝑋(𝑢), 𝐶𝑋(𝑓(𝑢)) ≤ 𝐶𝑋(𝑢), 𝑈𝑋(𝑓(𝑢)) ≥ 𝑈𝑋(𝑢) 𝑎𝑛𝑑 𝐹𝑋(𝑓(𝑢)) ≥ 𝐹𝑋(𝑢) for all 𝑢 ∈ 𝐺 and 𝑓 ∈ 𝐸𝑛𝑑(𝐾). 
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Definition 13. Let 𝑋1 = (𝑇𝑋1
, 𝐶𝑋1

, 𝑈𝑋1
, 𝐹𝑋1

) and 𝑋2 = (𝑇𝑋2
, 𝐶𝑋2

, 𝑈𝑋2
, 𝐹𝑋2

) be two 

quadripartitioned single valued neutrosophic K-subalgebras of Ꝁ. Then 𝑋1 =

(𝑇𝑋1
, 𝐶𝑋1

, 𝑈𝑋1
, 𝐹𝑋1

) is said to be the same type of 𝑋2 = (𝑇𝑋2
, 𝐶𝑋2

, 𝑈𝑋2
, 𝐹𝑋2

) if there exists 𝑓 ∈

𝐴𝑢𝑡(𝐾) such that 𝑋1 = 𝑋2 ◦ 𝑓 i.e.,𝑇𝑋1
(𝑢) = 𝑇𝑋2

(𝑓(𝑢)), 𝐶𝑋1
(𝑢) = 𝐶𝑋2

(𝑓(𝑢)), 𝑈𝑋1
(𝑢) =

𝑈𝑋2
(𝑓(𝑢)) 𝑎𝑛𝑑 𝐹𝑋1

(𝑢) = 𝐹𝑋2
(𝑓(𝑢)) for all 𝑢 ∈ 𝐺. 

Theorem 5. Let 𝑓: Ꝁ1 → Ꝁ2 be an epimorphism of K-algebras. If  𝑌 = (𝑇𝑌, 𝐶𝑌, 𝑈𝑌, 𝐹𝑌) is a 

quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ2, then 𝑓−1(𝑌) is a 

quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ1. 

Proof. It is obvious that, 

f −1(TY)(e) ≥ f −1(TY)(u), f −1(CY)(e) ≥ f −1(CY)(u), 

f −1(UY)(e) ≤ f −1(UY)(u), f −1(FY)(e) ≤ f −1(FY)(u), 

for all 𝑢 ∈ 𝐺1. 𝐿𝑒𝑡 𝑢, 𝑣 ∈ 𝐺1 then, 

f −1(TY)(uʘv) = TY(f(uʘv)), 

f −1(TY)(uʘv) = TY(f(u)ʘf(v)), 

f −1(TY)(uʘv) ≥ min{TY(f(u)), TY(f(v))}, 

f −1(TY)(uʘv) ≥ min{f −1(TY)(u), f −1(TY)(v)}; 

f −1(CY)(uʘv) = CY(f(uʘv)), 

f −1(CY)(uʘv) = CY(f(u)ʘf(v)), 

f −1(CY)(uʘv) ≥ min{CY(f(u)), CY(f(v))}, 

f −1(CY)(uʘv) ≥ min{f −1(CY)(u), f −1(CY)(v)}; 

f −1(UY)(uʘv) = UY(f(uʘv)), 

f −1(UY)(uʘv) = UY(f(u)ʘf(v)), 

f −1(UY)(uʘv) ≤ max{UY(f(u)), UY(f(v))}, 

f −1(UY)(uʘv) ≤ max{f −1(UY)(u), f −1(UY)(v)}; 

f −1(FY)(uʘv) = FY(f(uʘv)), 

f −1(FY)(uʘv) = FY(f(u)ʘf(v)), 

f −1(FY)(uʘv) ≤ max{FY(f(u)), FY(f(v))}, 

f −1(FY)(uʘv) ≤ max{f −1(FY)(u), f −1(FY)(v)}. 
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Hence 𝑓−1(𝑌) is a quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ1. 

Theorem 6. Let 𝑓: Ꝁ1 → Ꝁ2 be an epimorphism of K-algebras. If  𝑌 = (𝑇𝑌, 𝐶𝑌, 𝑈𝑌 , 𝐹𝑌) is a 

quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ2 and 𝑋 = (𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) is the 

preimage of 𝑌 under 𝑓. Then 𝑋 is a quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ1. 

Proof. It is obvious that 𝑇𝑋(𝑒) ≥ 𝑇𝑋(𝑢), 𝐶𝑋(𝑒) ≥ 𝐶𝑋(𝑢), 𝑈𝑋(𝑒) ≤ 𝑈𝑋(𝑢) 𝑎𝑛𝑑 𝐹𝑋(𝑒) ≤ 𝐹𝑋(𝑢) 

for all 𝑢 ∈ 𝐺1. Now for any 𝑢, 𝑣 ∈ 𝐺1, 

TX(uʘv) = TY(f(uʘv)), 

TX(uʘv) = TY(f(u)ʘf(v)), 

TX(uʘv) ≥ min{TY(f(u)), TY(f(v))}, 

TX(uʘv) ≥ min{TX(u), TX(v)}; 

CX(uʘv) = CY(f(uʘv)), 

CX(uʘv) = CY(f(u)ʘf(v)), 

CX(uʘv) ≥ min{CY(f(u)), CY(f(v))}, 

CX(uʘv) ≥ min{CX(u), CX(v)}; 

UX(uʘv) = UY(f(uʘv)), 

UX(uʘv) = UY(f(u)ʘf(v)), 

UX(uʘv) ≤ max{UY(f(u)), UY(f(v))}, 

UX(uʘv) ≤ max{UX(u), UX(v)}; 

FX(uʘv) = FY(f(uʘv)), 

FX(uʘv) = FY(f(u)ʘf(v)), 

FX(uʘv) ≤ max{FY(f(u)), FY(f(v))}, 

FX(uʘv) ≤ max{FX(u), FX(v)}. 

Hence 𝑋 is a quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ1. 

Definition 14. Let 𝑓 be a mapping from Ꝁ1into Ꝁ2 i.e., 𝑓: Ꝁ1 → Ꝁ2 of K-algebras and let 𝑋 =

(𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) be a quadripartitioned single valued neutrosophic set of  Ꝁ2. The map 𝑋 =

(𝑇𝑋, 𝐶𝑋,𝑈𝑋, 𝐹𝑋) is called the preimage of 𝑋 under 𝑓 if 𝑇𝑋

𝑓
(𝑢) = 𝑇𝑋(𝑓(𝑢)), 𝐶𝑋

𝑓
(𝑢) = 𝐶𝑋(𝑓(𝑢)), 𝑈𝑋

𝑓
(𝑢) =

𝑈𝑋(𝑓(𝑢)) 𝑎𝑛𝑑 𝐹𝑋

𝑓
(𝑢) = 𝐹𝑋(𝑓(𝑢))  for all 𝑢 ∈ 𝐺1. 
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Theorem 7. Let 𝑓: Ꝁ1 → Ꝁ2 be an epimorphism of K-algebras. Then 𝑋𝑓 = (𝑇𝑋

𝑓
, 𝐶𝑋

𝑓
, 𝑈𝑋

𝑓
, 𝐹𝑋

𝑓
) is a 

quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ1 if and only if 𝑋 = (𝑇𝑋, 𝐶𝑋, 𝑈𝑋 , 𝐹𝑋) is a 

quadripartitioned single valued neutrosophic K-subalgebra of  Ꝁ2. 

Proof. Let 𝑓: Ꝁ1 → Ꝁ2 be an epimorphism of K-algebras. First assume that 𝑋𝑓 = (𝑇𝑋

𝑓
, 𝐶𝑋

𝑓
, 𝑈𝑋

𝑓
, 𝐹𝑋

𝑓
) is a 

quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ1. Then we have to prove that 𝑋 =

(𝑇𝑋, 𝐶𝑋, 𝑈𝑋 , 𝐹𝑋) is a quadripartitioned single valued neutrosophic K-subalgebra of  Ꝁ2. Since there exists 

𝑢 ∈ 𝐺1 such that 𝑣 = 𝑓(𝑢) for any 𝑣 ∈ 𝐺2: 

TX(v) = TX(f(u)) = TX
f(u)

≤ TX
f(e1)

= TX(f(e1)) = TX(e2), 

CX(v) = CX(f(u)) = CX
f(u)

≤ CX
f(e1)

= CX(f(e1)) = CX(e2), 

UX(v) = UX(f(u)) = UX
f(u)

≥ UX
f(e1)

= UX(f(e1)) = UX(e2), 

FX(v) = FX(f(u)) = FX
f(u)

≥ FX
f(e1)

= FX(f(e1)) = FX(e2). 

For any 𝑢, 𝑣 ∈ 𝐺2, 𝑠, 𝑡 ∈ 𝐺1 such that 𝑢 = 𝑓(𝑠) and 𝑣 = 𝑓(𝑡). It follows that: 

TX(uʘv) = TX(f(sʘt)), 

TX(uʘv) = TX
f (sʘt), 

TX(uʘv) ≥ min{TX
f (s), TX

f (t)}, 

TX(uʘv) ≥ min{TX(f(s)), TX(f(t))}, 

TX(uʘv) ≥ min{TX(u), TX(v)}; 

CX(uʘv) = CX(f(sʘt)), 

CX(uʘv) = CX
f (sʘt), 

CX(uʘv) ≥ min{CX
f (s), CX

f (t)}, 

CX(uʘv) ≥ min{CX(f(s)), CX(f(t))}, 

CX(uʘv) ≥ min{CX(u), CX(v)}; 

UX(uʘv) = UX(f(sʘt)), 

UX(uʘv) = UX
f (sʘt), 

UX(uʘv) ≤ max{UX
f (s), UX

f (t)}, 

UX(uʘv) ≤ max{UX(f(s)), UX(f(t))}, 

UX(uʘv) ≤ max{UX(u), UX(v)}; 
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FX(uʘv) = FX(f(sʘt)), 

FX(uʘv) = FX
f (sʘt), 

FX(uʘv) ≤ max{FX
f (s), FX

f (t)}, 

FX(uʘv) ≤ max{FX(f(s)), FX(f(t))}, 

FX(uʘv) ≤ max{FX(u), FX(v)}. 

Hence 𝑋 = (𝑇𝑋, 𝐶𝑋, 𝑈𝑋, 𝐹𝑋) is a quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ2. 

Conversely, assume that 𝑋 = (𝑇𝑋, 𝐶𝑋, 𝑈𝑋 , 𝐹𝑋) is a quadripartitioned single valued neutrosophic K-

subalgebra of Ꝁ2. Then we have to prove that 𝑋𝑓 = (𝑇𝑋

𝑓
, 𝐶𝑋

𝑓
, 𝑈𝑋

𝑓
, 𝐹𝑋

𝑓
) is a quadripartitioned single valued 

neutrosophic K-subalgebra of  Ꝁ1. For any 𝑢 ∈ 𝐺1 we have: 

TX
f (e1) = TX(f(e1)) = TX(e2) ≥ TX(f(u)) = TX

f (u), 

CX
f (e1) = CX(f(e1)) = CX(e2) ≥ CX(f(u)) = CX

f (u), 

UX
f (e1) = UX(f(e1)) = UX(e2) ≤ UX(f(u)) = UX

f (u), 

FX
f (e1) = FX(f(e1)) = FX(e2) ≤ FX(f(u)) = FX

f (u). 

Since 𝑋 is a quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ2 and for any 𝑢, 𝑣 ∈ 𝐺1, 

TX
f (uʘv) = TX(f(uʘv)), 

TX
f (uʘv) = TX(f(u)ʘf(v)), 

TX
f (uʘv) ≥ min{TX(f(u)), TX(f(v))}, 

TX
f (uʘv) ≥ min{TX

f (u), TX
f (v)}; 

CX
f (uʘv) = CX(f(uʘv)), 

CX
f (uʘv) = CX(f(u)ʘf(v)), 

CX
f (uʘv) ≥ min{CX(f(u)), CX(f(v))}, 

CX
f (uʘv) ≥ min{CX

f (u), CX
f (v)}; 

UX
f (uʘv) = UX(f(uʘv)), 

UX
f (uʘv) = UX(f(u)ʘf(v)), 

UX
f (uʘv) ≤ max{UX(f(u)), UX(f(v))}, 



 

 

338 

M
o

h
a
n

 a
n

d
K

ri
sh

n
a
sw

a
m

y
 |

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(4
) 

(2
0
2
0
) 

3
2
5
-3

3
9

 

 

                UX
f (uʘv) ≤ max{UX

f (u), UX
f (v)}; 

FX
f (uʘv) = FX(f(uʘv)), 

FX
f (uʘv) = FX(f(u)ʘf(v)), 

FX
f (uʘv) ≤ max{FX(f(u)), FX(f(v))}, 

FX
f (uʘv) ≤ max{FX

f (u), FX
f (v)}. 

Hence 𝑋𝑓 = (𝑇𝑋

𝑓
, 𝐶𝑋

𝑓
, 𝑈𝑋

𝑓
, 𝐹𝑋

𝑓
) is a quadripartitioned single valued neutrosophic K-subalgebra of Ꝁ1. 

Theorem 8. Let 𝑋1 = (𝑇𝑋1
, 𝐶𝑋1

, 𝑈𝑋1
, 𝐹𝑋1

) and 𝑋2 = (𝑇𝑋2
, 𝐶𝑋2

, 𝑈𝑋2
, 𝐹𝑋2

) be two quadripartitioned single 

valued neutrosophic K-subalgebras of Ꝁ. Then a quadripartitioned single valued neutrosophic K-

subalgebra 𝑋1 = (𝑇𝑋1
, 𝐶𝑋1

, 𝑈𝑋1
, 𝐹𝑋1

) is of the same type of quadripartitioned single valued neutrosophic 

K-subalgebra 𝑋2 = (𝑇𝑋2
, 𝐶𝑋2

, 𝑈𝑋2
, 𝐹𝑋2

) if and only if 𝑋1 is isomorphic to 𝑋2. 

Proof. It is enough to prove only the necessary condition since sufficient condition holds trivially. Let 

𝑋1 = (𝑇𝑋1
, 𝐶𝑋1

, 𝑈𝑋1
, 𝐹𝑋1

) be quadripartitioned single valued neutrosophic K-subalgebra having same type 

of 𝑋2 = (𝑇𝑋2
, 𝐶𝑋2

, 𝑈𝑋2
, 𝐹𝑋2

). Then there exists 𝑓 ∈ 𝐴𝑢𝑡(𝐾) such that 𝑇𝑋1
(𝑢) = 𝑇𝑋2

(𝑓(𝑢)), 𝐶𝑋1
(𝑢) =

𝐶𝑋2
(𝑓(𝑢)), 𝑈𝑋1

(𝑢) = 𝑈𝑋2
(𝑓(𝑢)) 𝑎𝑛𝑑 𝐹𝑋1

(𝑢) = 𝐹𝑋2
(𝑓(𝑢)) for all 𝑢 ∈ 𝐺. 

Let 𝑔: 𝑋1(𝐾) → 𝑋2(𝐾) be a mapping defined by 𝑔(𝑋1(𝑠)) = 𝑋2(𝑓(𝑢)) for all 𝑢 ∈ 𝐺 i.e., 𝑔 (𝑇𝑋1
(𝑢)) =

𝑇𝑋2
(𝑓(𝑢)), 𝑔 (𝐶𝑋1

(𝑢)) = 𝐶𝑋2
(𝑓(𝑢)), 𝑔 (𝑈𝑋1

(𝑢)) = 𝑈𝑋2
(𝑓(𝑢)) 𝑎𝑛𝑑 𝑔 (𝐹𝑋1

(𝑢)) = 𝐹𝑋2
(𝑓(𝑢)) for all 𝑢 ∈ 𝐺. 𝑔 

is surjective obviously. And if 𝑔 (𝑇𝑋1
(𝑢)) = 𝑔 (𝑇𝑋1

(𝑣)) for all 𝑢, 𝑣 ∈ 𝐺 then 𝑇𝑋2
(𝑓(𝑢)) = 𝑇𝑋2

(𝑓(𝑣)) and we 

get 𝑇𝑋1
(𝑢) = 𝑇𝑋1

(𝑣). Similarly we can prove for 𝐶𝑋1
(𝑢) = 𝐶𝑋1

(𝑣), 𝑈𝑋1
(𝑢) = 𝑈𝑋1

(𝑣) 𝑎𝑛𝑑 𝐹𝑋1
(𝑢) = 𝐹𝑋1

(𝑣). 

Hence 𝑔 is injective. Therefore 𝑔 is a homomorphism such that for 𝑢, 𝑣 ∈ 𝐺 we have: 

g(TX1
(uʘv)) = TX2

(f(uʘv)) = TX2
(f(u)ʘf(v)), 

g(CX1
(uʘv)) = CX2

(f(uʘv)) = CX2
(f(u)ʘf(v)), 

g(UX1
(uʘv)) = UX2

(f(uʘv)) = UX2
(f(u)ʘf(v)), 

g(FX1
(uʘv)) = FX2

(f(uʘv)) = FX2
(f(u)ʘf(v)). 

Hence 𝑋1 = (𝑇𝑋1
, 𝐶𝑋1

, 𝑈𝑋1
, 𝐹𝑋1

) is isomorphic to 𝑋2 = (𝑇𝑋2
, 𝐶𝑋2

, 𝑈𝑋2
, 𝐹𝑋2

). 

5| Conclusion 

In recent years, a new branch of logical algebra known as K-algebra applied in fuzzy set, intuitionistic 

fuzzy set and single valued neutrosophic set which helps us to extend the concept to K-algebra on 

quadripartitioned single valued neutrosophic sets. Quadripartitioned single valued neutrosophic set has 

four components truth,contradiction,unknown,false which helps to deal the concept of indeterminacy 

effectively. In this paper we defined K-algebras on quadripartitioned single valued neutrosophic sets and 

studied some of the results. Further the homomorphism of quadripartitioned single valued neutrosophic 

K-algebras, characteristic and fully invariant K-subalgebras also discussed in detail. 
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