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Abstract 

1 | Introduction  

Since classical statistics are applicable only when all data are determinate, it has been argued in the 

literature that in statistical analyses where part of the data is indeterminate, classical statistics turn out 

to be inadequate and one should then refer to neutrosophic statistics instead, that is, a theory that 

deals with sets rather than spark values and can be considered in that respect as an extension of 

classical statistics (see [1]). A brief history of neutrosophic statistics provided together with a 

comprehensive reference list and a list of seminars can be found in [2], which is a seminal reference 

on the field, and, furthermore, a concise comparison between neutrosophic and classical statistics can 

be found in [3]. It is also worth mentioning that neutrosophic statistics are frequently applied to other 

fields like medicine [4], climatology [5], industry [6], and chemistry [7], to cite only a few among many 

others. In this context, techniques of classical statistics, used for inferential purposes, need to be 

adequately modified for coping with indeterminacy in the data. Smarandache [1], proposed the 

neutrosophic Student’s t distribution as an extension for the well-known Student’s t distribution used 

in classical statistics for testing hypotheses concerning the population mean. Note that the classical 

Student’ s t  distribution  has many  practical applications in several fields such as  medicine (see [8]), 

finance (see [9]), and  meteorology (see [10]) among many others, and  therefore it is interesting to 

investigate its neutrosophic version. In that direction an interesting application of the neutrosophic 

version of the classical ANOVA, which extends Student’s t test, was recently provided by Aslam [11]. 
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In classical statistics, asymptotic theory concerning independent random variables states that as the sample 

size 𝑛 becomes sufficiently large, Student’s t distribution can be approximated by the normal 𝑁(0,1) 

distribution, and this holds in practice for 𝑛 ≥ 30 (see for example Salvatore and Reagle [12]). This result 

is also equivalent to approximating the square of Student’s t by a 𝜒2 distribution. In the present paper we 

study the case where data arise from an autoregressive process of order one (denoted as AR (1)) and thus 

they are not independent any more. In this case, the usual Student’s t  distribution is no more adequate for 

statistical inference and thus we propose to use an asymptotic result from Van. Belle [13], or Polymenis 

[14] which also lies on the 𝜒2 distribution. Furthermore, we suppose that there is some indeterminacy in 

the data, thus requiring the use of neutrosophic statistics for inference. To the best of our knowledge, this 

case has not been investigated as yet in existing neutrosophic statistics literature. 

This paper is organized as follows. In Section 2 the proposed model and simulated data are presented. In 

Section 3 a method for testing neutrosophic hypotheses is provided; this method is implemented for 

independent data in Subsection 3.1 and for the case of highly autocorrelated data in Subsection 3.2.   

 2| The Neutrosophic AR (1) Model 

We first artificially generate 40 independent data from a standard normal distribution N (0,1) as 

independent random errors {𝜀𝑛} for our AR (1) process using the random data generator provided from 

the link https://www.random.org/gaussian-distributions. The model of interest has the form 

where 𝑎 denotes the autocorrelation coefficient,  |𝑎| < 1, 𝑋0 = 𝜀0 = 0, and 𝜀𝑛 are independently distributed 

𝑁(0,1) random errors. This model will be denoted in the sequel as Model (1) and it is equivalent to the AR 

(1) model appearing in Eq. (1) of Polymenis [15] with 𝑠 = 1. We use data generated from process {𝜀𝑛} in 

order to obtain data from model 1. Note that for Model 1, 𝐸(𝑋𝑛)= 0 , but there is no lack of generality 

because if 𝐸(𝑋𝑛) were equal to 𝜇 ≠ 0, this model would then just amount to the corresponding “centered”  

expression  𝑋𝑛 − 𝜇 = 𝑎(𝑋𝑛 − 𝜇) + 𝜀𝑛 , with E(𝑋𝑛 − 𝜇) = 0, as reported in Polymenis [15]. We also mention 

that although we have considered for reasons of simplicity 𝑠 to be 1, calculations that follow can easily be 

adapted to other values of 𝑠. Furthermore, we consider that some observations are indeterminate, that is, 

we do not know what their exact value is, but only an interval to which they belong. This in turn implies 

that classical statistics cannot be used for inferential purposes concerning population means. For that 

reason we use neutrosophic statistics which are based on intervals rather than crisp values. Our idea is to 

use a remark from Smarandache [1], for dealing with indeterminacy in the data, namely that distributions 

appearing in classical statistics like for example the normal, Student’s 𝑡,  𝜒2 , etc. can be extended to their 

neutrosophic versions. Note that the neutrosophic normal, the binomial, the multinomial, and the 𝑡 

distributions have been described in detail  in Smarandache [1], and the first three distributions in Patro 

and Smarandache [16]. Other well-known distributions like the uniform, the exponential, and Poisson were 

also extended to their neutrosophic versions by Alhabib et al. [17].  

We now describe the data that will be used for our analysis. We will study the cases where 𝑎 = 0 

(corresponding to independent observations) and 𝑎 = 0.5 (corresponding to high autocorrelation in Model 

(1)). The case where 𝑎 = 0 is the particular situation where {𝑋𝑛} is just process {𝜀𝑛}. In order to construct a 

neutrosophic sample of size 40 (for the definition of neutrosophic sample see Smarandache, [1], we use 

the same approach as for the neutrosophic sweat data described in [7], that is, generated realizations from 

process {𝜀𝑛} will appear as lower bounds 𝜀𝑖𝑙 ( 𝑖 = 1, … , 𝑛) of intervals of the form [𝜀𝑖𝑙, 𝜀𝑖𝑢], 𝜀𝑖𝑢 being the 

upper bounds which express indeterminacy in the data. In case of indeterminacy concerning 𝜀𝑖, we have 

that 𝜀𝑖𝑢 is different from 𝜀𝑖𝑙  ; on the other hand, if 𝜀𝑖 is determinate then 𝜀𝑖𝑢 = 𝜀𝑖𝑙 . Suppose that 11 values 

(out of 40) are indeterminate. Since process {𝜀𝑛} is used in order to obtain corresponding values for Model 

(1), we consider the first 29 observations 𝜀1 ,…, 𝜀29, obtained from the random number generator to be 

determinate and we suppose that the last 11 ones 𝜀30, … , 𝜀40 are indeterminate. The results appear in Table 

Xn = aXn−1 εn  (1) 

https://www.random.org/gaussian-distributions
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1; for example,  𝜀1𝑙 = −0.32 = 𝜀1𝑢 , 𝜀2𝑙 = −0.51 = 𝜀2𝑢 , 𝜀3𝑙 = 1.2 = 𝜀3𝑢,---, 𝜀29𝑙 = −1.2 = 𝜀29𝑢 , and 𝜀30𝑙  =

−0.51, … , 𝜀40𝑙 = 1 , 𝜀30𝑢  = −0.3, … , 𝜀40𝑢  = 1.2. For the high autocorrelation case corresponding to 𝑎 =

0.5 we also obtain 40 intervals from Model (1) by using the approach of Salvatore and Reagle [12], with 

random errors provided by 𝜀𝑛 , supposing that like for process {𝜀𝑛} there is no indeterminacy concerning 

the first 29 observations  and there is some form of indeterminacy for the remaining 11 ones.  As a 

consequence corresponding lower and upper bounds 𝑋𝑖𝑙 and 𝑋𝑖𝑢 ( 𝑖 = 1, … ,40)  for 𝑋𝑖  are obtained using 

𝜀𝑖𝑙 and 𝜀𝑖𝑢. To be more specific we have 𝑋𝑖𝑙 = 𝑋𝑖𝑢 concerning the 29 first data since there is no 

indeterminacy in 𝑋𝑖 , and for the remaining indeterminate 11 data we have 𝑋𝑖𝑙 ≠ 𝑋𝑖𝑢. Then consecutive 

neutrosophic data for process {𝑋𝑛} of Model (1) are obtained in the form of intervals which are presented 

in Table 2; for example,  𝑋1𝑙 = (0.5)0 − 0.32 = −0.32 = 𝑋1𝑢, 𝑋2𝑙 = (0.5)(−0.32) − 0.51 = −0.67 = 𝑋2𝑢, 

𝑋3𝑙 = (0.5)(−0.67) + 1.2 = 0.865 = 𝑋3𝑢,---, 𝑋29𝑙 = −0.687 = 𝑋29𝑢, 𝑋30𝑙 = −0.853 ,…, 𝑋40𝑙 = 0.86,  and 
𝑋30𝑢 = −0.643, … , 𝑋40𝑢 = 1.25 .  

                  Table 1. Neutrosophic independent data from normal distribution.  

 

   

 

 

             Table 2. Neutrosophic AR (1) data from normal distribution.     

 

 

 

 

 

3| A Method for Testing Neutrosophic Hypotheses  

In classical statistics, let us consider population data 𝛶 which are normally and independently 

distributed 𝑁(𝜇, 𝜎); also let a random sample 𝛶1, … , 𝛶𝑛 from population 𝛶  with mean 𝑌̅  and variance 

𝑠𝑌
2 =

∑ (𝑌𝑖−𝑌̅)
2𝑛

𝑖=1

𝑛−1
. Then the ratio 𝑡 = √𝑛

(𝑌𝑖−𝑌̅)

𝑠𝑌
  has the usual Student’s 𝑡 distribution (see, for example, 

Grimmett and Stirzaker [18]). This result is no more valid for dependent data like for example those 

pertaining to model (1),  with 𝑎 = 0.5. In view of that we use an asymptotic result which is as follows. 

Let us consider a random sample of size 𝑛 from process {𝑋𝑛} appearing in Model (1) with mean 𝑋  and 

variance 𝑠𝑋
2 =

∑ (𝑋𝑖−𝑋̅)2𝑛
𝑖=1

𝑛−1
 , then the ratio 𝑡 = √𝑛

(𝑋𝑖−𝑋̅)

𝑠𝑋
 is approximately normally distributed for large 

𝑛 , under the null hypothesis 𝑋𝑛 = 𝑎𝑋𝑛−1+𝜀𝑛, with mean 0  and variance equal to 
1+𝑎

1−𝑎
 (see Van. Belle [13] 

or Polymenis [14]). This result implies in turn that (
1−𝑎

1+𝑎
)𝑡2 is approximately 𝜒1

2 distributed for large 𝑛, 

under the aforementioned null hypothesis. An immediate consequence is that for  𝑎 = 0 , corresponding 

to the independence case, we obtain that 𝑡2 is approximately 𝜒1
2 distributed under the null hypothesis, 

which coincides with standard theory of independent random variables (see Introduction - Section 1 or 

Theorem 5.2.3 of Anderson [19], with number of degrees of freedom 𝑝 = 1). We propose to use the 

neutrosophic version of this result as a natural extension from classical statistics theory, namely that the 

Independent data (model 1 with 𝒂 = 𝟎 

[−0.32, −0.32] [−0.51, −0.51] [1.2, 1.2] [−0.43, −0.43] [−0.69,  −0.69] [0.033, 0.033] [−1, −1] [1.2, 

1.2] [1.4, 1.4] [−0.3, −0.3] [−0.79, −0.79] [−0.11, −0.11] [0.11, 0.11] [−1.2, −1.2] [1.4, 1.4] [1, 1] [1.3, 

1.3] [−0.3, −0.3] [−1, −1] [−0.12, −0.12] [1.3, 1.3] [−0.18, −0.18] [−0.77, −0.77] [0.72, 0.72] [−0.2, 

−0.2] [−2.1, −2.1] [−1.7, −1.7] [2.4, 2.4] [−1.2, −1.2] [−0.51, −0.3] [0.67, 0.8] [−0.3, −0.1] [−0.087, 

0] [−0.81, −0.6] [−0.74, −0.5] [0.98, 1.2] [0.97, 1] [0.1, 0.3] [−0.62, −0.4] [1, 1.2]  

AR(1) data (model 1 with 𝒂 = 𝟎. 𝟓) 

[−0.32, −0.32] [−0.67, −0.67] [0.865, 0.865] [0.0025, 0.0025] [−0.689, −0.689] [−0.3114, −0.3114] 

[−1.3114, −1.3114] [0.5443, 0.5443] [1.6722, 1.6722] [0.536, 0.536] [−0.522, −0.522] [−0.371, 

−0.371] [−0.076, −0.076] [−1.238, −1.238] [0.781, 0.781] [1.39, 1.39] [2, 2] [0.7, 0.7] [−0.65, −0.65] 

[−0.45, −0.45] [1.08, 1.08] [0.358, 0.358] [−0.591, −0.591] [0.425, 0.425] [0.0122, 0.0122] [−2.094, 

−2.094] [−2.747, −2.747] [1.03, 1.03] [−0.687, −0.687] [−0.853, −0.643] [0.243, 0.478] [−0.178, 

0.139] [−0.176, 0.076] [−0.898, −0.562] [−1.19, −0.781] [0.386, 0.81] [1.163, 1.4] [0.682, 1]  [−0.279, 

0.1] [0.86, 1.25] 
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neutrosophic sampling distribution of  (

1−𝑎

1+𝑎
)𝑡2 is approximated by a neutrosophic 𝜒1

2 curve for  𝑛 large 

enough (in practice it is sufficient that 𝑛 ≥ 30 for this approximation to be valid like for classical statistics 

– see Smarandache [1]).  

In view of  this theory we implement the following method for a two-sided test between neutrosophic 

hypotheses 𝑁𝐻0 ∶ 𝜇 ∈ [𝜇0𝑙, 𝜇0𝑢 ] and 𝑁𝐻1  : 𝜇 < 𝜇0𝑙   or 𝜇 > 𝜇0𝑢, using the same rationale as that appearing 

in Smarandache [1]. 

I. Based on a large number of simulated neutrosophic data ([𝜀𝑖𝑙, 𝜀𝑖𝑢] for  𝑎 = 0, [𝑋𝑖𝑙, 𝑋𝑖𝑢] for 𝑎 = 0.5 ) 

compute the neutrosophic statistic (
1−𝑎

1+𝑎
)𝑡2 = [(

1−𝑎

1+𝑎
)(𝑡(𝑙))

2
, (

1−𝑎

1+𝑎
)(𝑡(𝑢))

2
]  (with (𝑡(𝑙))2 and (𝑡(𝑢))2 

corresponding to the lower and upper bounds for the neutrosophic 𝑡2). 

II. Decision rule: if 𝜒1,𝛼/2
2 < [(

1−𝑎

1+𝑎
)(𝑡(𝑙))

2
, (

1−𝑎

1+𝑎
)(𝑡(𝑢))

2
]   or  𝜒1,𝛼/2

2 > [((
1−𝑎

1+𝑎
)𝑡(𝑙))

2

, ((
1−𝑎

1+𝑎
)𝑡(𝑢))

2

] then reject 

𝑁𝐻0 at significance level 𝛼. 

Note that we can also easily apply the above method for one-sided tests. For example, in case the alternative 

hypothesis 𝑁𝐻1   is 𝜇 > 𝜇0𝑢 then the decision rule becomes: if 𝜒1,𝛼
2 < [(

1−𝑎

1+𝑎
)(𝑡(𝑙))

2
, (

1−𝑎

1+𝑎
)(𝑡(𝑢))

2
]  then reject 

𝑁𝐻0 at significance level 𝛼.  

3.1| First Experiment: the Independence Case 

We first consider the neutrosophic version of Model (1), for which 𝑎 = 0, that is, process {𝑋𝑛} = {𝜀𝑛}. Using 

the simulated data of Table 1, we perform the neutrosophic statistical test with neutrosophic null hypothesis 

𝑁𝐻0 ∶ 𝜇 ∈ [1, 2] vs. the alternative 𝑁𝐻1  : 𝜇 < 1  or 𝜇 > 2 at 𝛼 = [0.10, 0.10]  significance level. Following a 

statistical test corresponding to the analysis provided by Smarandache [1], let 𝑡 =
[𝑋̅(𝑙),𝑋̅(𝑢)]−[𝜇0 (𝑙),𝜇0(𝑢)]

[𝑠(𝑙),𝑠(𝑢)] √𝑛⁄
, 

where 𝑋̅(𝑢) = 0.0516 is the mean of the upper bounds,  𝜇0 (𝑢) = 2  is the upper bound for the mean under 

the neutrosophic null hypothesis, 𝑠(𝑢) = 0.98116 denotes the (unbiased) standard deviation of  the data in 

the upper bound, 𝑋(𝑙) = −0.00785 is the mean of the lower bounds, 𝜇0(𝑙) = 1  is the lower bound for the 

mean under the neutrosophic null hypothesis, and 𝑠(𝑙) = 0.98  denotes the estimated (unbiased) standard 

deviation of the data in the lower bound. More specifically   𝑠2(𝑢) = (∑ 𝑋𝑖
2 (𝑢) − 𝑛(𝑋(𝑢))2) (𝑛 − 1)⁄  , where 

∑ 𝑋𝑖
2 (𝑢) is the sum of squares of the upper bounds, and  𝑠2(𝑙) = (∑ 𝑋𝑖

2(𝑙) − 𝑛(𝑋2(𝑙)) (𝑛 − 1)⁄ , where ∑ 𝑋𝑖
2(𝑙) 

is the sum of squares of the lower bounds. Since the sample size 𝑛 = 40 is large the well-known asymptotic 

𝜒2 distribution will be used. 

In order to perform our analysis we now compute the ratio  𝑡 =
[𝑋̅(𝑙),𝑋̅(𝑢)]−[𝜇0 (𝑙),𝜇0(𝑢)] 

[𝑠(𝑙),𝑠(𝑢)]

√40

=

[−0.00785−2,   0.0516−1]

[0.98/√40,   0.98116/√40]
=

[−2.00785,−0.9484]

[0.155,   0.15536]
= [−

2.00785

0.155
, −

0.9484

0.15536
] = [−12.954, −6.11335]. 

Then we compute the square of this interval, that is, [−12.954, −6.11335][−12.954, −6.11335] =

[37.373, 167.8]. Since the critical value for the two-sided test at 𝛼 = [0.10, 0.10] significance level is  𝜒1,0.05
2 =

[3.84, 3.84] < [37.373, 167.8], the null hypothesis is then rejected at this significance level.  

We digress to say that for independent random variables this method extends the usual asymptotic 𝜒2 

distribution for 𝑡2 to its neutrosophic version; furthermore, it is equivalent to using a neutrosophic 𝐹(1, 𝑛 −

1) distribution. Neutrosophic 𝐹 has already been used in the analysis of variance proposed by Aslam [11]. 

Concerning our data, the critical value is  𝐹0.05(1, 39) = [4.08, 4.08] at [0.10, 0.10] significance level for the 

two-sided test, and since [4.08, 4.08] < [37.373, 167.8]   𝑁𝐻0 is rejected at [0.10, 0.10] significance level. As 

expected, conclusions concerning neutrosophic hypothesis testing using 𝐹 coincide with conclusions 

obtained from our approach that uses the asymptotic 𝜒1
2 , both leading to the rejection of the null 

hypothesis.  
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Let us now consider testing the null hypothesis 𝑁𝐻0 ∶ 𝜇 ∈ [0, 1 ] vs. the alternative 𝑁𝐻1  : 𝜇 < 0 𝑜𝑟 𝜇 > 1 

at 𝛼 = [0.10, 0.10]   significance level. Using the same method as previously we have  𝑡 =
[−0.00785−1,   0.0516−0]

[0.98/√40,   0.98116/√40]
=

[−1.00785,0.0516]

[0.155,   0.15536]
= [−

1.00785

0.155
,

0.0516

0.15536
] = [−6.5, 0.3326] , and thus  𝑡2 =

[0.1106, 42.25]. Since now [3.84, 3.84] ∈ [0.1106, 42.25],  we conclude that 𝑁𝐻0 cannot be rejected at 

[0.10, 0.10]  significance level. On the other hand, like for the previous statistical test, neutrosophic  𝐹 

can also be used in this case, and since the critical value [4.08, 4.08] ∈ [0.1106, 42.25] we conclude that, 

as expected, 𝑁𝐻0 cannot be rejected at [0.10, 0.10] significance level. 

3.2| Second Experiment: the High Autocorrelation Case 

We now consider the AR (1) process {𝑋𝑛} with 𝑎 = 0.5 corresponding to equation 𝑋𝑛 = 0.5𝑋𝑛−1+𝜀𝑛  and 

we perform the same neutrosophic hypothesis tests as in the first experiment using the simulated data 

of Table 2. We first consider testing between the null hypothesis 𝑁𝐻0 ∶ 𝜇 ∈ [1, 2] and the alternative 

𝑁𝐻1  : 𝜇 < 1  or 𝜇 > 2   at = [0.10, 0.10] . Using calculations like in the case of the previous application 

we find 𝑋(𝑙) = −0.0393, 𝑋(𝑢) = 0.0484, 𝑠(𝑙) = 0.98966 and 𝑠(𝑢) = 0.99425. In view of that the 

neutrosophic statistic is 

𝑡 =
[𝑋̅(𝑙),𝑋̅(𝑢)]−[𝜇0 (𝑙),𝜇0(𝑢)] 

[𝑠(𝑙),𝑠(𝑢)]

√40

=
[−0.0393−2,   0.0484−1]

[0.98966/√40,   0.99425/√40]
=

[−2.0393,−0.9516]

[0.15537,   0.1572]
= [−

2.0393

0.15537
, −

0.9516

0.1572
] =

[−13.125, −6.0534]. It results that 𝑡2 = [36.64, 172.26]. Thus, for   𝑎 = 0.5 , (
1−𝑎

1+𝑎
)𝑡2 =

(
1−0.5

1+0.5
) [36.64, 172.26] =

[36.64,   172.26]

3
= [

36.64

3
,

172.26

3
] = [12.21, 57.42].  Since [12.21, 57.42] > [3.84, 3.84]  

𝑁𝐻0 is rejected at  [0.10, 0.10] significance level.  

Like for the first experiment, we also consider testing between the null hypothesis 𝑁𝐻0 ∶ 𝜇 ∈ [0, 1 ] and 

the alternative 𝑁𝐻1  : 𝜇 < 0 𝑜𝑟 𝜇 > 1 at 𝛼 = [0.10, 0.10]  significance level. Following the previously-used 

rationale we have that 𝑡 =
[𝑋̅(𝑙),𝑋̅(𝑢)]−[𝜇0 (𝑙),𝜇0(𝑢)] 

[𝑠(𝑙),𝑠(𝑢)]

√40

=
[−0.0393−1,   0.0484−0]

[0.15537,   0.1572]
= [−

1.0393

0.15537
,

0.0484

0.1572
]=[−6.6892,

0.3079],  and so 𝑡2 = [0.0948, 44.74]. For 𝑎 = 0.5 we obtain (
1−𝑎

1+𝑎
) 𝑡2 = [

0.0948

3
,

44.74

3
]=[0.0316, 14.9].  Since 

[3.84, 3.84] ∈ [0.0316, 14.9]  it results that  𝑁𝐻0 cannot be rejected at [0.10, 0.10]  significance level. 

4| Conclusion 

In the present paper a statistical test for the population mean of an AR (1) random process, that makes 

use of neutrosophic statistics, is proposed in order to deal with situations where there is indeterminacy 

in the data. The method uses a neutrosophic version of a result obtained from classical statistical theory 

which states that as the sample size increases a Student’s 𝑡 – type of distribution approaches the normal 

distribution; consequently this method can only be applied for large sample sizes. Results are obtained 

from implementation of this statistical test on the basis of two experiments and they are encouraging.  

Thus we reckon that the proposed method  provides an efficient way for testing for the population 

mean under  uncertainty.  
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