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Abstract 

 

1 | Introduction  

For the theory of fuzzy group, the classification, most especially the finite p-groups cannot be 

overlooked. The aspect of pure mathematics has undergone a lot of dynamic developments over the 

years. For instance, many researchers have treated cases of finite abelian groups. Since inception, the 

study has been extended to some other important classes of finite abelian and nonabelian groups 

such as the dihedral, quaternion, semidihedral, and hamiltonian groups. Other different approaches 

have been so far, applied for the classification. The fuzzy sets were introduced by Zadeh [15]. Even 

though, the story of fuzzy logic started much more earlier, it was specially designed mathematically 

to represent uncertainty and vagueness. It was also, to provide formalized tools for dealing with the 

imprecision intrinsic to many problems. The term fuzzy logic is generic as it can be used to describe 

the likes of fuzzy arithmetic, fuzzy mathematical programming, fuzzy topology, fuzzy graph theory 

ad fuzzy data analysis which are customarily called fuzzy set theory. This theory of fuzzy sets has a 

wide range of applications, one of which is that of fuzzy groups developed by Rosenfield [16]. This 

by far, plays a pioneering role for the study of fuzzy algebraic structures. Other notions have been 

developed based on this theory. These, amongst others, include the notion of level subgroups by P.S. 

Das used to characterize fuzzy subgroups of finite groups and that of equivalence of fuzzy subgroups 

introduced by Murali and Makamba which we use in this work [1]-[9]. 

           Journal of Fuzzy Extension and Applications 

    www.journal-fea.com 

J. Fuzzy. Ext. Appl. Vol. 3, No. 3 (2022) 212–218. 

Paper Type: Research Paper 

The Fuzzy Subgroups for the Nilpotent (P-Group) of (D23 × 

C2m) for M ≥ 3 
Sunday Adesina Adebisi 1,*, Mike Ogiugo1, Michael Enioluwafe2 

 

1 Department of Mathematics, Faculty of Science, University of Lagos, Nigeria; adesinasunday@yahoo.com; ekpenogiugo@gmail.com. 
2 Department of Mathematics, Faculty of Science, University of Ibadan, Nigeria; maalawo@yahoo.com. 
 

Citation: 

 Adebisi , S. A., Ogiugo, M., & Enioluwafe, M. (2022). The fuzzy subgroups for the nilpotent (p-group) 

of (d23 × c2m) for m ≥ 3. Journal of fuzzy extension and applications, 3(3), 212-218. 

Accepted: 19/06/2022 Revised: 09/06/2022 Reviewed: 12/05/2022 Received: 11/04/2022 
 

                                       

A group is nilpotent if it has a normal series of a finite length n. By this notion, every finite p-group is nilpotent. The 

nilpotence property is an hereditary one. Thus, every finite p-group possesses certain remarkable characteristics. In this 

paper, the explicit formulae is given for the number of distinct fuzzy subgroups of the Cartesian product of the dihedral 

group of order 23 with a cyclic group of order of an m power of two for, which m ≥ 3. 

Keywords: Finite p-groups, Nilpotent group, Fuzzy subgroups, Dihedral group, Inclusion-exclusion principle, Maximal 

subgroups. 

 
Licensee Journal 

of Fuzzy Extension and 

Applications. This  

article is an open access 

article distributed under 

the terms and conditions 

of the Creative Commons 

Attribution (CC BY) 

license 

(http://creativecommons.

org/licenses/by/4.0). 

mailto:dastam66@gmail.com
http://dx.doi.org/10.22105/jfea.2022.337181.1215
http://www.journal-fea.com/
mailto:adesinasunday@yahoo.com
mailto:ekpenogiugo@gmail.com


213 

 

≥
 3

 
M

m
) 

fo
r 

2
×

 C
 

3
2

D
g

ro
u

p
) 

o
f 

(
-

p
T

h
e
 f

u
z
z
y
 s

u
b

g
ro

u
p

s 
fo

r 
th

e
 n

il
p

o
te

n
t 

(
 

 
By the way, A group is nilpotent if it has a normal series of a finite length n. 

Where 

By this notion, every finite p-group is nilpotent. The nilpotence property is an hereditary one. Thus, 

− Any finite product of nilpotent group is nilpotent. 

− If G is nilpotent of a class c, then, every subgroup and quotient group of Gis nilpotent and of class ≤ c. 

The problem of classifying the fuzzy subgroups of a finite group has so far experienced a very rapid 

progress. One particular case or the other have been treated by several papers such as the finite abelian as 

well as the non-abelian groups. The number of distinct fuzzy subgroups of a finite cyclic group of square-

free order has been determined. Moreover, a recurrence relation is indicated which can successfully be 

used to count the number of distinct fuzzy subgroups for two classes of finite abelian groups. They are the 

arbitrary finite cyclic groups and finite elementary abelian p-groups. For the first class, the explicit formula 

obtained gave rise to an expression of a well-known central Delannoy numbers. Some forms of 

propositions for classifying fuzzy subgroups for a class of finite p-groups have been made by Marius 

Tarnauceaus. It was from there, the study was extended to some important classes of finite non-abelian 

groups such as the dihedral and hamiltonian groups. And thus, a method of determining the number and 

nature of fuzzy subgroups was developed with respect to the equivalence relation. There are other different 

approaches for the classification. The corresponding equivalence classes of fuzzy subgroups are closely 

connected to the chains of subgroups, and an essential role in solving counting problem is again played by 

the inclusion - exclusion principle. This hereby leads to some recurrence relations, whose solutions have 

been easily found. For the purpose of using the Inclusion-Exclusion principle for generating the number 

of fuzzy subgroups, the finite p-groups has to be explored up to the maximal subgroups. The responsibility 

of describing the fuzzy subgroup structure of the finite nilpotent groups is the desired objective of this 

work. Suppose that (G,·,e) is a group with identity e. Let S(G) denote the collection of all fuzzy subsets of 

G. An element λ ∈ S(G) is called a fuzzy subgroup of G whenever it satisfies some certain given conditions. 

Such conditions are as follows: 

λ(ab) ≥∈ {λ(a),λ(b)}, ∀ a,b∈ G; (ii) λ(a−1 ≥ λ(a) for any a ∈ G. And, since (a−1)−1 = a, we have that λ(a−1) 

= λ(a), for any a ∈ G. Also, by this notation and definition, λ(e) = supλ(G) [6]. 

Theorem 1. The set FL(G) possessing all fuzzy subgroups of G forms a lattice under the usual ordering 

of fuzzy set inclusion. This is called the fuzzy subgroup lattice of G. 

We define the level subset: 

The fuzzy subgroups of a finite p-group G are thus, characterized, based on these subsets. In the sequel, λ 

is a fuzzy subgroup of G if and only if its level subsets are subgroups in G. This theorem gives a link 

between FL(G) and L(G), the classical subgroup lattice of G.F 

Moreover, some natural relations on S(G) can also be used in the process of classifying the fuzzy subgroups 

of a finite q-group G. One of them is defined by: λ ∼ γ iff(λ(a) > λ(b) ⇐⇒ v(a) > v(b), ∀ a,b∈ G). Alos, 

two fuzzy subgroups λ, γ of G and said to be distinct if λ×v. 

 =     =
0 1 2 n

G G G G  ··· G  e .   

+  +(Gi / Gi 1 Z G / Gi 1).   

( )=   
  

β
λG  a G / λ a  β for each  β 0, 1{ }  .   
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As a result of this development, let G be a finite p-group and suppose that λ :G −→ [0,1] is a fuzzy 

subgroup of G. Put λ(G) = {β1,β2,...,βk} with the assumption that β1<β2 >··· > βk. Then, ends in G 

is determined by λ. 

 

Also, we have that: 

 

For any a ∈ G and t = 1,...,k, where by convention, set λGβ0 = φ. 

2 | Methodology 

We are going to adopt a method that will be used in counting the chains of fuzzy subgroups of an 

arbitrary finite p-group G is described. Suppose that M1, M2, ..., Mt are the maximal subgroups of G, 

and denote by h(G) the number of chains of subgroups of G which ends in G. By simply applying the 

technique of computing h(G), using the application of the Inclusion-Exclusion principle, we have that 

 

In [6], (#) was used to obtain the explicit formulas for some positive integers n. 

Theorem 2. )[1](. The number of distinct fuzzy subgroups of a finite p-group of order pn which have 

a cyclic maximal subgroup is: (i) h(Zpn) = 2n, (ii) h(Zp×Zpn−1) = 2n−1[2+(n−1)p]. 

3 | The District Number of the Fuzzy Subgroups of the Nilpotent 

Group of (D2
3×C2

m) for m≥ 3 

Proposition 1 ([13]). Suppose that G=Z4×Z2n,n ≥ 2. Then, h(G) = 2n[n2+5n−2]. 

Proof. G has three maximal subgroups of which two are isomorphic to Z2×Z2n and the third is 

isomorphic to Z4×Z2
n−1. Hence, 

 

We have that :h(Z4× Z2
n−1) = 2n−1[(n−1)2+5(n−1)−2]=2n−1[n2+3n−6], n>2.  

Corrolary 1. Following the last proposition, h(Z4×Z2
5),h(Z4×Z2

6),h(Z4×Z2
7) and h(Z4×Z2

8)= 1536, 

4096, 10496 and 26112, respectively. 

Theorem 3 ([14]). Let G = D2
n×C2, the nilpotent group formed by the cartesian product of the dihedral 

group of order 2n and a cyclic group of order 2. Then, the number of distinct fuzzy subgroups of G is 

given by h(G)=22n(2n+1)−2n+1, n >3. 

Proof. the group D2
n×C2, has one maximal subgroup which is isomorphic to Z2×Z2

n−2, two maximal 

subgroups which are isomorphic to D2
n−1×C2, and 22 which are isomorphic to D2

n. 

   =
β1 β2 βk

λG λG ··· λG G.  (1) 

( ) −
=  =   

t βr βt βt 1
λ a  β t  max r / a λG a λG \ λG{ } .   

tt
t 1

r r1 r2 r
r 1 1 r1 r2 t r 1

h(G) 2( h(M ) h(M M ) ... ( 1) h( M )).−

=    =

= −  + + −    

−

− −

−
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=
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n n n 1 n
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n 2

2 2 22 2 2

h Z Z 2h Z Z   2 h Z2 Z   2 h(Z Z

 2 h Z Z   2 h Z Z   ··· 
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It thus, follows from the Inclusion-Exclusion principle using equation, 

By recurrence relation principle we have: 

By the fundamental principle of mathematical induction, set F(n) = h(D2
n × C2), assuming the truth of 

F(k) =h(D2
k×C2)=2h(Z2×Zk−1)+8h(D2

k − 16hD2
k−1 −4h(Z2X Z2k−2)+4h(D2

k−1×C2)=22k(2k + 1) −2k+1, 

F(k+1) = h(D2
k+1 ×C2) = 2h(Z2 ×Z2k)+8h(D2

k+1 −16h(D2
k −4h(Z2 ×Z2

k−1)+4h(D2k*C2)=22[22k(2k-3)-2k], 

which is true. 

Proposition 2 ([12]). Suppose that G=D2n×C4. Then, the number of distinct fuzzy subgroups of G is 

given by 

Proof. 

Proposition 3. Let G be an abelian p-group of type Zp×Zp×Zpn, where p is a prime and n ≥ 1. The number 

of distinct fuzzy subgroups of G is h(Zp×Zp×Zpn) = 2np(p + 1)(n − 1)(3 + np + 2p) + (2n − 2)p3 − 2n+1(n 

− 1)p3 + 2n[p3 + 4(1 + p + p2)]. 

Proof. There exist exactly 1 + p + p2 maximal subgroups for the abelian type Zp×Zp×Zpn. One of them 

is isomorphic to Zp×Zp×Zpn, while each of the remaining p+p2 is isomorphic to Zp×Zpn. Thus, by the 

application of the Inclusion-Exclusion principle,we have as follows: h(Zp×Zp×Zpn)= 

2np(p+1)(n−1)(3+np+2p)+(2n−2)p3 −2n+1(n−1)p3 + 2n[p3 + 4(1 + p + p2)] and thus, 

Corrolary 2. From Eq. (3) above, obsreve that, we are going to have that: 

Similarly, for p = 5, using the same analogy, we have 

And for p = 7, 

n n 1 n n 1 n 1 n 22 2 2 22 2 2 2 2 2

1
h(D C ) h(Z Z ) 4h(D ) 8h(D ) 2h(Z Z ) 2h(D C ).
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− − − −
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( )2n n 1

2 2
h D n C   2 2n  1   2 ,       3.) n ( + = + −    

( ) ( ) ( ) ( )
−

− − +

=

+ + + −
n 3

2 n 2 n 1 j

j 1

2 64n  173   3 2 2n  1  2j .   

( ) ( ) ( ) ( ) ( )

−

− − − − −

+ − + +

= + − + 

 −  +  + −

  −  − 

−

 = − + + − + − + − + +

n 1

n 1 n 2 n 2 n 1 2

n

n

2 4 2 2 4 2 2

2n 2 2 n 3

2 4 2

2 4 22 2 2 2 2

n n 1 n 2

42

( )

1
h( ) h( ) 2h( ) 4h( ) h(Z Z )

2

Z Z ) 2h(Z Z ) 8h(Z Z ) h(

D n C D n C D n 1 C D n 1 C

2h(

h D C   n  3 .2  2 1460   3 2 2n  

Z ) 4h(Z )

( ) [ 1   2 2n  3   2 2n  5   ···  7(2
( )

( ) ( ) ( ) ( )

( ) ( ) ( )

−

−
− − ++

=

−
− − +

=

= − + + + −

= + + + −





2 n 2

n 3
2 n 3 (n 1 j)2n 2

j 1

n 3
2 n 2 (n 1 j)

j 1

 n  3 .2  2 1460   3 2 2n  1  2j

 2 64n  173   3 2 2n  1

]

 

)

 2j .

 

 

( ) ( ) ( )
−

−  = + − 


+ + + −


− −
2

n 2 2 2 2 3 2

p p pn
h Z Z Z    2 4  3n  5 p  n  5 p  n  5( ) n  8 p   2p .   

+  = + + 
 

−n 1 2

3 3 3n
h Z Z Z    2 18( ) n  9n  26   54.   

− −
  =  +   − − +n n n 1 n n 1

3

5 5 5 5 55 5 5 5 5
h Z Z Z    2 30h Z Z  h Z Z Z p h Z  ( ) [ ( ) ( ) ( ) ( ) 30h Z   125].   



 

 

216 

A
d

e
b

is
i 

e
t 

a
l.

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(3
) 

(2
0
2
2
) 

2
12

-2
18

 

 

We have, in general 

 

Proposition 4. Let G = (D2
3×C2

m) for m≥ 3. Then , h(G) = m(89−23m)+(85)2m+3 −124 [10] and [11]. 

Proof. There exist seven maximal subgroups, of which one is isomorphic to D2
3×C2

m−1, two being 

isomorphic to C2
m×C2×C2), two isomorphic to C2

m×C2, and one each isomorphic to C2
m×C4, and C2

m 

respectively. Hence, by the inclusion - exclusion principle, using the Propositions 1-3 and Theorem 2 we 

have that 

 

 

 

 

 

 

Hence, 

 

 

 

 

For the Series (1) , we have that, Um = 26.2m−1 = 25+k, m + 5 = k + 5,⇒ m = k. We have that 

=
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4 | Applications 

From the calculations, the Inclusion-Exclusion principle can be certified here as being very useful in the 

computations of the district number of fuzzy subgroups for the finite nilpotent p-groups. 

5 | Examples  

Now, since the stipulated condition that m≥[3 must definitely be fulfilled then the readers may consider 

the examples below in tabular format. 

Table 1. Table summarizing the some number of distinct fuzzy subgroups of (D23 × C2m) for m ≥ 3. 

 

6 | Conclusion 

So far from our studies and discoveries it has been observed that any finite product of nilpotent group is 

nilpotent. Also, the problem of classifying the fuzzy subgroups of a finite group has experienced a very 

rapid progress. Finally, the method can be used in further computations up to the generalizations of similar 

and other given structures 
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