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Abstract 

 

1 | Introduction  

The simple linear regression concerns sample points with one independent variable and one 

dependent variable and finds a linear function (a non-vertical straight line) that, as accurately as 

possible, predicts the dependent variable values as a function of the independent variable. One of the 

most used regression methods is the Ordinary Least Squares (OLS) method [4].  

OLS is a type of linear least squares method for estimating the unknown parameters in a linear 

regression model. The OLS estimator is consistent when the regressors are exogenous and, by the 

Gauss Markov theorem, optimal in the class of linear unbiased estimators when the errors are 

homoscedastic and serially uncorrelated. Under these conditions, the method of OLS provides 

minimum-variance mean-unbiased estimation when the errors have finite variances. Under the 

additional assumption that the errors are normally distributed, OLS is the maximum likelihood 

estimator. The errors after modeling, however, should be normal to draw a valid conclusion by 

hypothesis testing. 

           Journal of Fuzzy Extension and Applications 

    www.journal-fea.com 

J. Fuzzy. Ext. Appl. Vol. 3, No. 4 (2022) 279–289. 

Paper Type: Research Paper 

Fuzzy Simple Linear Regression Using Gaussian 

Membership Functions Minimization Problem 

Besma Belhadj*   

 

LaREQuaD, FSEGT, University of ElManar, Tunisia; besmabelhaj14@gmail.com. 

 
 

Citation: 

 Belhadj, B. (2022). Fuzzy simple linear regression using Gaussian membership functions 

minimization problem. Journal of fuzzy extension and applications, 3(4), 279-289. 

Accepted: 22/08/2022 Revised: 19/08/2022 Reviewed: 30/06/2021 Received: 02/06/2022 
 

                                       

Under the additional assumption that the errors are normally distributed, the Ordinary Least Squares (OLS) method is 

the maximum likelihood estimator. In this paper, we propose, for a simple regression, an estimation method alternative 

to the OLS method based on a so-called Gaussian membership function, one that checks the validity of the verbal 

explanation suggested by the observer. The fuzzy estimation approach demonstrated here is based on a suitable 

framework for a natural behavior observed in nature. An application based on a group of MENA countries in 2015 is 

presented to estimate the employment poverty relationship. 

Keywords: Mathematical modeling, Fuzzy regression, Gaussian fuzzy responses, Gaussian membership function. 

 
Licensee Journal 

of Fuzzy Extension and 

Applications. This  

article is an open access 

article distributed under 

the terms and conditions 

of the Creative Commons 

Attribution (CC BY) 

license 

(http://creativecommons.

org/licenses/by/4.0). 

mailto:dastam66@gmail.com
https://doi.org/10.22105/jfea.2022.345298.1222
https://en.wikipedia.org/wiki/Linear_least_squares
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
http://www.journal-fea.com/
https://orcid.org/0000-0001-7464-6208


 

 

280 

B
e
lh

a
d

j 
|

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(4
) 

(2
0
2
2
) 

2
7
9
-2

8
9

 

 

Our data can be normal or not; we can check data distributions to understand their behaviors. Our data 

might not be normal for a reason. Usually, in such cases, you may want to transform it or use other 

analysis methods (e.g., generalized linear models or nonparametric methods).  

Belhadj [2] proves using the theory of fuzzy subsets that any dependent or independent variable follows 

a particular real behavior. In particular, according to this author, poverty can have a trapezoidal behavior. 

However, the analysis and estimation of regression must change depending on the behavior of the 

regression variables. For example, Belhadj and Kaabi [3] proposed a method for estimating a simple 

regression where the behavior of the dependent variable is trapezoidal. 

This paper aims to develop further and refine another case study on the same strand of research of [3]. 

First, we assume our data is normal and set the so-called Gaussian membership functions. They are 

fuzzy versions of the classic Gaussian distribution, those who verify the validity of the verbal explanation 

suggested by the observer. Secondly, we construct fuzzy mathematical modelings of a simple linear 

regression model using these Gaussian membership functions. Fuzzy modeling approaches 

demonstrated here are based on mimicking a natural behavior observed in nature. Fuzzy modeling 

approaches demonstrated here change according to the distribution of our data. It keeps reality, unlike 

the OLS and any other estimation method, in its entirety.  

This paper is structured as follows: Section 2 presents some unique properties of Gaussian distribution 

and briefly presents the OLS method using the normal distribution. Section 3 shows the difference 

between the Gaussian distribution and membership function. Section 4 puts forward an alternative 

estimation method called fuzzy regression using Gaussian membership functions. In this section, 

estimators of a linear fuzzy regression model are constructed, and the consistency of these estimators is 

established. Section 5 illustrates the use of this proposed method to estimate the employment poverty 

relationship in MENA in 2015. Section 6 concludes. 

2 | Gaussian Distribution, OLS Method 

A Gaussian distribution, said normally distributed, is a continuous probability distribution for a real-

valued random variable. Its probability density function [4] is  

m is the mean and also its median and mode, while the parameter σ is its standard deviation.  

The normal distribution is important in analytic studies. It is the only distribution with zero cumulants 

beyond the mean and variance. It is also the continuous distribution with the maximum entropy for a 

specified mean and variance. And is the only distribution where the mean and variance calculated from 

a set of independent draws are independent of each other. The normal distribution is a subclass of the 

elliptical distributions. It is symmetric about its mean and is non-zero over the entire real line. It is one 

of the few stable distributions with probability density functions that can be expressed analytically. Many 

results and methods, such as propagation of uncertainty and least squares parameter fitting, can be 

derived analytically in explicit form when the relevant variables are normally distributed. 

Let the model = + +
i i i

y a bx ε . The variable that is supposed to be normally distributed is just the 

prediction error 
i

ε . Prediction error should follow a normal distribution with a mean of 0. The 

confidence interval and variable significance calculation are based on this assumption [4]. For example, 

the effect of unemployment on poverty based on a 5% significance level requires following a normal 

( )

2
1 x m

2 σ1
x e , x R .

σ 2π

 − −
 
 =    
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distribution with a mean of 0. If the error distribution significantly deviates from the mean 0 normal 

distribution, the effect may not actually be significant enough to explain poverty. 

The least squares estimates in the case = + +
i i i

y a bx ε are given by simple formulas [4]: 

 

 

 

The OLS estimators â and b̂ are Best Linear Unbiased Estimator (BLUE) and Consistent. 

3 | Gaussian Membership Function 

Fuzzy sets (see, e.g. [11], [21] for application of this approach) are extensions of the classical sets whose 

elements have degrees of membership [23]. In fuzzy set theory, classical bivalent sets are usually called 

crisp sets. The fuzzy set theory allows describing situations in which the data are imprecise. Fuzzy sets 

handle such situations by attributing degrees to which elements belong to a set, called membership 

function, having intervals [0,1]. 

The membership function fully defines the fuzzy set. It measures the degree of similarity of an element to 

a fuzzy set. Membership functions can: either be chosen by the user arbitrarily, based on the user's 

experience. Or be designed using machine learning methods (e.g., artificial neural networks, genetic 

algorithms). Membership functions have different shapes, mainly Triangular, Trapezoidal, and Gaussian 

forms [14]. 

Fig. 1. Gaussian membership function. 

In fuzzy logic, the Gaussian membership function is a generalization of the Gaussian distribution for 

classical sets. It represents the degree of truth often confused with probability. However, it is conceptually 

distinct because fuzzy truth represents membership in vaguely defined sets, not the likelihood of some 

event or condition. The general form of the Gaussian membership function is ( )
 −

−  
 =

2
x m

σ

Τ
μ x e (Fig. 1). For 

an element x of X , ( )Τ
μ x quantifies the grade of membership of the element x to the fuzzy set Τ (Fig. 

1). The value 0 means that x  is not a member of the fuzzy set; the value 1 indicates that x is fully a member 

of the fuzzy set. The values between 0 and 1 characterize fuzzy members, which belong to the fuzzy set 

only partially. The Gaussian membership function is employed in several domains (e.g., [16]-[18]). 

i i i i
i i i

2

2

i i
i i

n x y x y

b̂ ,

n x x

−

=
 

−  
 

  

 

 
 

ˆâ y bx.= −   
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4 | Fuzzy Linear Regression Models 

A fuzzy linear regression model was first introduced by [21]. He formulated a linear regression model 

with fuzzy response data, crisp predictor data, and fuzzy parameters as a mathematical programming 

problem. Their approach was later improved to give birth to many other methods: linear-programming-

based methods said possibilistic approach (e.g. [1], [6], [9], [10], [19], [20]), fuzzy least-squares methods 

(e.g. [5], [7], [8], [22]) and fuzzy minimizing method said dissemblance method [3]. 

Fuzzy simple linear regression is different from simple linear regression in the sense that it is a no 

statistical method [12]. However, in some cases, we may need to consider that the relationship expressed 

as = + +
i i i

y a bx ε may be fuzzy. Indeed, three cases are possible:  

In the case where the predictor variable is fuzzy, but the parameters are crisp:  

The case of a crisp predictor and fuzzy parameters:  

 

 

 

And finally, the case of a fuzzy predictor and fuzzy parameters:  

where ith , i 1 , ..., n ,= are fuzzy responses. 

In this section, we retain a curve representing the modification of the confidence interval from 0 to 1. 

It may have a deflection in its slope, resulting in a flat region, as shown in Fig. 2. This curve is an L-R 

Gaussian membership function with a flat. 

Fig. 2. L-R Gaussian fuzzy number with a flat. 

We estimate Model (2) parameters when unknown parameters are L-R Gaussian fuzzy numbers with a 

flat. The Model (2) was also treated by [3] using Trapezoidal fuzzy numbers.                         

We choose four significant numbers to represent the L-R Gaussian fuzzy number nonunimodally. Let 

( )= − +S m σ,m,m,m σ an L-R Gaussian fuzzy number with a Flat where −m σ and +m σ are the left 

and right "end" points of the corresponding bell, and m and m are the left and right "middle" points 

(Fig. 2). 

The membership of the fuzzy response
i

y of the Model (2) is as follows: 

i i i
y a bx +ε .= +  (1) 

i i i
y a bx +ε .= +  (2) 

i i i
y a bx +ε ,= +  (3) 
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We suppose that the parameters of the Model (2), a  and b̂ are L-R Gaussian fuzzy numbers with a flat, 

where ( )= − +
a a

a a σ ,a,a ,a σ  and ( )= − +
b b

b b σ ,b,b ,b σ .  Then according to the [13]:  

 

from which we have  

 

 

 

 

4.1 | Error's Gaussian Membership Function  

Starting from Model (2), we can write: 

 

for the term to the right of Eq. (6), it's about the subtraction of Gaussian fuzzy numbers, which is written 

as follows: 

 

which corresponds to 

( ) ( ) ( ) ( ) ( )( )i i a b i i i a b i
y a bx m σ a σ b σ x ,m a bx ,m a bx ,m σ a σ b σ x .− + = − − + − + − − − − + − − − −   

Now using Eq. (4), let     α 0 , 1 ,  

( )
 −
 −
 
 

 
 

=  
 
 

2

i

α
u m

σ
α e , 

( )
=

α
α m , 

( )
=

α
α m , 

( )
 −
 −
 
 

 
 

=  
 
 

2

i

α
u m

σ
α e , from which   

 

 

( )

2

i

i
2

i

u m

σ

i

y i i

u m

σ

i

e ,       u m,

μ u = 1 ,                     m u m,

e ,          m u .

 −
− 
 
 

 −
− 
 
 



 −  


 



  +


 (4) 

( ) ( ) ( ) ( ) ( )( )a b a b
a bx a σ b σ x,a bx, a bx, a σ b σ x ,+ = − + − + + + + +   

( ) ( )

( ) ( )( )

( ) ( )

( ) ( )( )

2

i a b i

a b

i

2

i a b i

a b

u a σ b σ x

σ σ

i i a b ia bx

i i i

u a σ b σ x

σ σ

u R :

μ u e        u a σ b σ x

                 1                                      a bx u a bx

                  = e      

 − − + −
 −
 + 
 

+

 − − + −
 −
 + 
 

 

= −   − + −

= +   +

( ) ( )a b i i
  a σ b σ x u .− + −   +

 (5) 

( ) ( ) ( )
i i i

ε i iy  a bx
μ ε μ ε .

− +
=  (6) 

( ) ( ) ( ) ( )( )
iii i

i i y ia bxy  a bx
μ ε = μ a bx μ y ,

ε
i

+− +
+   (7) 

( ) ( ) ( ) ( )( )
2 2

i i

α α α α

iα 1i 2i 3i 4i

u m u m

σ σ

y y ,y ,y ,y

    α e ,m,m,α e .

   − −
− −   
   
   

=

 
 

= − −
 
  

 (8) 



 

 

284 

B
e
lh

a
d

j 
|

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(4
) 

(2
0
2
2
) 

2
7
9
-2

8
9

 

 

Now using Eq. (5), we obtain 

( ) ( )( )
( )

 − − + −
 −
 + 
 

 
 
 =
 
 
 

2

i a b i

a b

α
u a σ b σ x

σ σ

α e , ( )
( )

= +
α

i
α a bx , ( )

( )
= +

α

i
α a bx , 

( ) ( )( )
( )

 − − + −
 −
 + 
 

 
 
 =
 
 
 

2

i a b i

a b

α
u a σ b σ x

σ σ

α e , from which 

We must then have  

( )( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )α α α α α α α α α α α α α α α α

iα i 1i 2 i 3 i 4 i 1i 2 i 3 i 4 i 1i 4 i 2 i 3 i 3 i 2 i 4 i 1iα
y a bx y , y , y , y ν ,ν ,ν ,ν y ν , y ν , y ν , y ν . − + = − = − − − −

    

Thus if we define 
( ) ( )

( ) ( )( ) − − + −
   − − −  +   
   − = − + −

2
2

i a b i
i

a b

u a σ b σ x
u m

σ σα α σ

1i 4 i
y ν α e α e ,  

( ) ( )

( ) ( )( ) − − + −
   − − −  +   
   − = − + −

2
2

i a b i
i

a b

u a σ b σ x
u m

σ σα α σ

4 i 1i
y ν α e α e , from which we have 

The estimate of a  and b of Model (2) consists of solving the following minimization problem: 

 

 

 

Using Eq. (7), Eq. (11) becomes 

 

 

We show that to solve Eq. (12) is to solve the following system 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 2

i a b i i a b i

a b a b

α α α α

i 1i 2i 3i 4iα

u a σ b σ x u a σ b σ x

σ σ σ σ

i i

a bx ν , ν , ν , ν

                  α e ,a bx , a bx , α e .

   − − + − − − + −
   − −
   + +   
   

+ =

 
 

= − + + + − + 
 
  

 (9) 

( )

( ) ( )( )

( ) ( )

( ) ( )( )

2

i a b i

a b

i a b i

a b

u m σ a σ b σ x

σ σ σ

ε i i a b i

i i i

u m σ a σ b σ x

σ σ σ

u R :

μ u e        u m σ a σ b σ x

          1                                             m a bx u m a bx

           = e

 − − − − − −
 −
 + + 
 

 − + − + − +
 −
 + +
 

 

= −   − − − − −

= − −   − −

( ) ( )

2

a b i i
        m σ a σ b σ x u



+ − + − +   +

 (10) 

( )
i

ε
minμ a, b . (11) 

( ) ( ) ( )( )
ii ii

ε i y ia bx
minμ a, b =min μ u μ u .

ε
i

+
  (12) 

( ) ( )( )( )
( )

2
n

i a b ii 1

2

a b

u m σ a σ b σ x
a, b 0 .

σ σ σ

=
− − − + − +

   =

+ +


 (13) 

( ) ( )( )( )
( )

2
n

i a b ii 1

2

a b

u m σ a σ b σ x
a, b 0.

σ σ σ

=
− − − + − +

   =

+ +


 (14) 
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We prove that the error's membership function ( )

iε
μ a,b is also the (L)-R hatched area of Fig. 3, given by 

the difference between the membership function of the observed value, ( )
iy i

μ u , and the membership 

function of the estimated value of 
i

y , ( )+ i
ia bx

μ u . Therefore, solving Eq. (12) is equivalent to minimizing 

the hatched areas of Fig. 3, hence the following method. 

4.2 | Fuzzy Numbers Gaps Square Method 

Starting from Eqs. (8) and (9), we define =i 1, ..., n  two Gaussian fuzzy numbers A and B, as follows:

 =  1i 2 i 3 i 4 i
A y , y , y , y  and  =  1i 2 i 3 i 4 i

B ν ,ν ,ν ,ν . Or, from Eq. (4),      α 0 , 1     

 −
 −
 
 =  = − +

2

iu m

σ

i
α e u σ log α m , 

 −
 −
 
 =  = − +

2

iu m

σ

i
α e u σ log α m ,  = − + − +

  α
A σ log α m,σ log α m . And 

from Eq. (5), ( ) ( )( ) ( ) ( ) ( )( ) ( ) = − + − + + − − + − + + −
  α a b i a b a b i a b

B a σ b σ x σ σ log α , a σ b σ x σ σ log α .  

Note that, in the right of Fig. 2, A  and B  intersect at the following two points (Fig. 3)  

( ) ( )( ) ( )− + = − + − + + −
a b i a b

σ log α m a σ b σ x σ σ log α , gives 

= +
i

m a bx  gives  

We then have 

Always on the right, if we proceed to integrate ( )α α
Rδ A ,B from =α 0  to =α 1 , we obtain a distance 

( )Rδ A,B by the summation of distances: ( ) ( )
=

= 
1

α αα 0
Rδ A,B Rδ A ,B dα.   

It is a distance between two Gaussian fuzzy numbers A and B. 

The calculation of Eq. (17) shows 

And, 

 

 

( ) ( )( )
( )( )

2

a b i

a b

a σ b σ x m

σ σ σ

1
α e .

 − + − −
 −
  − +
 =  

(15) 

2
α 1.=  (16) 

( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( )

α α

4i 4i a b i a b

a b i a b

y ν σ logα m a σ b σ x σ σ logα

               m a σ b σ x σ σ σ logα.

− = − + − − + − − + −

= − − + − + − + −
  

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1

1

α

a b i a bα 0

1

a b i a bα

Rδ A,B m a σ b σ x σ σ σ logα dα

                      m a σ b σ x σ σ σ logα dα

=

 = − − + − + − + −
  

 + − − + − + − + −
  





 (17) 

( ) ( ) ( )( ) ( )( )1

1

1α 1

a b i a bα 0 α 0
Rδ A,B m a σ b σ x α α σ σ σ logα dα.

=

        = − − + − + + − + −              

( ) ( ) ( )( ) ( )( )1

1

α 1

a b i a bα 0 α

π
Rδ A,B m a σ b σ x α α σ σ σ .

2=

      = − − + − + + − +      
 (18) 



 

 

286 

B
e
lh

a
d

j 
|

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(4
) 

(2
0
2
2
) 

2
7
9
-2

8
9

 

 

For Gaussian fuzzy numbers A and B, the distance ( )Rδ A,B is the sum of areas hatched in Fig. 3. 

Fig. 3. R Gaussian fuzzy number with a flat. 

The estimate of a and b of Model (2) consists of solving the following minimization problem: 

Problem (19) is equivalent to the Problem (14). Its resolution consists of solving the System (20). 

The solution of Eq. (20) is 

Which gives   

And 

This paper's fuzzy estimators of the linear regression proposed are solutions to reality modeling. They 

may be of some use because of the complexity of phenomena, such as the social economy and the 

influence of various uncertain factors existing in the boundary environment around the phenomena. As 

justification for the proposed fuzzy modeling, we estimate the employment poverty relationship among 

a group of MENA countries in the following section in 2015. This estimation justifies the relationship 

unclear between poverty and unemployment. 

( ) ( )2 2

i i

min Rδ A,B min Rδ a, b  .=   (19) 

( )

( )

2

2

Rδ a, b
=0,

a
 

Rδ a, b
=0.

b











 

 (20) 

( )

( )

a b a b

2 2

a b a b

π
a+bX= σ σ σ m nσ Xσ ,

2
π

aX+bX = σ σ σ X mX Xσ X σ .
2


− − + + +



 − − − + +


 (21) 

( ) a

b2

X

2mX 1 n Xσ
b σ .

σ

− + −
= +  (22) 

( )
( ) ( )2 2 2 2

X a X

b 2

X

m σ 2X σ n π 2 σ 1 n X
π

a σ σ .
2 σ

  
+ + − − −   

   
= − +  

(23) 
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5 | Employment Poverty Relationship Using Fuzzy Numbers Gaps 

Square Method 

We start from the observation that employment and the access that the poor have to decent earning 

opportunities will be crucial determinants of poverty reduction. This observation brings us back to 

estimating the relationship between the poverty headcount ratio at $1.90 and the unemployment rate in 

2015 for a group of developing countries from the MENA region.  

The estimation of this relation by the OLS method shows the following results  

Looking at the results of Eq. (24), we find that the application of the OLS method show, as [23], a negative 

relationship which can be explained by: the unemployment rate is generally higher in developing middle-

income countries. In comparison, the poverty rate is higher in developing low-income countries [23]. But 

we show below that by changing the method, the result changes. 

We retain the same sample from Eq. (24) and apply the fuzzy numbers gaps square method. We calculate, 

however, the solutions Eq. (22) and Eq. (23). We, therefore, obtain the following results. 

Table 1. Employment poverty relationship using the fuzzy numbers gaps square method. 

 

 

=2R SSR / SST where SSR is the sum of squares due to regression, SST is the total sum of squares 

As shown in Table 1, the value of the constant term depicts that when the unemployment rate is assumed 

to be zero, the incidence of poverty will still be visible, thus insinuating that the unemployment rate is not 

the only factor responsible for the incidence of poverty. 

We also find that the parameter measuring unemployment is not always negative as in Eq. (24). The 

relationship between the incidence of poverty and unemployment is positive in the right-Gaussian-fuzzy-

number Fig. 2, but in the left-Gaussian-fuzzy-number, the relationship is negative. These results justify the 

relationship unclear between poverty and unemployment. However, being unemployed usually results in 

falling in one's living standard due to the absence of income, and one can be employed and still be poor. 

The relationship between the incidence of poverty and unemployment is, then, subject to the linked labor 

force and income statistics path tracing. For example, the problem of interpretation becomes complicated 

among workers who experience an employment problem but whose family income does not fall below the 

poverty level. 

However, the realistic depiction of the phenomenon is critical. For many natural effects, including fog, 

steam, smoke, and fire, a recent survey by [25] gives an overview of the best-known methods for 

importance sampling. Our approach illustrates an alternative importance sampling strategy that can yield 

more robust estimators. It is based on variable distribution to calculate the relationship between them 

validly. 

 

( )( )
( )

i i

2

P 17,37 0,81U

       2,89 1,94

  R 0,201;  N 23;  t values in parentheses .

= −

−

= =

 (24) 

 a  b  2R  
The left-Gaussian-fuzzy-
number-estimates 

23,45 
(3,06) 

-0,58 
(-2,03) 

0,879 

The right-Gaussian-fuzzy-
number-estimates 

14,06 
(3,97) 

0,43 
(3,77) 

0,901 
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Both positive and negative relationship between unemployment and poverty then returns to the 

distribution of each variable. A possible situation shows that MENA's 'working poor' still live in poverty. 

The study results show that the employment rate has a statistically significant impact on reducing non-

extreme poverty for the MENA sample. The results confirm that, in the right part of the distribution, a 

one-unit increase in the employment rate results in a fall in the poverty headcount ratio by about 43% 

for the MENA sample. Therefore, in the right part of the distribution, employment is a vector to lift 

out of poverty because job quality is sufficient, including adequate earnings, job security, and safe 

working environments. In the left part of the distribution, the working poverty rate reveals the 

proportion of employed people living in poverty despite being employed, implying that their 

employment-related incomes are insufficient to lift out of poverty and ensure decent living conditions. 

The relationship between employment and poverty depends significantly on the extent to which decent 

work is ensured in the labor market. This means that having a job is not enough to keep out of poverty, 

pointing to job quality issues, particularly the inadequacy of earnings. 

6 | Conclusion  

In this paper, we propose new non-statistical methods - fuzzy regressions - as alternative methods of 

ordinary regression analysis. These methods deal with fuzziness; they estimate the parameters of a fuzzy 

simple regression model for the case of fuzzy parameters using Gaussian membership functions 

nonunimodally.  

These methods are desirable since they are based on an integral abstraction of reality while keeping the 

same process as the classical linear regression. Moreover, the calculation technique for these methods 

keeps a Gaussian distribution in a real context. We can, in future work, extend our methodology for the 

case where predictor and parameters are fuzzy. 
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Abstract 
 

 

1 | Introduction  

Fuzzy Cognitive Maps (FCM) developed by Kosko [1] is an extension of cognitive maps. FCMs are 

basically directed graphs with fuzzy weights that are widely applied in making optimal decisions. The 

four primary functions of FCM are explanatory, prediction, reflective, strategic. In a decision-making 

environment involving various factors, the FCM modeling considers these factors as the nodes and 

the relationship between the factors are represented using edges. FCM is explanatory as it builds the 

cause and impact relationship representations; it is predictive as it forecasts the impacts of new 

occurrences; it is reflective as it always possess space for making changes and it is strategic as it 

handles the complex situation with its precise description.  
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Inspite of several decision-making methods, FCM is the choice to handle a multifaceted decision-making 

situation. FCM models are developed using deductive and inductive modelling approaches. Expert based 

methods under deductive modelling and computational methods under inductive modeling are used to 

construct FCM models. The development of learning algorithms of FCM has labelled FCM models as 

supervised learning fuzzy neural systems in the point of view of Artificial Intelligence.  

FCM has been extended to accommodate and to increase the magnitude of flexibility and adaptability in 

solving highly complex problems. Researchers in FCM have contributed to the extensions of FCM. 

Carvalho and Tome [4] developed Rule based FCM, Salmeron [5] introduced fuzzy grey cognitive maps, 

Iakovidis and Papageorgiou [6] developed Intuitionistic FCM, Miao et al. [3]. developed Dynamical 

Cognitive Networks, Aguilar [16] proposed dynamic random FCM, Cai et al. [8]. constructed evolutionary 

FCM, Wei et al. [9]. built fuzzy time cognitive maps, Song et al. [17] developed fuzzy rules incorporated in 

FCM, Ruan et al. [10]. developed belief-degree distributed FCM, Chunying et al. [18] developed rough 

cognitive maps, Acampora et al. [11]. developed Time Automara-based FCM. Kandasamy and 

Smarandache [7] introduced neutrosophic cognitive maps, Martin and Smarandache [13] developed 

Plithogenic Cognitive Maps. FCM models are extended to increase the reliability and feasibility of decision 

making. 

FCMs are widely applied in many fields of science and technology. The bountiful applications of FCM in 

behavioural sciences, medicine, telecommunication, engineering, production systems, information and 

technology management, education business and management are highly noteworthy. The FCM models 

are not only used in handling scientific issues or problems in the domain areas of science, but also 

commonly applied to deal with political, social, economic and strategic issues. FCMs are used to model the 

social problems and social researchers have applied FCM modelling approaches. Vasantha et al. [12] has 

dealt the issues of unemployment, socio-economic distress and its impacts on the life of mankind using 

FCM models. The other FCM models dealing with social aspects are associated with the dimensions of 

education, climate change and other related facets. In all these FCM models the associational impacts 

between the factors of the problems are analysed and also the factors are not grouped.  

Presently the pandemic situation has accelerated the construction of FCM models to determine the cause 

and effect of COVID 19 Peter Groumpos [14] has developed FCM model to determine the cause and 

effect impact of the symptoms of COVID. The FCM model is dealt with symptom-disease aspect. 

Goswami et al. [15]. have applied FCM approach in determining the impact of COVID on small holder 

agricultural systems and to develop new strategies. It is inferred from the models that FCM is applied both 

in scientific and social sense to handle COVID issues and impacts. But in the model developed by 

Goswami et al. [15], FCM is used only as a tool to find the impact between the factors of the decision-

making problem and the sub factors were not discussed. Based on the social utility of COVID FCM 

models, in this research work the impacts of occupational shift on the rural populace caused by pandemic 

is modelled using FCM. The researchers have made an extensive study on the impacts of COVID on 

employment but the literature on their occupational shifts of rural populace are sparse. This has motivated 

the authors to model the impacts of occupational shifts using FCM deductive modelling approach.  

The paper is segmented into the following sections, Section 2 presents the fundamentals of FCM, Section 

3 consists of FCM model, Section 4 discusses the results and the last sections concludes the work.  

2 | Fundamentals of FCM 

FCM is a directed graph comprising of nodes and edges representing the factors and their associations 

respectively. FCM are the extensions of cognitive maps in which the weights of the relationship assume 

fuzzy values rather than crisp values. In a simple FCM, the weights assumes values from the set {-1,0,1}. 

The value -1 signifies the negative associational impact between the factors, the value signifies the positive 

associational impact between the factors and the value 0 represent the null associations. But in reality the 

values -1, 0, and 1 alone cannot be used as benchmark to represent the relational impacts as these values 
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are used only at times of pure existence of associational or relational impacts, but where as in real life 

situation, the chances of complete relational impacts are very less as the dominance of somewhat 

existence of relational impacts exist. In almost every time the existence of associational impact may 

differ in magnitude. At some instances it may be high, very high, moderate, less, very less. To handle 

such instances, the weighted FCM that assumes the relational weight in the interval range [-1,1] shall be 

used.  

Let us consider a real life example of a decision making environment characterized by the factors 

contributing to weight management. The prime factors that are taken into account are F1 balanced diet, 

F2 physical exercises and F3 high hydration levels, F4 reduction of cholesterol levels. Let us try to 

determine the inter associational impacts between these four factors intuitively. The graphical 

representation of FCM is the respective connection matric of the above directed graph as shown below. 

If balanced diet is maintained then the cholesterol levels will be reduced, so F1 has negative relational 

impacts on F4. Similarly F2 and F3 have also negative associational impacts on F4. Also F1 has positive 

associational impact on F3, as a good balance diet will certainly enhance high hydration levels. At a quick 

glance, the associational impacts between the factors F1 and F3 on F2 seems to be nil, but on profound 

analysis, there lies associational impacts as taking balanced diet and maintaining high hydration levels, 

the stamina is sustained at times of physical exercises. So in this case the direct relational impact is not 

represented but the indirect association is represented using fuzzy values. 

It is inferred from the connection matrix that the representations using crisp weights -1,0 and 1 have 

focussed only on few inter associational impacts. Some of the factors and their inter associational 

impacts are not taken into account. 

The representations using fuzzy weights have facilitated to accommodate more number of factors and 

their inter associations, but not all.  

The same representations shall be made using linguistic variable. In this case all the factors have been 

taken into account and the linguistic variables shall be quantified using fuzzy numbers. 

To determine the associational impact between the factors of decision-making, let us assume the factor 

F1 in on position, The vector obtained is called as instantaneous vector which will be of the form (1 0 

0 0). This shows that the first factor is in ON position and other factors are in OFF position. The most 

generalized form of representing an instantaneous vector is (a1, a2, ... an) whereaitakes the value either 

0 or 1 indicating the ON and OFF position respectively. On passing the initial vector to either of the 

connection matrices of crisp, fuzzy and linguistic a new vector is obtained which on after applying the 

threshold values,the new updated vector is obtained. By repeating in the same fashion, the fixed point 

is attained which is the limit cycle of the dynamical fuzzy system. 

 F1 F2 F3 F4 

F1 0 0 1 -1 

F2 0 0 0 -1 

F3 1 0 0 -1 

F4 0 -1 0 0 

 F1 F2 F3 F4 

F1 0 0.5 1 -1 

F2 0.4 0 0 -1 

F3 1 0 0 -1 

F4 0 -1 0 0 
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3 | Methodology 

In this section, the pandemic impacts on the occupational shifts are determined by applying suitable 

statistical methods of data collection such as survey, participatory research and multi-stage purposive 

sampling. Also the method of FCM is applied to determine the inter associational effects between the 

pandemic impacts. The place chosen for study is Usillampatti block in Madurai district in Tamil Nadu state 

of Indian nation. Usilampatti is a Panchayat Union consisting of 57 villages and a population of around 

one lakh people. The literacy rate is 63.17%. The total percentage of agricultural farmers is 11.21% and the 

labour percentage is 24.68%.   

Among 57 villages nearly 30 villages were chosen for the study based on the percentage of working 

population and also on the feasibility of data collection. The data was collected from a minimum of 15 

people from each village and the total respondents were 465. The method of structured interview was used 

to collect the data on occupational shifts at times of pandemic impact and also semi-structured interview 

method along with discussion method were  used for convenience to collect data from the target groups 

on their adaptability and adoptability of new occupations.  

From the data collected, it is inferred that the occupational shift at times of pandemic period has caused 

impacts on the dimensions of personal, social, economic and health of rural populace and it is represented 

in Table 1. 

Table 1. The dimensions of personal, social, economic and health of rural populace. 

 

 

 

 

 

 

The initial linguistic connection matrix, based on the deductive approach of expert based method is shown 

in Table 2. 

 

 F1 F2 F3 F4 

F1 0 M VH VH 

F2 M 0 L VH 

F3 VH L 0 VH 

F4 L VL L 0 

Dimension Sub-Factors 

Personal C1 Self-satisfaction 
C2 Acceptance of occupational change by the family members 
C3 Adaptability to the new working environment 
C4 Mutual support from the peer employees 
C5 Creating flexible workplace 

Social C6 Change in the social status 
C7 Recognition gain in the society 
C8 Disruption to self-identity 

C9 Declination of self-respect and dignity 
Economic C10 Difficulty in accommodating the financial needs  

C11 Increase in Financial constraints  
Health C12 Physical stresses 

C13 Mental ailments 
C14 Emotional ill health 
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Table 2. The initial linguistic connection matrix. 

 

 

 

 

 

 

  

The linguistic terms are quantified using triangular fuzzy numbers of the form A = (a1,a2,a3) where 

a1≤a2≤a3 and the triangular fuzzy number is defuzzified using average method of (a1+a2+a3)/3 (Table 3). 

Table 3. The quantified triangular fuzzy numbers. 

 

 

The modified connection matrix is 

Table 4. The modified connection matrix. 

 

 

 

 

 

 

 

 

This is the connection matrix relating the associational impacts between the sub-factors of all the factors.  

The graphical representation of the associations is presented in Fig. 1. 

 

 

 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 

C1 0 VH H VL VL L H VL VL VL VL VL VL L 
C2 VH 0 H VL M VL H L VL VL VL L VL VL 
CM VH VH 0 VL VL VL H VL VL VL VL VL VL VL 
C4 VH VH H 0 VL L H VL VL VL VL VL VL VL 
C5 VH VH H VL 0 L H VL L VL L VL L L 
C6 VH VH H VL VL 0 H VL VL VL VL VL VL VL 
C7 VH VH H L L M 0 L L VL L L L L 
C8 VH VH H VL VL VL H 0 VL VL VL VL VL VL 
C9 VH VH H M L VL H VL 0 VL VL VL VL VL 
C10 VH VH H VL VL VL L VL VL 0 VL VL VL VL 
C11 VH VH H VL M VL H VL VL VL 0 VL VL VL 
C12 VH VH H VL VL VL H VL VL VL VL 0 VL VL 
C13 VH VH H VL VL VL L VL VL VL VL VL 0 VL 
C14 VH VH H VL VL VL H VL VL VL VL VL VL 0 

Linguistic Variable  Very Low 
(VL) 

Low 
(L) 

Medium 
(M) 

High 
(H) 

Very High (VH) 

Triangular Fuzzy 
number 
Quantification 

(0, 0, 0.25) (0, 0.25, 0.50) (0.25, 0.50, 0.75) (0.50, 0.75, 1) (0.75, 1,1) 

Defuzzified Value 0.08 0.25 0.5 0.75   0.92 

 1C 2C 3C 4C 5C 6C 7C 8C 9C 10C 11C 12C 13C 14C 

1C 0 0.92 0.75 0.08 0.08 0.25 0.75 0.08 0.08 0.08 0.08 0.08 0.08 0.25 

2C 0.92 0 0.75 0.08 0.5 0.08 0.75 0.25 0.08 0.08 0.08 0.25 0.08 0.08 

3C 0.92 0.92 0 0.08 0.08 0.08 0.75 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

4C 0.92 0.92 0.75 0 0.08 0.25 0.75 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

5C 0.92 0.92 0.75 0.08 0 0.25 0.75 0.08 0.25 0.08 0.25 0.08 0.25 0.25 

6C 0.92 0.92 0.75 0.08 0.08 0 0.75 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

7C 0.92 0.92 0.75 0.25 0.25 0.5 0 0.25 0.25 0.08 0.25 0.25 0.25 0.25 

8C 0.92 0.92 0.75 0.08 0.08 0.08 0.75 0 0.08 0.08 0.08 0.08 0.08 0.08 

9C 0.92 0.92 0.75 0.5 0.25 0.08 0.75 0.08 0 0.08 0.08 0.08 0.08 0.08 

10C 0.92 0.92 0.75 0.08 0.08 0.08 0.25 0.08 0.08 0 0.08 0.08 0.08 0.08 

11C 0.92 0.92 0.75 0.08 0.5 0.08 0.75 0.08 0.08 0.08 0 0.08 0.08 0.08 

12C 0.92 0.92 0.75 0.08 0.08 0.08 0.75 0.08 0.08 0.08 0.08 0 0.08 0.08 

13C 0.92 0.92 0.75 0.08 0.08 0.08 0.25 0.08 0.08 0.08 0.08 0.08 0 0.08 

14C 0.92 0.92 0.75 0.08 0.08 0.08 0.75 0.08 0.08 0.08 0.08 0.08 0.08 0 
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Fig. 1. Graphical representation of overall factors of FCM. 

By using FCM expert software, the inference process is obtained and it is represented in Fig. 2 

Fig. 2. Overall FCM inference process. 

The interrelational impacts between the core factors are analyzed. The graphical representation of the 

interrelational impacts between Personal (P) and Social (S) factors and the respective inference process are 

presented in Fig. 3 and Fig. 4, respectively. 

Fig. 3. Graphical representation of P&S factors of FCM.          
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Fig. 4. FCM of P&S inference process.                  

The graphical representation of the interrelational impacts between Personal (P) and Economic (E) 

factors and the respective inference process are presented in Fig. 5 and Fig. 6, respectively. 

 

 

 

 

 

 

Fig. 5. Graphical representation of P&E factors of FCM.  

 

   

 

 

 

 

 

 

 

Fig. 6. FCM of P&E inference process. 

The graphical representation of the interrelational impacts between Personal (P) and Health (H) factors 

and the respective inference process are presented in Fig. 7 and Fig. 8, respectively. 
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Fig. 7. Graphical representation of P&H factors of FCM. 

         

 

 

 

 

   

 

 

Fig. 8. FCM of P&H inference process. 

The graphical representation of the interrelational impacts between Social (S) and Economic (E) factors 

and the respective inference process are presented in Fig. 9 and Fig. 10, respectively. 

 

                     

 

 

 

 

Fig. 9. Graphical representation of S&E factors of FCM.             
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 Fig. 10. FCM of S&E inference process. 

The graphical representation of the interrelational impacts between Social (S) and Health (H) factors 

and the respective inference process are presented in Fig. 11 and Fig. 12, respectively 

 

 

 

 

 

 

Fig. 11. Graphical representation of S&H factors of FCM.         

 

 

 

 

  

  

  

  

  

 

Fig. 12. FCM of S&E inference process. 
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The graphical representation of the interrelational impacts between Economic (E) and Health (H) factors 

and the respective inference process are presented in Fig. 13 and Fig. 14, respectively. 

Fig. 13. Graphical representation of E & H factors of FCM.    

Fig. 14. FCM of E & H inference process. 

 

4 | Discussion 

Fig. 1 represents the graphical representation between all the sub-factors of the core factors and in Fig. 1 

the values taken by the concepts over a time of iterations and the convergence of the concept values are 

also represented. In the inference process, the Kosko [2] activation rule is used with sigmoid function and 

the concepts are assumed as the decision concept. It is also inferred that a steady state is arrived after a 

minimum number of iterations. In Figs. 3, 5 and 7 the inter associational impacts between the sub factors 

of personal with social, economic and health are represented respectively and the respective Figs. 4, 6 and 

8 present the inference processes of FCM obtaining the steady state values over a period of time.  Also 

Figs. 9 and 11 present the graphical inter associational impacts between the sub factors of social with 

emotional and health sub factors. The respective FCM inference processes in Figs. 10 and 12 presents the 

values of the concepts over a period of time. The inter associational impacts between economic and health 

were presented in Fig. 13 and the respective inference process.  

The sub-factors of the core-factors are assumed to be the concepts of FCM and in the above cases the 

concepts are not assigned to be decision concepts. In the later cases, on assuming one of the concepts in 

each of the sub-factors as decision concepts, it is inferred that the personal and social sub-factors have 

greater inter associational impacts between other factors and values in the below table substantiate the 

same. The factor C1, C2, C3 under personal core factor, C7 under social core factor, C11 under economic 
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core factor and C14 under health core factor assumes higher values in comparison with other sub-factors 

of the core-factors. 

Table 5. The personal and social sub-factors. 

 

4.1.1 | Other Findings 

It is also found that around 62% of people wishes to practice their earlier occupation as they are not 

personally convinced by the occupational change also the social impacts hurdle them a lot in sticking on 

to their new occupations. The remaining percentage of the working rural population who have shifted 

their occupation adopted and adapted to new working environment by convincing themselves over the 

reasons of sustaining their family. 

4.1.2 | Proposed Suggestions 

I. The working rural populace who aspires to practice their earlier occupations due to personal 

dissatisfaction shall be supported both financially and emotionally, as their personal disassociations 

with the occupational shift have caused emotional chaos. 

II. Counselling and rehabilitation programmes for promoting their emotional quotient shall be exclusively 

organized for the rural populace and the non-governmental workers together along with the volunteers 

shall be made involve in such remedial activities. 

III. The rural populace who have adopted and adapted to the new working environment shall be set as 

models and be made to interact and motivate the peer workers so as to gain an exposure to the strategies 

of adaptation. The hosting of such interactive sessions moderated by experts will certainly facility the 

learning of new skill sets of getting accustomed to changes.  

5 | Conclusion 

The research work on the occupational shift on rural populace caused by pandemic shifts has been 

investigated on the grounds of the dimensions of personal, social, economic and health aspects of the 

rural populace. This study has deeply examined the inter associational impacts between the factors. This 

work shall be extended by making a comparative analysis on the impacts of occupational shifts between 

urban and rural populace of Madurai regions. The same impact study using FCM shall be applied to 

other social issues and other decision-making problems in the field of education, business, medicine and 

so many other fileds. 

Acknowledgement 

This research work is funded by Tamil Nadu State Council of Science and Technology  under the scheme 

of Student Project (SS_298) during the year 2020-2021. 

Step C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

2 0.9985 0.9985 0.9954 0.7883 0.8334 0.8153 0.9924 0.7667 0.7667 0.735 0.7667 0.7667 0.7667 0.7816 

3 1.0 1.0 0.9999 0.8964 0.9399 0.9279 0.9998 0.8793 0.8763 0.8345 0.8763 0.8793 0.8763 0.8948 

4 1.0 1.0 1.0 0.9163 0.9527 0.9419 0.9999 0.8984 0.8972 0.8579 0.8972 0.8984 0.8972 0.9132 

5 1.0 1.0 1.0 0.9195 0.9544 0.9437 0.9999 0.9013 0.9005 0.8623 0.9005 0.9013 0.9005 0.9159 

6 1.0 1.0 1.0 0.92 0.9547 0.944 0.9999 0.9018 0.901 0.8631 0.901 0.9018 0.901 0.9163 

7 1.0 1.0 1.0 0.9201 0.9547 0.944 0.9999 0.9019 0.9011 0.8632 0.9011 0.9019 0.9011 0.9163 

8 1.0 1.0 1.0 0.9201 0.9547 0.944 0.9999 0.9019 0.9011 0.8633 0.9011 0.9019 0.9011 0.9163 

9 1.0 1.0 1.0 0.9201 0.9547 0.944 0.9999 0.9019 0.9011 0.8633 0.9011 0.9019 0.9011 0.9163 

10 1.0 1.0 1.0 0.9201 0.9547 0.944 0.9999 0.9019 0.9011 0.8633 0.9011 0.9019 0.9011 0.9163 



301 

 

F
u

z
z
y
 c

o
g

n
it

iv
e
 s

tu
d

y
 o

n
 p

o
st

 p
a
n

d
e
m

ic
 i

m
p

a
c
t 

o
n

 o
c
c
u

p
a
ti

o
n

a
l 

sh
if

t 
in

 r
u

ra
l 

a
re

a
s

 

 
References 

 Kosko, B. (1986). Fuzzy cognitive maps. International journal of man-machine studies, 24(1), 65-75. 

https://doi.org/10.1016/S0020-7373(86)80040-2 

 Kosko, B. (1993). Adaptive inference in fuzzy knowledge networks. In Readings in fuzzy sets for intelligent 

systems (pp. 888-891). Morgan Kaufmann. https://doi.org/10.1016/B978-1-4832-1450-4.50093-6 

 Miao, Y., Liu, Z. Q., Siew, C. K., & Miao, C. Y. (2001). Dynamical cognitive network-an extension of fuzzy 

cognitive map. IEEE transactions on fuzzy systems, 9(5), 760-770. 

 Carvalho, J. P., & Tomé, J. A. B. (2009). Rule based fuzzy cognitive maps in socio-economic systems. 

IFSA/EUSFLAT conferance (pp. 1821-1826). 

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.156.5486&rep=rep1&type=pdf 

 Salmeron, J. L. (2010). Modelling grey uncertainty with fuzzy grey cognitive maps. Expert systems with 

applications, 37(12), 7581-7588. https://doi.org/10.1016/j.eswa.2010.04.085 

 Iakovidis, D. K., & Papageorgiou, E. (2010). Intuitionistic fuzzy cognitive maps for medical decision 

making. IEEE transactions on information technology in biomedicine, 15(1), 100-107. DOI: 

10.1109/TITB.2010.2093603 

 Kandasamy, W. V., & Smarandache, F. (2003). Fuzzy cognitive maps and neutrosophic cognitive maps. 

Infinite Study. 

 Cai, Y., Miao, C., Tan, A. H., Shen, Z., & Li, B. (2009). Creating an immersive game world with 

evolutionary fuzzy cognitive maps. IEEE computer graphics and applications, 30(2), 58-70. DOI: 

10.1109/MCG.2009.80 

 Wei, Z., Lu, L., & Yanchun, Z. (2008). Using fuzzy cognitive time maps for modeling and evaluating trust 

dynamics in the virtual enterprises. Expert systems with applications, 35(4), 1583-1592. 

https://doi.org/10.1016/j.eswa.2007.08.071 

 Ruan, D., Hardeman, F., & Mkrtchyan, L. (2011, March). Using belief degree-distributed fuzzy cognitive 

maps in nuclear safety culture assessment. 2011 annual meeting of the north american fuzzy information 

processing society (pp. 1-6). IEEE. DOI: 10.1109/NAFIPS.2011.5751916 

 Acampora, G., Loia, V., & Vitiello, A. (2011). Distributing emotional services in ambient intelligence 

through cognitive agents. Service oriented computing and applications, 5(1), 17-35. 

https://doi.org/10.1007/s11761-011-0078-7 

 Vasantha, W. B., Kandasamy, I., Devvrat, V., & Ghildiyal, S. (2019). Study of imaginative play in children 

using neutrosophic cognitive maps model. Neutrosophic sets and systems, 30, 241-252. 

http://fs.unm.edu/NSS/StudyOfImaginativePlayInChildren.pdf  

 Martin, N., & Smarandache, F. (2020). Plithogenic cognitive maps in decision making. Infinite Study. 

 Groumpos, P. (2021). Modelling COVID-19 using fuzzy cognitive maps (FCM). EAI endorsed transactions 

on bioengineering and bioinformatics, 21(2): e5.  http://dx.doi.org/10.4108/eai.24-2-2021.168728 

 Goswami, R., Roy, K., Dutta, S., Ray, K., Sarkar, S., Brahmachari, K., ... & Majumdar, K. (2021). Multi-

faceted impact and outcome of COVID-19 on smallholder agricultural systems: integrating qualitative 

research and fuzzy cognitive mapping to explore resilient strategies. Agricultural systems, 189, 103051. 

https://doi.org/10.1016/j.agsy.2021.103051 

 Aguilar, J. (2005). A survey about fuzzy cognitive maps papers. International journal of computational 

cognition, 3(2), 27-33. 

 Song, H., Miao, C., Roel, W., Shen, Z., & Catthoor, F. (2009). Implementation of fuzzy cognitive maps 

based on fuzzy neural network and application in prediction of time series. IEEE transactions on fuzzy 

systems, 18(2), 233-250. 

 Chunying, Z., Lu, L., Ruitao, L., & Jing, W. (2011). Rough center mining algorithm of rough cognitive 

map. Procedia engineering, 15, 3461-3465. 

https://doi.org/10.1016/S0020-7373(86)80040-2
https://doi.org/10.1016/B978-1-4832-1450-4.50093-6
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.156.5486&rep=rep1&type=pdf
https://doi.org/10.1016/j.eswa.2010.04.085
https://doi.org/10.1109/TITB.2010.2093603
https://doi.org/10.1109/MCG.2009.80
https://doi.org/10.1016/j.eswa.2007.08.071
https://doi.org/10.1109/NAFIPS.2011.5751916
https://doi.org/10.1007/s11761-011-0078-7
http://fs.unm.edu/NSS/StudyOfImaginativePlayInChildren.pdf
http://dx.doi.org/10.4108/eai.24-2-2021.168728
https://doi.org/10.1016/j.agsy.2021.103051


  Corresponding Author: mhmd.dirik@gmail.comjfea@aihe.ac.ir  

                        https://doi.org/10.22105/jfea.2022.345344.122310.22105/JFEA.2021.281500.1061        

 

E-ISSN: 2717-3453 | P-ISSN: 2783-1442 | 

Abstract 

 

1 | Introduction  

Paper money remains a common means of exchanging goods and services. With advances in digital 

imaging technology, color scanners, and laser printers, it is becoming easier to create high-resolution 

counterfeit banknotes. Counterfeit banknotes are becoming more common because they look very 

similar to real money and are difficult for the untrained eye to detect. Companies and organizations 

are losing money due to the widespread use of counterfeit banknotes. Therefore, it is important to 

develop an effective technique for detecting counterfeit banknotes. Counterfeit detection devices [1] 

exist, but they are sometimes prohibitively expensive, making counterfeit detection a major concern 

for financial and government institutions with little community involvement.  
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Due to developments in printing technology, the number of counterfeit banknotes is increasing every year. Finding an 

effective method to detect counterfeit banknotes is an important task in business. Finding a reliable method to detect 

counterfeit banknotes is a crucial challenge in the world of economic transactions. Due to technological development, 

counterfeit banknotes may pass through the counterfeit banknote detection system based on physical and chemical 

properties undetected. In this study, an intelligent counterfeit banknote detection system based on a Genetic Fuzzy 

System (GFS) is proposed to detect counterfeit banknotes efficiently. GFS is a hybrid system that uses a network 

architecture to fine-tune the membership functions of a fuzzy inference system. The learning algorithms Fuzzy 

Classification, Genetic Fuzzy Classification, ANFIS Classification, and Genetic ANFIS Classification were applied to the 

dataset in the UCI machine learning repository to detect the authenticity of banknotes. The developed model was 

evaluated based on Accuracy (ACC), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Error Mean, Error 

STD, and confusion matrix. The experimental results and statistical analysis showed that the classification performance 

of the proposed model was evaluated as follows: Fuzzy = 97.64%, GA_Fuzzy = 98.60%, ANFIS = 80.83%, GA_ANFIS 

= 97.72% accuracy (ACC). This shows the significant potential of the proposed GFS models for fraud detection. 
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The process of certifying banknotes also continues to improve as new strategies for producing counterfeit 

money are invented every day. The elimination of transaction problems is inextricably linked to the 

successful detection of counterfeit banknotes. Serious measures are needed to protect the economy from 

such immoral acts. Artificial intelligence approaches based on Machine Learning (ML) have recently 

become the de facto standard for banknote categorization difficulties [2]-[4]. The goal of ML must be to 

complement human decision making, but some approaches are superior at doing so. For applications that 

require explanation and are prone to unforeseen and unpredictable failures, ML techniques should be 

preferred over traditional approaches. 

There are approaches to this problem based on both the latest technology and traditional computer vision 

methods, as well as alternative solutions. Nearest Neighbor Interpolation [5]-[7], evolutionary algorithms 

[8]-[10], and fuzzy systems [11]-[13] are examples of techniques that can be used. Due to its high accuracy 

and generalization capability for new data, it can beat both standard ML approaches and humans in 

classification tasks, which is compatible with learning-based methods. Various options were presented to 

detect counterfeit banknotes [14]-[16]. 

Fuzzy Inference System (FIS) is an intelligent system capable of explaining difficult facts [17]-[20]. Fuzzy 

systems are architectures capable of understanding language norms in decision scenarios and effectively 

ensuring membership in each category across a wide range of input values. The FIS parameters used in 

this work were optimized using the Genetic Algorithm (GA) [21]. The term "Genetic Fuzzy System" (GFS) 

refers to the application of a GA -optimized FIS (GFS) [22]-[27]. When it comes to detecting counterfeit 

banknotes, a False Positive (FP) is often more damaging than a False Negative (FN), as counterfeit 

banknotes can lead to greater financial losses if they are not detected.  

The remainder of this paper is organized as follows: the materials and methods are described in Secion 2. 

The data set and the GFS are discussed in this section. Secion 3 presents the experimental results. Finally, 

Secion 4 contains the conclusion. 

2 | Material and Methods 

It is difficult to distinguish between counterfeit money and genuine banknotes. It should be possible to 

automate this process. Because of the accuracy with which counterfeit banknotes are produced, it is 

necessary to develop an algorithm that can predict whether a particular banknote is genuine or counterfeit. 

For this purpose, a model was created with the features obtained by analyzing the wavelet variance, wavelet 

skew, wavelet kurtosis and image entropy of an image sequence derived from real and imaginary banknote-

like patterns. Since the variable to be estimated is a binary variable, this is a classification question (fake or 

legal). In this case, the objective is to simulate the possibility that a banknote is counterfeit while 

maintaining the functionality of its features. 

2.1 | Data Set 

The dataset [28] consists of 1372 samples (rows) and 5 variables (columns). Data was collected by digitizing 

photographs of genuine and counterfeit banknote-like samples using an industrial camera commonly used 

for inspecting printed products. Features were then extracted from the images using the Wavelet 

Transformation tool. The following variables are used as inputs to this problem: the Variance of the 

Wavelet Transformed Image (VWTI), the Skewness of the Wavelet Transformed Image (SWTI), the 

Kurtosis of the Wavelet Transformed Image (KWTI), and the Entropy of the Image (EI). The target was 

used as a counterfeit. It can have only two possible values: 0 (no counterfeit) or 1 (counterfeit). The 

proposed categorization model is shown in Fig. 1. 
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Fig. 1.  The scatterplot matrix of the banknote authentication dataset [28]. 

2.2 |  Genetic Algorithm 

GA is a technique developed by Holland that is frequently used [29], [30]. To get the best performance 

from the FIS, its settings need to be adjusted. The procedure is to choose a random solution set for each 

parameter and update it until an optimal parameter set is reached. This first population is referred to as 

the "initial population" on GA. By far the most important component of GA is the chromosome. Each 

chromosome contains genes that serve as parameters for the respective task. To begin solving a problem, 

an initial population must be created. The responsible member then compares this response to the 

others based on the survival criteria. Finally, the requirements for optimization completion are set by 

the number of chromosomes created, and the work is typically done after a certain number of conditions 

is satisfied [31], [32]. 

2.2 |  Adaptive Neural Fuzzy Inference System (ANFIS) 

The FIS is an application of artificial intelligence developed by Jang [33] that mimics human reasoning. 

It is a simple approach to data learning that uses fuzzy principles (IF THEN) and given inputs and 

outputs to transform inputs and information links from strongly connected parts of the neural network 

into desired outputs. ANFIS uses both ANN and fuzzy inference methods to deal with non-linear and 

complex problems in a unified framework [34], [35]. ANFIS consists of nodes and routed paths, and all 

input-output values can be changed using the various parameter sets defined when designing the 

network. ANFIS systems can be used in conjunction with a variety of optimization techniques to 

minimize errors in the training phase. This goal was also achieved in the scenario used in this study [36]. 

ANFIS is classified into five levels. They consist of a network of neurons that communicate between 

the input and hidden layers and the hidden and output layers. Each layer consists of neurons constructed 

according to the principles of fuzzy control. Fig. 2 illustrates the structure of the ANFIS algorithm. 

 

Fig. 2. Structure of ANFIS algorithm [37]. 
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The proposed GFS model is described with GA-optimized membership function parameters (MFs). These 

are updated with the release of each GA iteration. Each fuzzy set has a corresponding membership value 

for each variable, which is in the range [0,1]. 

2.3 | Genetic Fuzzy System Parameter Optimization 

GAs are computer systems based on natural evolutionary processes that use operators that follow the 

heuristic search process in a search space containing the optimal answer to the optimization question [38]. 

GA is a stochastic optimization approach based on the principles of genetics and natural selection. GA 

[39]-[42] is a meta-heuristic optimization approach inspired by natural processes and well suited for 

optimizing membership function components in FIS [43]-[45]. GA is able to discover extremely large 

solution spaces due to probabilistic variations. GA is divided into three phases: population generation, GA 

operators (selection, crossover and mutation) and fitness function evaluation. GA selects participants in 

several ways, including tournaments and the roulette wheel. Two randomly selected individuals exchange 

their genes with the crossover operator to produce the next generation. Compared to crossover, the 

probability of a mutation occurring is low. Since it is easier to construct and debug than the round-based 

or tournament selection algorithms, a proportional roulette wheel selection algorithm is used in this study 

instead of the round-based or tournament selection algorithms. It also gives much faster results than the 

other two methods. One-point crossover algorithms have been developed as part of GA to transfer 

solution proposals or chromosomes between two different systems. The proposed GFS integrations are 

very useful in solving complex and nonlinear equations. Fig. 3 shows the GFS architecture. 

 

Fig. 3. Flowchart of GFS. 

The initial parameters of the algorithm for the proposed model are given below. 
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Table 1. Initial parameters GFS. 

 

 

 

 

 

 

 

 

 

 

3 | Experiments 

In this section, we test and compare the performance of the proposed GFS. The parameters of the FIS 

structure used here are optimized by a GA. The model to be built uses the decision mechanism to 

classify the banknotes in question as genuine or counterfeit. As a result, an expert system will increase 

the quality and efficiency of services while minimizing human error and the need for additional staff. As 

the following figures show, the technique based on training the FIS with the GA algorithm is more 

efficient. It has also been shown that the FIS network can be used for a wide range of problems as the 

GA algorithm has no limitations compared to inference-based techniques and is easy to implement. 

3.1 | Evaluation Metrics 

MSE, RMSE, error mean, error STD and the confusion matrix were used to assess the performance of 

the GFS system. Quantitative assessments of the models produced were carried out using a set of 

performance criteria (Eqs. (1)-(4)). The details of each equation can be found in the corresponding 

reference. 

Mean squared error 

The mean square error describes the closeness of a regression curve to a given collection of points. The 

MSE quantifies the performance of an estimator, a ML model. It is always positive, and it can be argued 

that estimators with an MSE close to zero perform better [46], [47]. 

 

 

Root mean square error 

Root Mean Squared Error (RMSE) is a squared metric that evaluates the magnitude of an error in a ML 

model. It is often used to measure the difference between the expected values of the predictor and the 

actual values. The RMSE is the standard deviation of the estimation error. An RMSE value of 0 means 

that the model was error-free [48]. 

Algorithm Parameters Values/types 

 
 
 
ANFIS 

Epoch 80 
Error Goal 0 
Input membership shape  Gaussian 
Output membership shape  Linear 
FIS generation FCM 
Step Size Decrease Rate 0.9 
Step Size Increase 1.1 
Initial Step Size 1.1 

GA alpha 1 
VarMin -(10^alpha) 
VarMax 10^alpha 
MaxIt 25 
nPop 7 
Crossover Percentage 0.7 
Mutation Percentage 0.5                  
Mutation Rate 0.1 
gamma 0.2 
Selection Pressure 8 

FIS fcm_U 2 
MaxIter 100 
MinImp 1e-5 

MSE = 
1

N
∑(xi − yi)

2

N

i=1

. (1) 
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Error mean 

Mean error is the average error between the predicted values of a ML model and the actual values. In this 

context, the error is the measurement uncertainty or the difference between the estimated value and the 

actual value [47]. 

Error STD 

As a method of calculation, it can be expressed as the square root of the mean of the sum of the squares 

of the deviations of the data from the mean, as shown in Eq. (4). The variance is the square of the standard 

deviation [49], [50]. 

In the equations (Eqs. (1)-(4)), N is the number of data, 𝑥̅  and  𝑦̅ are the average of the predicted and actual 

values, 𝑥𝑖 and 𝑦𝑖 are the predicted and actual values, respectively.   

The confusion matrix is divided into four groups, as shown in Table 2. "True Positive" (TP), "False 

Positive" (FP), "True Negative" (TN) and "False Negative" (FN). In a successful model, there are no false 

positives or negatives [51], [52]. 

 Table 2. Confusion Matrix. 

 

 

 

 

 

The following equation is used to perform performance evaluation calculations based on the confusion 

matrix (Eq. (5)). For more information on this formula, see the relevant references [52]. 

 

3.2 | Experimental Results 

In this section we discuss the results of the proposed GFS models for detecting counterfeit banknotes. 

GFS has been used in combination with ML techniques to develop and test categorization models. These 

strategies have proven successful in categorization and are used extensively. Each model was validated ten 

times through cross-validation. Table 3 summarizes the accuracy of the developed GFS models by class. 

To compare the performance of the proposed approach, the fuzzy/ANFIS network is additionally trained 

with GA counterfeit banknote detection algorithms. Table 3 compares the classification results of the 

RMSE =

√
 
 
 
1

N
∑(xi − yi)2.

N

i=1

 (2) 

Error Mean =  
1

N
∑(xi − yi)

N

i=1

. (3) 

Error St.D =

√
 
 
 

∑
(xi − x̅i)2

N − 1

N

i=1

. (4) 

 Actual Value 
Positive Negative 

P
re

d
ic

te
d

 V
a
lu

e
 

P
o

si
ti

v
e
 

TP (true positive) FN(false negative) 

N
e
g

a
ti

ve
 FP(false positive) TN (true negative) 

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
. (5) 
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developed fuzzy, GA fuzzy, ANFIS and GA ANFIS models. Fig. 4 shows the development of the 

training error values (RMSE) over 50 iterations of the approaches. 

Table 3. Performance indices for proposed GFS model.  

  

 

 

 

Fig. 4. Diagram of the best cost of the proposed GFS model. 

Fig. 5 summarizes the classification performance obtained with the optimal parameter values derived 

from the simulation. The GA fuzzy model performed best here, with a classification rate of 98.6%. Table 

3 also shows the average performance of the categorization techniques and the percentage improvement 

compared to each other. When the GA method is used to train the ANFIS network, the classification 

performance increases by 20.9% compared to the regular ANFIS algorithm. It is found that the GA 

fuzzy classifier optimized using GA outperforms the classical fuzzy classifier by 0.98%. The 

improvements have shown that the GA increases the performance of the classifiers. 

 

Fig. 5. Classification performance of the algorithms. 

The performance metric used to evaluate the system in this case is the complexity matrix, which was 

discovered to be a measure of the correlation between predicted and observed values. The diagonal 

value of this matrix indicates the correct class, while the values outside the diagonal represent 

miscategorized elements. Fig. 6 shows the confusion matrix of the proposed model. 

The confusion matrix is used to analyze the results of a previously constructed classification model and 

to investigate errors in the mapping between real and predicted values during cross-validation. The 

positive and negative components in this matrix do not refer to accuracy or inaccuracy, but to the classes 

to be distinguished. Based on a dataset of counterfeit banknotes, this study created a model that attempts 

to predict whether the banknotes are counterfeit or not. When evaluating the results of the created 

Models MSE RMSE Error Mean Error STD Accuracy (%) 

Fuzzy 0.033372 0.18268 -2,07E-13 0.18275 97.64 

GA_Fuzzy 0.02403 0.15502 0.012779 0.15455 98.60 

ANFIS 0.65563 0.80971 0.31436 0.74647 80.83 

GA_ANFIS 0.031879 0.17855 0.0078403 0.17844 97.72 

97.64 98.6

80.83
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classification model, TP, TN, FN, and FP are determined based on the matrix. TP and TN indicate the 

number of valid class predictions. FN and FP indicate how many inaccurate predictions the classes made 

in relation to each other. Here, the fuzzy classifier correctly predicted all counterfeit notes while it 

incorrectly predicted 32 non-counterfeit notes. The GA Fuzzy classifier has incorrectly predicted 19 non-

counterfeit banknotes while it has correctly predicted all counterfeit banknotes. The GA_ANFIS classifier 

misclassified 30 non-counterfeit banknotes and misidentified 1 counterfeit banknote. The traditional 

ANFIS model, which has the lowest percentage of accuracy, incorrectly predicted 68 non-counterfeit 

banknotes while correctly identifying 186 counterfeit banknotes. 

 

Fig. 6. Confusion matrix for detecting counterfeit banknotes. 

4 |  Conclusion 

In this study, a method for detecting counterfeit banknotes based on a GFS is proposed. To classify the 

data of counterfeit banknotes, the fuzzy/ANFIS model was trained with the GA optimization algorithm 

and its performances were compared. From the results, it is found that the approach based on training 

Fuzzy and ANFIS with GA algorithm is more successful. It is shown that GFSs can be used to solve 

classification problems. GFS can be used in areas where ML algorithms need to be explainable due to the 

sensitivity of transactions. It was also found that the FIS network can be used in applications for various 

problems because the GA algorithm does not contain any constraints like derivative-based algorithms and 

can be easily applied to problems. According to the results of this study, the proposed GSF model was 

successfully applied in this theoretical study. Moreover, a practical application of this design seems to be 

possible. The method has a number of important advantages. It can distinguish genuine banknotes from 

counterfeit ones and thus prevent counterfeiting. The proposed model is fed with data from the counterfeit 

banknote dataset. Additional features that increase the discriminatory power of our system are currently 
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being investigated. Furthermore, banknotes are susceptible to contamination due to their widespread 

distribution. It is certain that the degree of contamination varies from banknote to banknote. In addition, 

original banknotes may have defects and differ in appearance. Therefore, image-based categorization 

can provide more accurate results and can be applied in real time with real banknote photos and Deep 

Learning. 

Data availability 
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1 | Introduction  

Using the Product of the Soft Set [1] we connect it with its generalization called HyperSoft Set [2], 

[3]. Then, similarly, through another Product the IndetermSoft Set [4] is connected to the 

IndetermHyperSoft Set [4] and we present several applications of them. 

2 | Definition of Soft Set Product  

Let’s have 𝑛 ≥ 2 Soft Sets 

where 𝑎1, 𝑎2, …, 𝑎𝑛 are n distinct attributes, and respectively 𝐴1, 𝐴2, …, 𝐴𝑛 their corresponding sets 

of attributes’ values, such that  
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A 𝑖 ∩ A 𝑗 = ∅, for i ≠ 𝑗, and i, j 𝜖 {1, 2, …, n}. 

The Soft Set Product 𝐹1  ×  𝐹2 × … × 𝐹𝑛 is defined as follows:  

 

3 | The Soft Set Product transformed into a HyperSoft Set 

Let’s denote 𝐹 = 𝐹1  ×  𝐹2 × … × 𝐹𝑛. 

Then we define the HyperSoft Set in the following way: 

such that for each (𝑒1, 𝑒2, … , 𝑒𝑛) ∈ 𝐴1 × 𝐴2 × … 𝐴𝑛,  

 

4 | Fuzzy (and Any Fuzzy-Extension) Soft Set Product 

Let’s denote the fuzzy (and any fuzzy-extension degree in general) by 𝑑0. 

For example, if one uses the Fuzzy Soft Set, then 𝑑0 = T (degree of truth), T ∈ [0, 1]. 

If one uses the Intuitionistic Fuzzy Set, the  𝑑0 = (T, F) or degree of truth/ falsehood, T, F ∈ [0, 1], 0 

≤ 𝑇 + 𝐹 ≤ 1; 

If one uses the Neutrosophic Set, then 𝑑0 = (T, I, F), or degree of truth/ indeterminacy/ falsehood, one 

has: 

Let H = {ℎ1, ℎ2, ℎ3, ℎ4}, a set of houses. 

Let the attributes 𝑎1 = size, whose set of values is 𝐴1 = {small, medium, big} and 𝑎2 = location, whose 

set of values is 𝐴2 = {central, peripherical}. 

The soft sets 

and their Product 

F: {small, medium, big} ×{central, peripherical} → 𝑃({ℎ1, ℎ2, ℎ3, ℎ4}). 

𝐹1 (small) = { ℎ1, ℎ3, ℎ4} =
def

 H11. 

𝐹1  (medium) = { ℎ1, ℎ4}

def

=  H12. 

𝐹1 (big) = {ℎ2} =
def

 H13. 

F1  × F2 × … × Fn : A 1  ×  A 2 × … × A n →   P(H)  × P(x) × … × P(H)⏟                                             .

𝑛 times

 
 

F ∶ A 1 ×A 2 × … A n → P(H).  

F(e1, e2, … , en) = F1(e1) ∩ F2(e2) ∩ … ∩ Fn(en).  

0 ≤ T + I + F ≤ 3.  

F1:A 1  → P(H), 

F2:A 2  → P(H), 

 

F = F1  × F2, 

F:A 1 × A 2 → P(H). 
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𝐹2 (central) = {ℎ1} =

def

 H21. 

𝐹2 (peripheral) = {ℎ2, ℎ3, ℎ4} =
def

 H22. 

 

 

  

 

5 | HyperSoft Set Resulted from a Product of Two Soft Sets 

How to read the above table, for example the intersection between the row 1 (small) and the column 2 

(peripheral) gives 

F [small, peripheral] = 𝐹1 (small) ∩ 𝐹2 (peripheral) = 𝐻11  ∩  𝐻22 = {ℎ1, ℎ3, ℎ4} ∩ {ℎ2, ℎ3, ℎ4} = {ℎ3, ℎ4}. 

6 | Fuzzy and Fuzzy-Extensions Soft Set and HyperSoft Set 

𝐹1 (small) = 𝐻2(𝑑1
0) = {ℎ1, ℎ3, ℎ4}(𝑑11

0 ). 

𝐹2 (peripheral) = 𝐻2(𝑑2
0) = {ℎ2, ℎ3, ℎ4}(𝑑22

0 ). 

F (small, peripheral) = 𝐻11(𝑑11
0 ) ∩ 𝐻22(𝑑22

0 )=  {ℎ3, ℎ4}(𝑑11
0 ∧ 𝑑22

0  ). 

7 | Definition of the IndetermSoft Set  

Let U be a universe of discourse, H a non-empty subset of U, and P(H) the powerset of H. Let a be an 

attribute, and A be a set of this attribute values.  

A function F: A → (H) is called an IndetermSoft Set (Function) if  

I. The set A has some indeterminacy with respect to one or more attribute’s values.  

II. Or P(H) has some indeterminacy.  

III. Or there exist at least an attribute value v  A, such that F(v) = indeterminate (unclear, uncertain, or not 

unique).  

IV. Or any two or all three of the above situations. 

In other words, an IndetermSoft Set, introduced by Smarandache in  [4], is a soft set that has some degree 

of indeterminate (unclear, uncertain, alternative, conflicting) data or procedure. 

8 | Example of IndetermSoft Set and IndetermHyperSoft Set 

𝐹1 (small) =  {ℎ1, 𝑜𝑟 ℎ4} = {either h1, or h2, or h1 and h2} =
def

H12. 

𝐹2 (peripheral) =  { 𝑛𝑜𝑡ℎ2 } = {h1, or h3, or h4} =
def

 H134. 

F (small, peripheral) = H12 H134 = {h1, or  (no house)} =
def

H10. 

           Location 
Size  

Central Peripheral 

small {h1} {h3, h4} 
medium  {h1} {h4} 
big ∅ (no house) {h2} 
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The first two equations above represent two IndetermSoft Set, only the third one gets the Product of 

them and obtains a IndetermHyperSoft Set. 

As seeing, one has indeterminacy with respect to H12, H123, and the final result H10. 

Conclusion 

We presented for the first time the connection between the Product of Soft Sets and the HyperSoft Set, 

and afterwards the Product of IndetermSoft Set that produced the IndetermHyperSoft Set, together 

with several applications. 
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Abstract 

 

1 | Introduction  

One of the key principles of various businesses to compete in the today's complex and turbulent 

markets is proper management of the Supply Chains (SCs) with the rapid changes in information and 

level of needs being met. Indeed, in the current wide market and in the presence of various levels of 

quality, price, service, and other factors affecting product delivery and satisfying customer satisfaction, 

if an SC fails to deliver superior customer service, products, and services to others, it will gradually 

be excluded from the competition market and lose its market share and, thus, its customers will be 

attracted by the competitors. Therefore, one of the best factors for staying profitable in these 

conditions is to be properly responsive to customer needs, have performance efficiency, and show 

greater adaptation to the environment. From Hughes's view, SC management is the coordination and 
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transportation across SC units [1]. It is, therefore, necessary to consider two major points: 

1. Improving all processes and actions in SC simultaneously. 

2. Making models more compatible with the real world, due to the high level of uncertainty in the market. 

It is clear that the decisions made in each sector can only lead to profitability and optimism in the same 

goals and do not provide the optimal global response for the whole chain. Therefore, the optimal 

problems in this area are modeled as multi-objective and multi-level to consider the optimal policy of 

all units in the overall structure. 

The main performance of multi-level networks can be to supply, produce, and distribute goods to 

customers. One of the pioneers of multi-level models is Clark and Scarf [2], who examined the two-level 

inventory model in their research. In a review article, Gümüs and Güneri [3]extensively studied multi-

level models. 

Crisp numbers operate with limitations on their ability to perform mathematical modeling inefficiently. 

In the absence of comprehensive and accurate information, fuzzy execution is an effective tool for 

modeling complex systems. In fact, fuzzy set theory has the ability to represent many inaccurate and 

ambiguous concepts and systems in the mathematical form, thereby providing a basis for decision-

making in an environment of uncertainty. 

The complex structure of real-world problems is caused by uncertainty as well as some ambiguity in 

their meaning and definition. Nowadays, uncertainty has been the focus of many researchers on the way 

to better develop the models and adapt them to different domains, especially concerning the planning 

of SC management problems. 

In 2006, Kumar et al. [5] used fuzzy goal programming to solve the problem of vendor selection in the 

SC with uncertain information. The hybrid problem of the three-objective fuzzy integers programming 

is used to solve the net costs of the network, number of network recurrences, and number of delayed 

sending and realistic constraints, in which the triangular fuzzy numbers are considered for objective 

function information [4]. Next, using a multi-objective fuzzy programming provided by Kumar et al. [5] 

solved a relatively similar problem for vendor selection in order to minimize cost and maximize quality 

and timely delivery of goods. This approach provides a decision-making tool, in which vendor selection 

and quota allocation under varying degrees of information uncertainty in the model decision parameters 

are facilitated. In their paper, Baykasoǧlu and Goecken [6], while presenting a categorization of fuzzy 

mathematical programming problems, identified and presented methods for solving them including 

fuzzy ranking, fuzzy satisfaction criterion, meta-heuristic algorithms, and so on. 

AmirKhan et al. [7] proposed a two-objective feasible linear programming model for solving the 

problem of multi-level, multi-commodity, and multi-period SC design considering uncertainties, time, 

and cost. They employed an interactive fuzzy approach. 

Bashiri and Sherafati [8] introduced a two-objective model with the objective of minimizing cost and 

maximizing SC utility in order to design closed-loop SCs considering correlated indices under fuzzy 

conditions. They used the criterion as the principal component score to integrate and reduce the 

dimensions of the indices, eliminate the correlation between them in decision-making, and obtain the 

final answer using the metric LAP method. Pishvaee and Razmi [9] designed a two-objective model to 

minimize the total cost and environmental impact of an SC network with simultaneous inherent data 

uncertainties. Using the James' method, they applied a model of interactive approaches to solve the 

problem. 

Bashiri et al. [10] employed a direct solution approach based on fuzzy ranking method and with a 

heuristic algorithm to balance the feasibility of constraints and optimality of the objective function in 
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designing the three-level logistic network with fuzzy variables. In another study, a new mixed integer multi-

objective linear programming model were applied for solving fully fuzzy multi-objective supplier selection 

problem as an important part in a SC by Nasseri et al. [11]. 

In 2022, the several sustainable objectives in the pharmaceutical SC optimization scheme under different 

uncertain constraints has extended by Ahmad et al. [12]. The trade-off between socio-economic and 

environmental objectives is investigated by ensuring the optimal assignment of various products among 

some levels and three robust techniques have presented to solve the main model. 

Marzband [13], in order to obtain the performance of the SC in a manufacturing company applied the 

hierarchical analysis process for all suppliers were ordered and weighted based on each index in a fuzzy 

environment. Then, he evaluated all suppliers using the super efficiency data envelopment analysis. In 

2020, Ghasempoor Anaraki et al. [14] determined reliable results for supplier selection model by combining 

three methods; simple multi-attribute rating technique, DEMATEL method and analytical network process 

in fuzzy state. Shafi Salimi and Edalatpanah [15], evaluate the suppliers by two methods of fuzzy 

hierarchical analysis with D-numbers. Then, as case study is different suppliers are ranked using two 

methods and then the findings are compared with each other. 

The framework of a repurchase agreement related to the amount of good remaining in the two-echelon 

SC between the retailer and the manufacturer is evaluated by two (centralized and decentralized) scenarios 

in 2021, [16]. Recently, Nasiri et al. [17], by applying statistical methods of Kolmogorov-Smirnov, mean 

and Stepwise Weight Assessment Ratio Analysis (SWARA) approach, examined of effective factors of 

green SC management at famous Petrochemical Company.  

In the past decade, various fuzzy researches and industrial fields have been observed and studied in some 

sciences by introducing hesitant fuzzy numbers [11], [12]. Ahmad  et al. [20] constructed a multi-objective 

nonlinear programming problem in the manufacturing system. They gave a new approach based on single-

valued neutrosophic hesitant fuzzy set to show the superiority of proposed method. To overcome the 

uncertainty and hesitation of the variables, Bharati [21], introduced two functions where called the hesitant 

fuzzy membership and non-membership functions and defined hesitant intuitionistic fuzzy pareto optimal 

solution. In another research, the definition of the neutrosophic hesitant fuzzy pareto optimal solution and 

two different optimization methods were given by Ahmad and John [22]. 

In this research, for the first time as far as the author's knowledge is concerned, a three-objective, three-

level problem is modeled with the hesitant fuzzy approach. In this context, HFSs can be useful in modeling 

with ambiguity as an extension of fuzzy set theory where the element degree can be a set of possible values 

adopted by decision-makers. In this research, in addition to modeling, the hesitant fuzzy programming 

method for solving this model is developed and improved. To this end, the continuation of this paper is 

organized as follows: 

Section 2 presents some of the prerequisites and concepts required for fuzzy sets and decision-making. In 

Section 3, with the overview of hesitant fuzzy programming problems, a model of multi-objective 

programming problems, in which objective functions and right values can be expressed as HFSs, is 

presented along with a method for its solving. In Section 4, the multi-objective and three-level SC 

management problem is presented under uncertain fuzzy conditions. Modeling with hesitant fuzzy 

approach is provided in Section 5. Via applying a practical example, the solution method outlined in Section 

3 is evaluated in Section 6, and the findings and sensitive analysis with numerical results are proposed in 

Section 6. In Section 7, conclusions of the work are presented and suggestions are made for future 

research.   

2 | Definitions and Concepts Related to Uncertain Fuzzy Sets (Hfss) 

This article introduces the HFSs with respect to the issues that will be discussed in the next sections. 
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Definition 1. Consider the reference set 𝑋. An HFS is a set of values that, when apply on 𝑋, it returns 

a subset of [0,1].  Xia and Xu [23], described HFS using the following notation: 

where, ℎ𝐻(𝑥) is a set of multiple values within [0,1] and represents the degree of possible membership 

for element 𝑥 ∈ 𝑋 relative to set 𝐻. It is easier to call ℎ𝐻(𝑥) the Hesitant Fuzzy Element (HFE). 

Some operators on HFEs are listed below: 

We have a special case in HFS as the ordinary fuzzy sets, in which  ℎ𝐻(𝑥) is finite per 𝑥 ∈ 𝑋. In this 

paper, HFS means that each member is a fuzzy number rather than a set of values within [0,1]. 

To solve the fuzzy programming problems from Bellman and Zadeh [24] view, 𝐺 is assumed to be a 

fuzzy goal and 𝐶 is a fuzzy constraint in the space of 𝑋. Then, 𝐶 and 𝐺 are combined to decide like 𝐷, 

which is the fuzzy decision of 𝐶 and 𝐺. Symbolically, 𝐷 = 𝐺 ∩ 𝐶 and, correspondingly, 𝜏(ℎ𝐺, ℎ𝑐) where 

𝜏 is used as the fuzzy operator in the fuzzy environment to compute the membership values of fuzzy 

elements sharing. 

For the fuzzy multi-objective programming problem, we need to define a decision in the uncertain fuzzy 

environment. We employ this idea by extending the definition of decision-making in the fuzzy 

environment from Ranjbar and Effati [25] perspective: 

Definition 2. Suppose 𝐺̃̃ is a hesitant fuzzy objective and 𝐶̃̃ is a hesitant fuzzy constraint in multiple 

choice space. In this case, decision 𝐷̃̃ from the combination of 𝐶̃̃ , 𝐺̃̃ is called the fuzzy uncertain 

decision. Symbolically, we have 𝐷̃̃ = 𝐺̃̃ ∩ 𝐶̃̃ and ℎ
𝐷̃̃  

= 𝜏(ℎ
𝐺̃̃
, ℎ

𝐺̃̃  
) where 𝜏 as the T-norm in the 

environment hesitant fuzzy is used to compute membership values related to the HFEs subscription. 

We also have 

𝑃𝐶 𝑎𝑛𝑑 𝑃𝐺 represent a number of decision-makers who select different levels of the objective function 

and constraints, respectively. 

In multi-objective problems, one can consider 𝑛 objectives 𝐺̃̃1, 𝐺̃̃2, … , 𝐺̃̃𝑛and 𝑚 constraints 𝐶̃̃1, 𝐶̃̃2, … , 𝐶̃̃𝑛. 

In that case, the decision will lead to: 

Since T-norms use HFE intersection to calculate membership values for decision-making in the hesitant 

fuzzy environment as a concurrent operator, we provide the following definition adopted by Santos et 

al. [26] for T-norms on HFSs: 

H = {⟨x,hH(x)⟩|x ∈ X},  

h1(x) ∪ h2(x) = ⋃ max{γ1, γ2}
γ1∈h1(x),γ2∈h2(x)

. 

h1(x) ∩ h2(x) = ⋂ min{γ1, γ2}.
γ1∈h1(x),γ2∈h2(x)

    

 (h1(x))
λ = ⋃ {γ1

λ}.    
γ1∈h1(x)

 

λ(h1(x)) = ⋃ {1 − (1 − γ1)
λ }.   

γ1∈h1(x)

 

 

  h
C̃
̃ = {h

C̃
̃
1, h

C̃
̃
 

2, … , h
C̃
̃
 

PC} , hG = {ℎ
𝐺̃̃  

1, ℎ
𝐺̃̃  

2, … , ℎ
𝐺̃̃  

𝑃𝐺}.  

D̃
̃
= (G̃

̃
1 ∩ G̃

̃
2 ∩ …∩ G̃

̃
n) ∩ (C̃

̃
1 ∩ C̃

̃
2 ∩ …∩ C̃

̃
n) = G̃

̃
∩ C.̃
̃
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Definition 3. Suppose 𝜏:𝐻(𝑚) × 𝐻(𝑚) → 𝐻(𝑚)where 𝐻(𝑚) is an HFS of 𝑚 members. In this case, 𝜏 is a 

common hesitant triangle (HT-norm). If for each ℎ1, ℎ2, ℎ3 𝜖𝐻
(𝑚)  then, the following principles are 

satisfied: 

τ(h1, h2) = τ(h2, h1); Commutative, 

τ(h1, τ(h2, h3)) = τ(τ(h1, h2), h3); Associative, 

 If  h2 ≤H(m) h3 then τ(h1, h2) ≤H(m) τ(h1, h3);monotony,  

τ(h1, 1H(m)) = h1; Neutral membe𝑟, 

where 1𝐻(𝑚) = {1,1,… ,1} with m element is a complete  HFE. 

This definition depends on the comparison operator ≤𝐻(𝑚). In this paper, we use the operator for HT-

norm on HFE with fuzzy numerical members defined as follows: 

Definition 4. Suppose ℎ𝜖𝐻(𝑚) is an HFE with 𝑚 fuzzy member obtained using one of the ranking methods 

such as ℝ. Then, for every ℎ1, ℎ2𝜖𝐻
(𝑚): 

 

where <ℜ with respect to the ranking function R indicates ℎ1 is less than ℎ2. 

Remark 1. Suppose the number of values in HFEs can be different. The two HFEs must be of the same 

length in order to have the correct comparison. Then, for the two HFEs where  h2𝜖𝐻
(𝑛) 𝑎𝑛𝑑 h1𝜖𝐻

(𝑚), if 𝑛 <

𝑚, then an expansion of ℎ1 by repeating the minimum value until being equal in length must be done. 

Choosing these values depends on the degree of risk in decision-makers' preferences. From the pessimistic 

view, expectation of undesirable results increases and, hence, can add minimal values, while optimistic 

prediction can give us more favorable results. Therefore, max values can be added. 

A number of scoring functions for HFE are introduced as 𝑆: [0,1]𝑛 ⟶ [0,1], which establish the properties 

of boundary conditions and non-descending monotone. In this paper, in order to obtain the optimal 

solution for the hesitant fuzzy multi-objective fuzzy problem, we use a set of scoring functions defined as 

follows [27]. 

Definition 5. Suppose  ℎ𝐻(x) = (h𝐻
1(𝑥), … , h𝐻

𝑚(𝑥)) be HFE.  Then, we have following score functions: 

Smin(hH(x)) = min{hH
1(x),… , hH

m(x)} ; Minimum scoring function, 

SAM(hH(x)) =
1

m
∑ hH

i(x)m
i=1 ; Arithmetic mean, 

Smax(hH(x)) = max{hH
1(x),… , hH

m(x) } ; Maximum scoring function. 

This definition introduces a suitable set of scoring functions appropriate to the decision-maker.  

3 | Definitions Method for Solving Hesitant Fuzzy Multi-Objective 

In this section, as an application of the HFSs, while introducing the HFMP, a method is presented for 

solving this kind of problem. 

h1
i <~ℜ h2

i    ∀  i = 1,… ,m    ⇔   h1 <≈ℜ h2.  
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3.1 | HFMP 

The HFLP can be expressed [25] as follows (HFLP): 

 

 

 

where, 𝐴̃̃ is a hesitant fuzzy matric and 𝑐 ̃̃, 𝑏 ̃
̃

 and 𝑥 ̃̃ are hesitant fuzzy vectors. In their work, they 

identified five categories of hesitant fuzzy programming: 

1. Symmetric HFLP where the right-hand side values and objective function are fuzzy uncertain. 

2. Asymmetric HFLP where only the right-hand side values are fuzzy uncertain. 

3. The HFLP where the technological coefficients and right-hand side values are hesitant fuzzy. 

4. The HFLP where the objective function coefficients are hesitant fuzzy. 

5. The full HFLP where the objective function and the right-hand side values are hesitant fuzzy. 

With the extension of models for multi-objective problems, we have 

 

 

 

Since the five proposed for HFLP modes are extensible to HFMOLP problems and given that the 

methods for solving different modes are different, here, an extension of the symmetrical HFLP is 

considered. In this concept, the right-hand side values and the objective functions of the problem can 

be expressed as hesitant fuzzy numbers; so, we have: 

 

 

 

where 𝑧̃̃𝑜 = [𝑧̃̃1, 𝑧̃̃2, … ,  𝑧̃̃𝑟 ]
𝑇 is the hesitant fuzzy lower bound to maximize (𝑐̃1̃

𝑇
𝑥̃̃, 𝑐̃2̃

𝑇
𝑥̃̃, … , 𝑐̃𝑟̃

𝑇
𝑥̃̃) and 𝑏̃̃ is 

the HFEs components with fuzzy membership values. In this case, there is no distinction between goals 

and constraints. And several decision-makers can submit different views for the value of objective 

functions and constraints. The problem formulation can be transformed as follows: 

 

 

 

  

 

 

Max z = c̃̃Tx̃̃ , 

    s. t.    Ã
̃
x̃̃ <≈ b̃̃,                                                                       

x̃̃ >≈ 0,   

(1) 

(HFMP):Max z = (c̃̃1
T
x̃̃, c̃̃2

T
x̃̃, … , c̃̃r

T
x̃̃), 

s. t.    Ã
̃
x̃̃ <≈ b̃̃ ,                                                 

x̃̃ >≈ 0. 

(2) 

(HFMP):Max z = (c̃̃1
T
x̃̃, c̃̃2

T
x̃̃, … , c̃̃r

T
x̃̃) ≥ z̃̃o, 

  s. t.    Ã
̃
x̃̃ <≈ b̃̃,                                                    

x ≥ 0, 

(3) 

Find  x 
s. t.         

c1
Tx ≥ z̃̃1,  

c2
Tx ≥ z̃̃2,  

cr
Tx ≥ z̃̃r,  

Ax ≤ b̃̃, 

x ≥ 0.  

(4) 
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The current set of constraints includes the set of goals and hesitant fuzzy constraints. 

If we have 𝑟 goals and 𝑚 constraints, then 

All 𝑚 + 𝑟 on row 𝑑 ̃ ̃are specified below by HF elements: 

where 𝑑 ̃̃𝑖 are fuzzy numbers and 𝑝𝑖 are the number of decision-makers, satisfaction levels of which represent 

the values of the objective functions, and each constraint is based on the 𝑖𝑡ℎ line according to knowledge 

and experience. We consider ℎ𝑖
𝑘 for 𝑘𝑖 = 1,2,… , 𝑝𝑖 with decreasing membership function as follows: 

That is, where 𝐵𝑖 represents the 𝑖𝑡ℎ row of 𝐵 (  𝑖 = 1,2, … ,𝑚 + 𝑟), 𝑑𝑖
𝑘𝑖is the constant value 𝑖𝑡ℎ of the selected 

row, and 𝑞𝑖
𝑘𝑖 is an acceptable error corresponding to 𝑖𝑡ℎ row which is selected by the 𝑘𝑖

𝑡ℎ decision-maker. 

3.2 | HFMP Solving Method 

First, in terms of the hesitant fuzzy decision definition of the model, we state: 

In this case, ℎ𝐷 = {  ℎ𝐷
1
, ℎ𝐷

2
, … , ℎ𝐷

𝑃1𝑃2…𝑃𝑚+𝑟} is a set of fuzzy numbers. Now, for the optimal solution to 

this problem, we can recommend the maximum of each member of ℎ𝐷 as follows: 

By introducing the variable 𝜆𝑠 that corresponds to ℎ𝐷
𝑠(𝑥𝑠) in the model, we have 

Then, after solving this model, 𝜆∗𝑠 is the maximum degree corresponding to the level of satisfaction of the 

goals and constraints that can establish 𝑖𝑡ℎ. The 𝑥∗𝑠 = (𝑥1
∗𝑠, 𝑥2

∗𝑠,⋯ , 𝑥𝑛
∗𝑠) is an HFMOLP problem solution. 

So, by solving (𝑝1𝑝2⋯𝑝𝑚+𝑟), we have the LP problem as the following model: 

where 𝑥∗ = (𝑥1
∗, 𝑥2

∗,⋯ , 𝑥𝑛
∗), such that 

B =

[  
   
   
   
   
   
 −c11    −c12 ⋯ −c1n

⋮ ⋱ ⋮
−cr1   −cr2 ⋯ −crn
a11     a12 ⋯ arn

⋮ ⋱ ⋮
ar1   ar2 ⋯ amn

]  
   
   
   
   
   
 

  ,  d̃̃ =

[  
   
   
   
   
   
   
   
 
−z̃̃1
⋮

−z̃̃r

b̃̃1
⋮

b̃̃m
]  
   
   
   
   
   
   
   
 

.  

d̃̃i = {hi
1, hi

2, … , hi
pi}, i = 1,2,… ,m + r,     

hi
ki(x) =

{  
   
   
   
   
   
 
 1                                                            Bix ≤ di

ki                  

1 −
Bix−di

ki

qi
ki

,  di
ki < Bix ≤ di

ki + qi
ki

0                                                          Bix ≥ di
ki + qi

ki

. (5) 

hD = τM(h1, h2,⋯ , hm+r) = ⋃ min{γ1, γ2,⋯ , γm+r}
γ1∈h1,γ2∈h2,⋯,γm+r∈hm+r

.  

max hD
s(x s), 

    s. t .      x s ≥ 0,       s = 1,2,⋯ , (p1p2⋯pm+r). 

(6) 

LPs:   max λs 

s.t    λsqi
ki + Bix

s ≤ qi
ki ,       i = 1,2,… ,m + r                                

0 ≤ λs ≤ 1, 

x s ≥ 0. 

(7) 

hD(x
∗) = {λ∗1, λ∗2,⋯ , λ∗(p1p2⋯pm+r)},  
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Remark 2. If decision-makers state only some goals as hesitant fuzzy, that is to say, there exist crisp 

goal or goals in the model. Here, sub-problems are as MOLP where weighted average method can be 

used for their solving. In that case, only a weighty goal based on the decision-maker's priorities plays a 

role in the importance of the goals [28]. 

Remark 3. It is possible to examine responses at different levels of decision-makers' views with alpha 

levels in mind. In this case, in addition to the constraints presented in 𝐿𝑃𝑠, we will have a constraint as 

≥. 

Remark 4. If the decision-makers are not interested in the hesitant fuzzy solution, then, the optimal 

solution of the problem can be found by using the scoring functions from different points of view, similar 

to those presented in Table 1, where 𝑙 is the minimum membership index of ℎ𝐷(𝑥
∗) and 𝑢 is the maximum 

index of ℎ𝐷(𝑥
∗). 

Table 1. Optimal solutions to the MOHFLP problem from different perspectives. 

 

 

 

4 | Multi-Objective SC Problem with Hesitant Fuzzy Approach 

In this section, with some limitations, we consider the multi-objective, three-level, single-product chain 

management model as Fig. 1 in a form that should be considered by decision-makers for various 

purposes, some of which are conflicting. The following are the indices, parameters, decision variables, 

constraints, and goals. 

 

 

Fig. 1. Three-level supply chain structure. 

 

 

 

x1
∗ = {x1

∗1, x1
∗2,⋯ , x1

∗(p1p2⋯pm+r)}. 

⋮ 

xn
∗ = {xn

∗1, xn
∗2,⋯ , xn

∗(p1p2⋯pm+r)}. 

 

View 𝒙∗ 𝝀∗ 
pessimistic (x1

∗l, x2
∗l, … , xn

∗l) λ∗l

= Smin(hD((x
∗)) 

Normal 

(
∑ λ∗x1

∗r(p1…pm+r)

r=1

∑ λ∗
(p1…pm+r)

r=1

,
∑ λ∗x2

∗r(p1…pm+r)

r=1

∑ λ∗
(p1…pm+r)

r=1

, … ,
∑ λ∗xn

∗r(p1…pm+r)

r=1

∑ λ∗
(p1…pm+r)

r=1

) 
λ∗

= SAM(hD((x
∗)) 

Optimistic (x1
∗u, x2

∗u, … , xn
∗u) λ∗u

= Smax(hD((x
∗)) 

Manufacturers

Distributors

Customers
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Indices 

Manufactures (𝑖𝜖𝐼), 𝑖 = 1,2, … , 𝑚. 

Distributors (𝑗 ∈ 𝐽), 𝑗 = 1,2, … , 𝑛.  

Customers (𝑘 ∈ 𝑂), 𝑘 = 1,2,… , 𝑜. 

Parameters  

𝑄𝑖: Product quality produced by the 𝑖𝑡ℎ manufacturer. 

𝑃𝑖𝑗
𝑇 ∶ Cost of shipping the product from 𝑖𝑡ℎ manufacturer to 𝑗𝑡ℎ distributor. 

𝐶𝑖
𝑉: Product shipping capacity from 𝑖𝑡ℎ manufacturer warehouse to warehouse distribution centers. 

𝑃𝑗
𝐻: Cost of maintaining each unit of goods in the 𝑗𝑡ℎ distributor warehouse. 

𝑃𝑗𝑘
𝑅: Cost of payment for each unit of fine returned by the distributor 𝑗𝑡ℎ to the customer 𝑖𝑡ℎ. 

 𝐵𝑗𝑘
𝑅: Return percentage of goods sold by distributor 𝑗𝑡ℎ to customer 𝑘𝑡ℎ. 

𝑇𝑗𝑘
𝑆: Delivery time from distributor 𝑗𝑡ℎ to customer 𝑘𝑡ℎ. 

𝐶𝑗
𝑉 : Freight forwarding capacity of distributor 𝑗𝑡ℎ. 

𝑆𝑗𝑘: Sales price per unit of product from distributor 𝑗𝑡ℎ to customer 𝑘𝑡ℎ. 

𝑈𝑖
𝑃: Maximum amount of product manufactured by 𝑖𝑡ℎ manufacturer to send to distribution center.  

𝐿𝑗
𝐷: Minimum customer required demand for distributor. 

Decision variables 

𝑥𝑖𝑗: Quantity of product sent by manufacturer 𝑖𝑡ℎ to distributor 𝑗𝑡ℎ. 

𝑦𝑗𝑘: Amount of customer demand 𝑘𝑡ℎ from distributor 𝑗𝑡ℎ. 

Constraints 

Product lack constraints: Obviously, one of the main reasons for developing and validating systems is to 

meet customer demand at the right time. Therefore, we need constraints that ensure that the amount of 

production is sufficient to meet the needs of the customers and does not increase warehousing costs. To 

this end, the following constraints may apply 

Maximum production capacity constraints: This type of constraint ensures that the amount of product 

produced by the 𝑖𝑡ℎ manufacturer to deliver to distributors has a certain maximum value. For this purpose, 

we have: 

∑ xij
m

i=1
=∑ y jk

o

k=1
,     (j = 1,2,… , n). (8) 
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Customer demand minimum constraints: This type of constraint ensures that the quantity of product 

requested by the distributor 𝑖𝑡ℎ is minimal. For this purpose, we have: 

In addition to the three types of Constraints (8), (9) and (10) mentioned above, we present the non-

negative constraints of decision variables: 

Objective functions 

Quality objective function: this objective function aims to maximize the quality of products sent by the 

manufacturer 𝑖𝑡ℎ to the distributor 𝑗𝑡ℎ in order to deliver more quality goods to distributors and, thus, to 

customers. For this purpose, we have the following objective function: 

Total cost objective function: To minimize total system costs, including shipping, maintenance, and 

penalties for returning goods, it is formulated as follows: 

which includes, respectively, the total shipping costs from the manufacturer 𝑖𝑡ℎ to the distributor 𝑗𝑡ℎ, the 

maintenance cost of the product shipped by the manufacturer 𝑖𝑡ℎ to the distributor 𝑗𝑡ℎ, and the return 

fine. 

Delivery time objective function: it aims to minimize product delivery time by the distributor, as follows: 

Income objective function: to maximize revenue from product sales from the distributor 𝑖𝑡ℎ to the 

customer 𝑘𝑡ℎ, it will generate more revenue from selling the product to customers. 

The objective functions presented in Eqs. (12)-(15) along with the deterministic model Constraints (8)-

(11) form multi-objective SC management problem. 

5 | Modeling with Hesitant Fuzzy Approach 

Product quality, total cost, delivery time, and optimal revenue, which are considered definite goals in the 

model presented in the previous section, may be influenced by various factors such as management, 

competitor's status, inflation, and so on. Therefore, these goals may be desirable from the point of view 

of different decision-makers at a particular level and may allow a certain level of violation. For modeling 

the problem, the goals can be considered fuzzy by considering the decision-makers with the help of 

hesitant fuzzy numbers. This idea can be limited by constraints such as the amount of production 

capacity due to changes in the amount of raw materials available and overtime human force hours, 

limitation in the minimum amount of customer demand by product quality, relative satisfaction with 

∑ xij
m

i=1
≤ Ui

P,       (i = 1,2,… ,m). (9) 

∑ y jk
n

k=1
≥ L j

D,       (j = 1,2,… , n). (10) 

xij , y jk ≥ 0,    (i = 1,2,… ,m), (j = 1,2,… , n), (k = 1,2, … , o).          (11) 

Fq =∑ ∑ Q ixij
n

j=1

m

i=1
. (12) 

Fp =∑ ∑ Pij
T(xij

n

j=1

m

i=1
/ Ci

V) +∑ ∑ Hj(xij
n

j=1

m

i=1
/2)

+∑ ∑ Pjk(Bij
R

o

k=1

n

j=1
y jk), 

(13) 

Ft =∑ ∑ Tjk
S(yij

i

k=1

n

j=1
/ C j

V). (14) 

Fs =∑ ∑ S jkyjk.
o

i=1

n

j=1
 (15) 
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after-sales service, manner of advertising develops status of competitors in the market, and so on. Hence, 

the model presented in the previous section can be modeled by the hesitant fuzzy approach: 

Where fuzzy numbers are uncertain. A summary of the solution is given as flowchart in Fig. 2 in accordance 

with the material presented in Section 3. The following section provides a numerical example to analyze 

the model and discuss and evaluate its results. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flowchart for fuzzy SC problem solving with hesitant approach. 

 

 

 

Fq = ∑ ∑ Q ixij ≥ z̃̃q.  
n
j=1

m
i=1                                          

Fp = ∑ ∑ Pij
T(xij

n
j=1

m
i=1 / Ci

V) + ∑ ∑ Hj(xij
n
j=1

m
i=1 /2) + ∑ ∑ Pjk(Bij

Ro
k=1

n
j=1 y jk) ≤

z̃̃p.  

Fs = ∑ ∑ S jky jk ≤ z̃̃s
o
i=1

n
j=1 .  

Ft = ∑ ∑ Tjk
S(yij

i
k=1

n
j=1 / C j

V) ≥ z̃̃t.  

   s. t.   

∑ xij
m

i=1
=∑ y jk

o

k=1
   (j = 1,2,… , n). 

∑ xij
m

i=1
≤ Ũ
̃
i

P

       (i = 1,2, … ,m). 

∑ y jk
n
k=1 ≥  L̃̃ j

D
      (k = 1,2, … , o).  

 xij , y jk ≥ 0    (i = 1,2,… ,m), (j = 1,2,… , n), (k = 1,2, … , o). 

 



 

 

328 

F
a
rn

a
m

 a
n

d
 D

a
re

h
m

ir
a
k

i|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(4
) 

(2
0
2
2
) 

3
17

-3
3
6

 

 

 

Fig 3. SC problem data: a. shipping cost from manufacturer to distributor warehouse (in Currency); b. 

cost of keeping the manufacturer's goods in the distributor's warehouse (in currency); c. delivery time 

from the distributor's warehouse to the customer (in units of time); d. sales price per unit of 

distribution to customer (in units of time); e. amount of the fine paid by the distributor to the customer; 

f. distributor return percentage rate; g. capacity of carriers used by distribution center (in commodity 

units); h. capacity of carriers used by production center (in units of goods); i. minimum customer 

demand from distribution centers (in units); j. maximum production capacity (in units of commodity). 

6  | Empirical Numerical Analysis 

Consider the multi-objective, three-level problem of 2 manufacturers, 2 distributors, and 4 customers 

as in Fig. 4. Supplementary information is provided in Figs. 3.a-3.j. The return penalty per unit of 

commodity is half of its sales price. In addition, the quality percentages per unit of product produced by 

manufacturers 1 and 2 are 0.86 and 0.9, respectively. The two decision-makers record the desired values 

 

 
a. b. 

  
c. d. 

  
e. f. 

 
 

g. h. 

  
i. j. 
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and the virtual violations for the second and third objective functions and the first and second constraints,  

whose views are presented in the Table 2. 

 

Fig. 4. Three-level diagram: with 2 manufacturers, 2 distributors, 4 customers. 

 

Table 2. Desired values and permitted violations from the point of view of decision-makers for some 

objective and constraints. 

 

 

 

According to the problem information, the following formulation is provided: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The desired value range and the permissible violation  
from the decision-maker's point of view 

DM 

Cons-6 Cons-5 Obj-4 Obj-3 Obj-2 Obj-1  
(650,250) (700,140) (150000,15000) (70,8) (4000,900) (2800,1000) DM 1 
(1340,40) (1250,50) (160000,20000) (95,10) (4400,400) (3200,800) DM  2 

max̃̃ Fq = 0.86 x11 + 0.86x12 + 0.9x21 + 0.9x22, 

miñ̃ Fp = ((
5

45
) x11 + (

3

45
) x12

+ (
4

50
) x21+(

5

50
) x22 + 1.5(x11 + x21) + 2(x12 + x22) + 0.6 y11

+ 0.48 y12 + 0.48 y13 + 0.6 y14 + 0.48 y21 + 0.6 y22 + 0.6 y23
+ 0.48 y24, 

miñ̃ Ft = (
2

50
) y11 + (

3

50
) y12 + (

3

50
) y13 + (

2

50
) y14 + (

3

50
)y21 + (

2

45
) y22 + (

2

45
) y23

+ (
3

45
) y24, 

𝑚𝑎𝑥̃̃ 𝐹𝑠 = 40 𝑦11 + 48 𝑦12 + 48 𝑦13 + 40 𝑦14 + 48 𝑦21 + 40 𝑦22 + 40 𝑦23 + 48 𝑦24, 

s. t. 

x11 + x21 = y11 + y12 + y13 + y14,   

x12 + x22 = y21 + y22 + y23 + y24, 

x11 + x12 ≤ 1200,      

x21 + x22 ≤ 1800, 

y11 + y12 + y13 + y14  ≥ 800̃
̃

,      

y21 + y22 + y23 + y24 ≥  700̃
̃

, 

xij , y jk ≥ 0     ( i = 1,2, j = 1,2, k = 1,2,3,4 ). 
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Results of the deterministic modeling with respect to the objectives are presented separately and together 

in Table 3. 

Table 3. Example results considering objectives separately and multi-objectively. 

 

 

 

 

 

 

In this case, using the method presented in Section 1, we have 64 sub-problems; the results of solving 

each are given by selecting zero for alpha in Table 4. 

Table 4. Example results considering objectives separately and multi-objectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐟 = 𝟎. 𝟐𝟓 ∗ (𝐅𝐪 + 𝐅𝐩 + 𝐅𝐭 + 𝐅𝐬) 𝐅𝐬 𝐅𝐭 𝐅𝐩 𝐅𝐪 𝐅𝐬  
Objective 
Variables 

34984 144000 60 3433 2652 34984 

500 500 500 0 0 0 x11 
700 700 700 700 700 1200 x12 
1800 1800 1800 800 800 1800 x21 
0 0 0 0 0 0 x22 
0 0 0 0 0 0 y11 
0 0 0 0 0 0 y12 
2300 2300 2300 0 800 0 y13 
0 0 0 800 0 1800 y14 
700 700 0 0 0 0 y21 
0 0 0 0 0 0 y22 
0 0 0 700 0 0 y23 
0 0 700 0 700 12000 y24 

𝐟∗ 𝐱∗ 𝛌∗ 𝐌𝐎𝐋𝐏𝐫 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.6 MOLP1 

33748 (1200,0,0,1800,0,0,665.6,534.4,1800,0,0,0)  0.315 MOLP2 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.6 MOLP3 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.6 MOLP4 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP5 

34834 (1200,0,30,1770,0,0,1230,0,1770,0,0,0) 0.6 MOLP6 
34892 (1200,0,476,1324,0,0,1676,0,1324,0,0,0) 0.6 MOLP7 

337.8 (1200,0,0,1800,0,0,665.6,534.4,1800,0,0,0)  0.315 MOLP8 

33748 (1200,0,0,1800,0,0,665.6,534.4,1800,0,0,0)  0.315 MOLP9 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.6 MOLP10 

34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0)  0.2 MOLP11 

33748 (1200,0,0,1800,0,0,665.6,534.4,1800,0,0,0)   0.315 MOLP12 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0)  0.2 MOLP13 

33750 (1200,0,15.8,1784.2,0,0,681.4,534.4,1784.2,0,0,0) 0.315 MOLP14 

33748 (1200,0,0,1800,0,0,665.6,534.4,1800,0,0,0)  0.315 MOLP15 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.6 MOLP16 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP17 

34834 (1200,0,30,1770,0,0,1230,0,1770,0,0,0) 0.6 MOLP18 
34854 (1200,0,184,1616,0,0,1384,0,1616,0,0,0) 0.6 MOLP19 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP20 
34834 (1200,0,30,1770,0,0,1230,0,1770,0,0,0) 0.6 MOLP21 

34892 (1200,0,476,1324,0,0,1676,0,1324,0,0,0) 0.6 MOLP22 

34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP23 

34894 (1200,0,492,1308,0,0,1692,0,1308,0,0,0) 0.2 MOLP24 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP25 

33750 (1200,0,15.8,1784.2,0,0,681.4,534.4,1784.2,0,0,0) 0.315 MOLP26 

33748 (1200,0,0,1800,0,0,665.6,534.4,1800,0,0,0) 0.315 MOLP27 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP28 

33750 (1200,0,15.7,1784.2,0,0,681.4,534.4,1784.2,0,0,0) 0.315 MOLP29 

33748 (1200,0,0,1800,0,0,665.6,534.4,1800,0,0,0) 0.315 MOLP30 

34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP31 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP32 

34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP33 

34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP34 
34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP35 
34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP36 
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 Table 4. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

If the decision-maker intends to obtain definite results, from the optimistic and pessimistic points of view, 

we obtain the values presented in Table 5. 

Table 5. Results from the optimistic and pessimistic perspectives. 

 

 

7 | Findings and Sensitive Analysis 

In the previous section, a multi-objective problem of the SC was solved extensively by presenting a practical 

example. According to the recording of the expected values and the acceptable violation from the point of 

view of two decision makers about objective Function (4) and Constraints (5) and (6), 64 sub-problems were 

extracted. The results presented in Table 4 have provided the optimal expectation level and the average 

objective function value in the 𝜆∗ and 𝑓∗ columns for these 64 sub-problems. From the point of view of 

the decision maker with a higher level of expectation, 𝜆∗ = 0.6 the value of 𝑓∗ = 34892 is obtained and from 

the point of view of a decision maker with a lower level of expectation, 𝜆∗ = 0.2 the value of 𝑓∗ = 34831 is 

obtained (Table 5). Of course, considering the variety of solutions and changes caused by real world 

conditions, decision makers can finally use the results of one of the sub-problems in Table 4 as the optimal 

solution. 

For sensitivity analysis, since the expected value and the deviation depend on the opinion of the decision 

makers, it is clear that any increase or decrease in these values may cause a change in the final response 

(values of 𝜆∗ and 𝑓∗ ) for the related sub-problems. For example, if we keep the expected value for the 

fourth objective function constant and increase the acceptable deviation value, then the results in the sub-

problems related to this value may change. For example, for sub-problem 𝑀𝑂𝐿𝑃1, results similar to those 

𝐟∗ 𝐱∗ 𝛌∗ 𝐌𝐎𝐋𝐏𝐫 
33751 (1200,0,15.7,1784.3,0,0,681.4,534.4,1784.3,0,0,0) 0.315 MOLP37 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP38 

34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP39 

34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP40 

34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP41 

34834 (1200,0,30,1770,0,1230,0,1770,0,0,0) 0.6 MOLP42 
34892 (1200,0,476,1324,0,0,1676,0,1324,0,0,0) 0.6 MOLP43 
34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP44 
34834 (1200,0,30,1770,0,0,1230,0,1770,0,0,0) 0.6 MOLP45 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP46 
34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP47 
34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP48 
33750 (1200,0,15.8,1784.2,0,0,681.4,534.4,1784.2,0,0,0) 0.315 MOLP49 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP50 
34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP51 
33750 (1200,0,15.8,1784.2,0,0,681.4,534.4,1784.2,0,0,0) 0.315 MOLP52 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP53 
34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP54 
33748 (1200,0,0,1800,0,0,665.6,534.4,1800,0,0,0) 0.315 MOLP55 
33750 (1200,0,15.8,1784.2,0,0,681.4,534.4,1784.2,0,0,0) 0.315 MOLP56 
34834 (1200,0,30,1770,0,0,1230,0,1770,0,0,0) 0.6 MOLP57 
34894 (1200,0,492,1308,0,0,1692,0,1308,0,0,0) 0.2 MOLP58 
34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP59 
34834 (1200,0,30,1770,0,0,1230,0,1770,0,0,0) 0.6 MOLP60 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP61 

34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 MOLP62 

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.2 MOLP63 

34834 
 

(1200,0,30,1770,0,0,1230,0,1770,0,0,0) 0.6 MOLP64 

𝐟∗ 𝐱∗ 𝛌∗ Views 

34831 (1200,0,10,1790,0,0,1210,0,1790,0,0,0) 0.2 Pessimistic 

34892 (1200,0,476,1324,0,0,1676,0,1324,0,0,0) 0.6 Optimist 



 

 

332 

F
a
rn

a
m

 a
n

d
 D

a
re

h
m

ir
a
k

i|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(4
) 

(2
0
2
2
) 

3
17

-3
3
6

 

 

seen in Table 6 and Fig. 5 are obtained. As can be seen in Table 6, with the increase of the acceptable 

violation from 15000 to 65000, the value of 𝜆∗ increased from 0.6 to 0.852 and the value of 𝑓∗ decreased 

from 34830 to 33914. 

 Table 6. Results of the changes in 𝐝̃̃𝐳̃̃𝟒 for the fourth objective of 𝐌𝐎𝐋𝐏𝟏. 

  

 

 

 

 

In Fig. 5, the results obtained due to the increase of the acceptable violation for the fourth objective 

function and related to sub-problem 𝑀𝑂𝐿𝑃1 are depicted. The horizontal axis and the vertical axes show 

the acceptable violation and the amount of 𝜆∗ and 𝑓∗, respectively. 

a. 

b. 

Fig. 5. a. Variations of 𝛌∗ by the changes in  𝐝̃̃𝐳̃̃𝟒 for fourth objective of 𝐌𝐎𝐋𝐏𝟏;  b. Variations 

of 𝐟∗ by the changes in 𝐝̃̃𝐳̃̃𝟒 for fourth objective of 𝐌𝐎𝐋𝐏𝟏. 

As an example, for sensitivity analysis in constraints, if we increase the expected value for the 5th 

constraint and keep the acceptable violation value constant, then the results for the sub-problems related 

to this value may change. For example, for sub-problem 𝑀𝑂𝐿𝑃52, results similar to those seen in Table 

𝐟∗ 𝐱∗ 𝛌∗          (𝐳̃̃𝟒, 𝐝̃̃𝐳̃̃𝟒)   

34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.6000 (150000,15000) 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.7000 (150000,20000) 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.7600 (150000,25000) 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.8000 (150000,30000) 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.8286 (150000,35000) 
34830 (1200,0,0,1800,0,0,1200,0,1800,0,0,0) 0.8500 (150000,40000) 
34663 (1200,0,0,1800,0,0,1117.5,82.5,1800,0,0,0) 0.8520 (150000,45000) 
34476 (1200,0,0,1800,0,0,1025,175,1800,0,0,0) 0.8520 (150000,50000) 
34288 (1200,0,0,1800,0,0,932.5,267.5,1800,0,0,0) 0.8520 (150000,55000) 
34101 (1200,0,0,1800,0,0,840,360,1800,0,0,0) 0.8520 (150000,60000) 
33914 (1200,0,0,1800,0,0,747.5,452.5,1800,0,0,0) 0.8520 (150000,65000) 
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7 and Fig. 6 are obtained. As can be seen in Table 7, by increasing the value on the right side from 1250 to 

1740, the value of 𝜆∗ decreased from 0.6 to 0.1111 and the value of 𝑓∗ increased from 34834 to 34886 and 

then decreased to 33038. 

Table 7. Results of the changes in 𝐛̃̃𝟓 for the fifth constraint of 𝐌𝐎𝐋𝐏𝟓𝟐. 

 

 

 

 

 

In Fig. 6, the results obtained due to increasing the value on the right side for the fifth constraint and 

related to sub-problem 𝑀𝑂𝐿𝑃52 are depicted. 

a. 

b. 

Fig. 6. a. Variations of 𝛌∗ by the changes in 𝐛̃̃𝟓 for the fifth constraint of 𝐌𝐎𝐋𝐏𝟓𝟐; b. Variations of 𝐟∗ by the 

changes in 𝐛̃̃𝟓 for the fifth constraint of 𝐌𝐎𝐋𝐏𝟓𝟐 . 

𝐟∗ 𝐱∗ 𝛌∗ (𝐛̃̃𝟓, 𝐝̃̃𝐛̃̃𝟓
)   

34834 (1200,0,30,1770,0,0,1230,0,1770,0,0,0) 0.6000 (1250,50) 
34847 (1200,0,130,1670,0,0,1330,0,1670,0,0,0) 0.6000 (1350,50) 
34860 (1200,0,230,1570,0,0,1430,0,1570,0,0,0) 0.6000 (1450,50) 
34873 (1200,0,330,1470,0,0,1530,0,1470,0,0,0) 0.6000 (1550,50) 
34886 (1200,0,430,1370,0,0,1630,0,1370,0,0,0) 0.6000 (1650,50) 
34722 (1200,0,477.8,1322.2,0,0,1594.4,83.3,1322.2,0,0,0) 0.5556 (1700,50) 
34303 (1200,0,482.2,1317.8,0,0,1390.6,291.7,1317.8,0,0,0) 0.4444 (1710,50) 
33881 (1200,0,486.7,1313.3,0,0,1186.7,500,1313.3,0,0,0) 0.3333 (1720,50) 
33460 (1200,0,491.1,1308.9,0,0,982.8,708.3,1308.9,0,0,0) 0.2222 (1730,50) 
33038 (1200,0,495.6,1304.4,0,0,778.9,916.7,1304.4,0,0,0) 0.1111 (1740,50) 
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8 | Conclusion 

Uncertainties and their investigation manner in applied models are common research topics. In this 

study, an initial step was taken to apply the hesitant fuzzy programming to the uncertainties caused by 

these numbers in SC management problems. To this end, we extended and applied the method proposed 

by Ranjbar and Effati for symmetric and asymmetric HFLP problems for multi-objective fuzzy 

programming problems. Afterwards, we modeled a three-level four-objective SC problem in the hesitant 

fuzzy environment and provided an example to evaluate the efficiency of the proposed method. For 64 

sub-problems, the results established in Table 4 and shows the optimal expectation level, optimal point 

and the average objective function value. Due to the variety of responses, decision makers have a wide 

range of choices as the optimal response. The results presented in Table 6 and Fig. 5 showed that by 

keeping the expected value for the fourth objective function constant and increasing the acceptable 

violation value, the optimal response for sub-problem 𝑀𝑂𝐿𝑃1  has increasing or decreasing changes in 

the values of 𝜆∗and 𝑓∗   will be. Also, the results of increasing the expected value and keeping the 

acceptable violation value of the fifth constant illustrated differing changes in the values of 𝜆∗and 𝑓∗. 

The exponential increase in the number of sub-problems with the increase in the number of opinions 

of decision makers and the increase in the number of goals and constraints are among the basic 

limitations in the application of this type of problems. Therefore, for problems with a higher volume, it 

is better to use more efficient algorithms such as heuristic and hybrid algorithms. 

Among the benefits of this research were the opening up of a new view of applied research into SC 

management, group decision-making capability and, in addition, weight allocation for decision-makers.  

Some of the innovations in this article are as follows: 

− Formulating the fuzzy symmetric multi-objective programming problem and its solution. 

− Using weighted average objective function to solve sub-problems. 

− Having ability to consider alpha cuts in each of the sub-problems and, hence, examine responses at different 

levels. 

− Expressing a model of SC management with hesitant fuzzy approach and solving it using the proposed method. 

− Providing strategies to improve model performance. 

To continue with the hesitant fuzzy number approach, the following points may be of interest for 

researchers: 

1. Developing and interpreting uncertainties arising from uncertain fuzzy data for other SC-related areas. 

2. Considering the uncertainties arising from fuzzy data over other model parameters. 

3. Improving the solution methods presented in this paper to deal with uncertainties caused by fuzzy data. 

4. Considering more goals or levels to solve the problem. 

5. Implementing the method on higher-dimensional models, in particular solving them by combinatorial, 

heuristic, and meta-heuristic methods, and comparing responses with deterministic methods. 

6. With the information obtained from the solutions presented, enabling managers to observe and identify 

the full range of outcomes, from the worst to best, for final decision-making. 
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Abstract 

                  

1 | Introduction  

Over the recent years, since its foundation by Zadeh [13] fuzzy sets and logic has been usefully in 

solving the real life problems which has partial or vague information which has wider scope of 

application and has dramatically increased in 1990’s in area of decision making problem till this time 

for instance in the field like of pattern classification  and information processing [7]. In the future by 

studying effectually and reconnoitering fuzzy implications can be the step towards the simulation of 

human thinking [3]. 

Furthermore, as fuzzy can be applied in different other areas like that of optimization  which were 

specifically done by Shirin [9] in their work they proposed optimization solution to the problem by 

computing using three methods, which were the Bellman-Zadeh’s method, Zimmerman’s method, 

and fuzzy version of Simplex method, are compared to each other. Others are Tang et al. [12] and 

Sahayasudha and Vijayalakshmi [11]  who did in fuzzy optimization and transportation problem, 

respectively.  
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Largely, fuzzy arithmetic operation has a great role in the analysis of fuzzy problems a number of works 

has been done involving fuzzy arithmetic operations like that of Bobillo and Straccia [1], Dutta et al. [4], 

Mazeika et al. [7], Stefanini et al. [10], Sahayasudha and Vijayalakshmi [11], Raju and Jayagopal [8] and 

Iliadis et al. [6] but almost all of  them did not use the approach of operations using α–cut for the 

Gaussian membership function in their works.  

Other work is that of Hassanzadeh et al. [5] in their paper titled “an α-cut approach for fuzzy product 

and its use in computing solutions of fully fuzzy linear systems” whereby they used a regression model 

to obtain the membership function of the product. 

The gaussian membership function has now been used  in solving  the fuzzy problems, for instance 

Mazeika et al. [7] in their work they used trapezoidal and Gaussian membership function and introduced 

a new general set approach to compute fuzzy sets based on interval analysis. They protracted their work 

techniques to handle multidimensional continuous membership functions, also Bundy and Wallen [2], 

Iliadis et al. [6] used gaussian distribution in their papers, whereby in this work we showed the Gaussian 

membership function using α–cut  which can operated to both the continuous and discrete fuzzy set. 

The core principle of the fuzzy set is the construction of the membership function and its operations in 

the fuzzy environment. Therefore, for this work focused on the basic arithmetic operation using alpha 

cut for the Gaussian function as this approach will be usefully for other scientists in handling and 

analyzing the real-life problem in the fuzzy environment. 

2 | Basic Concepts and Notations  

2.1 | Fuzzy Set and Membership Function  

Let 𝑋 be a non-empty crisp set, a fuzzy set 𝐴 is define as set of pairs 𝐴 = {(𝑥, 𝜇𝐴(𝑥))}, where 𝑥 ∈ 𝑋 and 

𝜇𝐴(𝑥) is membership value for the corresponding crisp value 𝑥 ∈ 𝑋 which is defined by a membership 

function as  𝜇𝐴: 𝑋 → [0,1] [13]. 

There are many membership functions so far which has been commonly used are triangular function, 

trapezoidal function, singleton function, L–function, gamma function, S–function, Gaussian function, 

Sigmoidal and Pseudo–Exponential function [14].  

2.2 | Normal Fuzzy Set 

A fuzzy set A of the universe of discourse 𝑋 is called a normal fuzzy set implying that there exists at 

least one 𝑥 ∈  𝑋 such that 𝜇𝐴(𝑥) = 1. 

2.3 | Support 

The support of a fuzzy set 𝐴 defined on 𝑋 is a crisp set defined as 

2.4 | Fuzzy Number 

A fuzzy set 𝐴 defined on the set of real numbers ℝ is said to be a fuzzy number if its membership 

function: 𝜇𝐴: ℝ → [0,1] has the following properties 

I. 𝐴 must be a normal fuzzy set. 

II. 𝐴𝛼 must be a closed interval for every a 𝛼 ∈ (0,1].  

III. The support of A, must be bounded. 

Support(A) = xϵX: μA(x) > 0.  
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2.5 | Gaussian Function with an Example   

The Gaussian membership function of a crisp set A of a non-empty universal set 𝑋 is defined by 

For all 𝑥 ∈ 𝑋 or generally 𝑥 ∈ ℝ as the crisp set, 𝑚 can be taken as the mid value or mean and 𝜎 > 0 can be 

taken as the standard deviation of the crisp set. This Gaussian function will take a bell-shaped curve and 

the smaller 𝜎 the narrower the bell [14]. 

For example, to express a specific Gaussian membership function for the following discrete crisp set 𝐵 

which is chosen arbitrary as, 𝐵 = 2,3,5,9,8,14 , using the data for set B here we can find 𝑚 = 6.8 as mean 

and 𝜎 = 4.1 as standard deviation therefore the membership function will be 

Solving using the given Gaussian membership function then we can have the fuzzy set which will be as 

𝛽 = {(2, 0.50 ), (3, 0.65 ), (5, 0.91), (8, 0.96), (9, 0.87), (14, 0.21)}. 

Generally, the above Gaussian membership geometrically as continuous can be seen as shown: 

Fig. 1. Gaussian membership for 𝛍𝐁(𝐱) = 𝐞𝐱𝐩 [
−(𝐱−𝟔.𝟖)𝟐

𝟐×𝟒.𝟏𝟐
]. 

2.6 | Alpha (α)–Cut   

Let  𝑋 be a non- empty crisp set, an α–cut for a given fuzzy set 𝛢 denoted by 𝐴𝛼 is defined as the  crisp 

set of all elements of 𝛢 whose membership grades are greater than α,  

Now from the Gaussian membership function given above we can find the alpha-cut as follows: 

To simplify the calculations, we have taken the alpha – cut for equality, that is 

μA(x) = exp [
−(x−m)2

2σ2 ]. (1) 

μB(x) = exp [
−(x − 6.8)2

2 × 4.12
]. (2) 

∀ α ∈ (0, 1],    that is A α = {x ∈ X|μA(x) ≥ α }. (3) 

μA(x) = exp [
−(x − m)2

2σ2 ]  ≥ α. (4) 

exp [
−(x − m)2

2σ2 ] = α. (5) 



 

 

340 

L
e
a
n

d
ry

 e
t 

a
l.

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(4
) 

(2
0
2
2
) 

3
3
7
-3

4
8

 

 

 

Then we solve for 𝑥 to obtain the α–cut for the corresponding fuzzy set, apply logarithm throughout 

we have 

Simplifying and taking the term with plus we have,  

Therefore, the α – cut will be given by 

 

3 | Results and Discussions 

Here we have explored all the basic operations and showing in detail how to find the membership of all 

the operations with α–cut using the Gaussian Membership function, the operations discussed here are 

addition, subtraction, multiplication, division, reciprocal, exponential, logarithmic and nth power. The 

graphs to help the analysis were drawn using GeoGebra Calculator suite for graphing software. 

3.1 | Basic Operations  

 3.1.1 | Addition         

Let the fuzzy sets 𝐴 and 𝐵 with their corresponding membership as 𝜇𝐴(𝑥) = exp [
−(𝑥−𝑚𝐴)2

2𝜎𝐴
2 ] , 𝜇𝐵(𝑥) =

𝑒𝑥𝑝 [
−(𝑥−𝑚𝐵)

2

2𝜎𝐵
2 ] respectively Solving the α–cut for the two fuzzy set we have, 𝐴𝛼 = 𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼  and 

𝐵𝛼 = 𝑚𝐵 + 𝜎𝐵√−2 𝑙𝑛 𝛼 respectively for fuzzy set 𝐴 and 𝐵.  

By adding we have,  𝐴𝛼 + 𝐵𝛼 = 𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼 + 𝑚𝐵 + 𝜎𝐵√−2 𝑙𝑛 𝛼. 

Upon simplifying we have,  𝐴𝛼 + 𝐵𝛼 = (𝑚𝐴 + 𝑚𝐵) + (𝜎𝐴 + 𝜎𝐵) √−2 ln 𝛼. 

Now to get the membership for addition we have to let 𝑥 = 𝐴𝛼 + 𝐵𝛼 and solve for α, that is  𝑥 = (𝑚𝐴 +

𝑚𝐵) + (𝜎𝐴 + 𝜎𝐵) √−2 ln 𝛼, then ln 𝛼 = (
−(𝑥−(𝑚𝐴+𝑚𝐵))

2

2(𝜎𝐴+𝜎𝐵)
2

) henceforth, we have 𝛼 = 𝑒𝑥𝑝 (
−(𝑥−(𝑚𝐴+𝑚𝐵))

2

2(𝜎𝐴+𝜎𝐵)
2

), lastly the 

membership will be 

For example, if we choose arbitrary the specific values for  𝜎𝐴 = 1,  𝜎𝐵 = 2,   𝑚𝐴 = 10 and  𝑚𝐵 = 20, 

therefore we will have the membership as, 𝜇𝐴(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−10)2

2(1)2
) , 𝜇𝐵(𝑥) = 𝑒𝑥𝑝 (

−(𝑥−20)2

2(2)2
)   and  

𝜇(𝐴+𝐵)(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−(10+20))

2

2(1+2)2
). On the same axes their graphs will be see as in the Fig. 2 below (𝜇𝐴(𝑥) in 

green, 𝜇𝐵(𝑥) in Blue and  𝜇(𝐴+𝐵)(𝑥) in Red). 

[
−(x − m)2

2σ2 ] = lnα. (6) 

x = m + σ√−2 lnα.  

A α = m + σ√−2 lnα. (7) 

μ(A+B)(x) = exp (
−(x − (mA + mB))

2

2(σA + σB)2
) ∀x ∈ ℝ. (8) 
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Fig. 2. Graphs of  𝛍𝐀(𝐱) = 𝐞𝐱𝐩 (
−(𝐱−𝟏𝟎)𝟐

𝟐(𝟏)𝟐
) ,  𝛍𝐁(𝐱) = 𝐞𝐱𝐩 (

−(𝐱−𝟐𝟎)𝟐

𝟐(𝟐)𝟐
)  and 𝛍(𝐀+𝐁)(𝐱) = 𝐞𝐱𝐩 (

−(𝐱−(𝟏𝟎+𝟐𝟎))
𝟐

𝟐(𝟏+𝟐)𝟐
). 

3.2 | Subtraction    

Let the fuzzy sets 𝐴 and 𝐵 with their corresponding membership as 𝜇𝐴(𝑥) = 𝑒𝑥𝑝 [
−(𝑥−𝑚𝐴)2

2𝜎𝐴
2 ] ,  𝜇𝐵(𝑥) =

𝑒𝑥𝑝 [
−(𝑥−𝑚𝐵)

2

2𝜎𝐵
2 ], respectively. 

Solving the α–cut for the two fuzzy set we have, 𝐴𝛼 = 𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼  and  

𝐵𝛼 = 𝑚𝐵 + 𝜎𝐵√−2 𝑙𝑛 𝛼 respectively for fuzzy set 𝐴 and 𝐵. 

By subtracting we have,  𝐴𝛼 − 𝐵𝛼 = 𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼 − (𝑚𝐵 + 𝜎𝐵√−2 𝑙𝑛 𝛼). 

Upon simplifying we have,  𝐴𝛼 − 𝐵𝛼 = (𝑚𝐴 − 𝑚𝐵) + (𝜎𝐴 − 𝜎𝐵) √−2 𝑙𝑛 𝛼. 

 Now to get the membership for subtraction we have to let 𝑥 = 𝐴𝛼 −  𝐵𝛼 and solve for α, that is  𝑥 = (𝑚𝐴 −

𝑚𝐵) + (𝜎𝐴 − 𝜎𝐵) √−2 𝑙𝑛 𝛼, then 𝑙𝑛 𝛼 = (
−(𝑥−(𝑚𝐴−𝑚𝐵))

2

2(𝜎𝐴−𝜎𝐵)
2

) hence, we have  𝛼 = 𝑒𝑥𝑝 (
−(𝑥−(𝑚𝐴−𝑚𝐵))

2

2(𝜎𝐴−𝜎𝐵)
2

), lastly the 

membership will be 

For example, if we choose arbitrary the specific values for   𝜎𝐴 = 1,  𝜎𝐵 = 2,   𝑚𝐴 = 10 and  𝑚𝐵 = 20, 

therefore we will have the membership as,  𝜇𝐴(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−10)2

2(1)2
) ,  𝜇𝐵(𝑥) = 𝑒𝑥𝑝 (

−(𝑥−20)2

2(2)2
)   and

 𝜇(𝐴−𝐵)(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−(10−20))

2

2(1−2)2
). 

On the same axes their graphs will be see as in the Fig. 3 below 𝜇𝐴(𝑥) (in green, 𝜇𝐵(𝑥) in Blue and  𝜇(𝐴−𝐵)(𝑥) 

in Red). 

 

 

 

μ(A+B)(x) = exp (
−(x − (mA − mB))

2

2(σA − σB)2
)∀x ∈ ℝ. (9) 



 

 

342 

L
e
a
n

d
ry

 e
t 

a
l.

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(4
) 

(2
0
2
2
) 

3
3
7
-3

4
8

 

 

Fig. 3. Graphs of 𝛍𝐀(𝐱) = 𝐞𝐱𝐩 (
−(𝐱−𝟏𝟎)𝟐

𝟐(𝟏)𝟐
)   , 𝛍𝐁(𝐱) = 𝐞𝐱𝐩 (

−(𝐱−𝟐𝟎)𝟐

𝟐(𝟐)𝟐
)  and 𝛍(𝐀−𝐁)(𝐱) = 𝐞𝐱𝐩 (

−(𝐱−(𝟏𝟎−𝟐𝟎))
𝟐

𝟐(𝟏−𝟐)𝟐
). 

3.3 | Multiplication 

For the fuzzy sets 𝐴 and 𝐵 with their corresponding membership as 𝜇𝐴(𝑥) = 𝑒𝑥𝑝 [
−(𝑥−𝑚𝐴)2

2𝜎𝐴
2 ],  𝜇𝐵(𝑥) =

𝑒𝑥𝑝 [
−(𝑥−𝑚𝐵)

2

2𝜎𝐵
2 ], respectively. 

Solving the α – cut for the two fuzzy set we have 𝐴𝛼 = 𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼    and 𝐵𝛼 = 𝑚𝐵 + 𝜎𝐵√−2 𝑙𝑛 𝛼 

respectively for fuzzy set 𝐴 and 𝐵.  

Now, multiplication 𝐴𝛼 ∗ 𝐵𝛼 = (𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼) ∗ (𝑚𝐵 + 𝜎𝐵√−2 𝑙𝑛 𝛼)   

Upon simplifying and making α the subject we have 

Therefore, 

or 

 

 

For example, if we choose arbitrary the specific values for 𝜎𝐴 = 1 ,  𝜎𝐵 = 2,   𝑚𝐴 = 10 and  𝑚𝐵 = 20, 

therefore we will have the membership as, 𝜇𝐴(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−10)2

2(1)2
) and 

 

 

 

Let x = (mA + σA√−2 lnα) ∗ (mB + σB√−2 lnα).  

x = (mAmB) + (mBσA + mAσB) ∗ (√−2 lnα) + (σAσB) ∗ (√−2 lnα)
2
. (10) 

α = exp (−
1

2
(
(mBσA+mAσB)±√(mBσA+mAσB)

2+4(σAσB)∗(x−(mAmB))

(2σAσB)
)
2

). (11) 

μ(A×B)(x) = exp (−
1

2
(
(𝑚𝐵𝜎𝐴+𝑚𝐴𝜎𝐵)+√(𝑚𝐵𝜎𝐴+𝑚𝐴𝜎𝐵)

2+4(𝜎𝐴𝜎𝐵)∗(𝑥−(𝑚𝐴𝑚𝐵))

(2𝜎𝐴𝜎𝐵)
)
2

). (12) 

μ(A×B)(x) = exp (−
1

2
(
(𝑚𝐵𝜎𝐴+𝑚𝐴𝜎𝐵)−√(𝑚𝐵𝜎𝐴+𝑚𝐴𝜎𝐵)

2+4(𝜎𝐴𝜎𝐵)∗(𝑥−(𝑚𝐴𝑚𝐵))

(2𝜎𝐴𝜎𝐵)
)
2

). (13) 
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 𝜇(𝐴×𝐵)(𝑥) = 𝑒𝑥𝑝
(  
   
  
 

−
1

2 ( 
   
 
 
(20×1+10×2)+

√
(20×1+10×2)2+4(2×1)(𝑥−(10×20))

(2×1×2) )  
   
 2

)  
   
  
 

  Simplifying, 𝜇(𝐴×𝐵)(𝑥) = 𝑒𝑥𝑝 (−
1

2
(
40+√8𝑥 

4
)
2

). 

On the same axes their graphs will be see as in the Fig. 4 below 𝜇𝐴(𝑥) in green 𝜇
(𝐴×𝐵)

(𝑥) in Blue. 

Fig. 4. Graphs 𝛍𝐀(𝐱) = 𝐞𝐱𝐩 (
−(𝐱−𝟏𝟎)𝟐

𝟐(𝟏)𝟐
)  and 𝛍(𝐀×𝐁)(𝐱) = 𝐞𝐱𝐩 (−

𝟏

𝟐
(
𝟒𝟎+√𝟖𝐱 

𝟒
)
𝟐

). 

3.4 | Division 

For the fuzzy sets 𝐴 and 𝐵 with their corresponding membership as 𝜇𝐴(𝑥) = 𝑒𝑥𝑝 [
−(𝑥−𝑚𝐴)2

2𝜎𝐴
2 ],  𝜇𝐵(𝑥) =

𝑒𝑥𝑝 [
−(𝑥−𝑚𝐵)

2

2𝜎𝐵
2 ], respectively.  

Solving the α–cut for the two fuzzy set we have, 𝐴𝛼 = 𝑚𝐴 + 𝜎𝐴√−2 ln 𝛼 and 𝐵𝛼 = 𝑚𝐵 + 𝜎𝐵√−2 𝑙𝑛 𝛼 

respectively for fuzzy set 𝐴 and 𝐵.  Dividing we have 

 

Then, 𝑥(𝑚𝐵 + 𝜎𝐵√−2 𝑙𝑛 𝛼) = 𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼   

Simplifying and making α the subject we have,  

Aα

Bα
=

mA+σA√−2 lnα

mB+σB√−2 lnα
. (14) 

Let x =
mA+σA√−2 lnα

mB+σB√−2 lnα
.  

μA
B

(x) = exp (
−(xmB −mA)2

(σA − σB)2
). (15) 
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For example, if we choose arbitrary the specific values for 𝜎𝐴 = 1,  𝜎𝐵 = 2,  𝑚𝐴 = 10 and  𝑚𝐵 = 20 , 

therefore we will have the membership as, 𝜇𝐴(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−10)2

2(1)2
) ,  𝜇𝐵(𝑥) = 𝑒𝑥𝑝 (

−(𝑥−20)2

2(2)2
) and 𝜇𝐴

𝐵

(𝑥) =

𝑒𝑥𝑝 (
−(20𝑥−10)2

(1)2
). On the same axes their graphs will be see as in the Fig. 5 below 𝜇𝐴(𝑥) in blue, 𝜇𝐵(𝑥) in 

Green and  𝜇
(
𝐴

𝐵
)
(𝑥) in Red). 

                                            Fig. 5. Graphs of 𝛍𝐀(𝐱),  𝛍𝐁(𝐱) and  𝛍(𝐀/𝐁)(𝐱). 

3.5 | Reciprocal 

For the fuzzy sets 𝐴 with membership as  𝜇𝐴(𝑥) = 𝑒𝑥𝑝 [
−(𝑥−𝑚𝐴)2

2𝜎𝐴
2 ] , by solving the α – cut for the given 

fuzzy set we have, 𝐴𝛼 = 𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼. 

The reciprocal membership can be found as 
1

𝐴𝛼
=

1

𝑚𝐴+𝜎𝐴√−2 𝑙𝑛 𝛼
 . Then let  𝑥 =

1

𝑚𝐴+𝜎𝐴√−2 𝑙𝑛 𝛼
, 

Making α the subject we have 

Therefore, the reciprocal membership will be written as 

 

 

 

For example, if we choose arbitrary the specific values for   𝜎𝐴 = 1 and  𝑚𝐴 = 10 therefore we will have 

the membership as𝜇𝐴(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−10)2

2(1)2
), and 𝜇𝐴−1 = 𝑒𝑥𝑝 (−

1

2
(
10𝑥−1 

𝑥
)
2
). 

On the same axes their graphs will be see as in the Fig. 6 below 𝜇𝐴(𝑥) in Green and  𝜇𝐴−1 in Blue. 

 

xmA + xσA√−2 ln α  = 1. (16) 

α = exp (−
1

2
(
xmA − 1 

xσA

)
2

). (17) 

μA−1 = exp (−
1

2
(
xmA − 1 

xσA

)
2

). (18) 
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 Fig. 6. Graphs of , 𝛍𝐀(𝐱) = 𝐞𝐱𝐩 (
−(𝐱−𝟏𝟎)𝟐

𝟐(𝟏)𝟐
)and 𝛍𝐀−𝟏 = 𝐞𝐱𝐩 (−

𝟏

𝟐
(
𝟏𝟎𝐱−𝟏 

𝐱
)
𝟐
). 

3.6 | Exponential 

For the fuzzy sets 𝐴 with membership as  𝜇𝐴(𝑥) = exp [
−(𝑥−𝑚𝐴)2

2𝜎𝐴
2 ] , by solving the α – cut for the given fuzzy 

set we have, 𝐴𝛼 = 𝑚𝐴 + 𝜎𝐴√−2 ln 𝛼 . Then apply exponential throughout, that is  𝑒𝑥𝑝 (𝐴𝛼) = 𝑒𝑥𝑝 (𝑚𝐴 +

𝜎𝐴√−2 𝑙𝑛 𝛼). 

Solve for α, that is 𝑙𝑛 𝑥 =  𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼, then we have the member ship as 

For example, if we choose arbitrary the specific values for  𝜎𝐴 = 1 and  𝑚𝐴 = 5, therefore we will have 

the membership as, 𝜇𝐴(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−5)2

2(1)2
) and μeA(x)=exp (-

1

2
(
(ln x) - 5 

1
)
2
). 

On the same axes their graphs will be see as in the Fig. 7, 𝜇
𝐴
(𝑥) in Green and  𝜇𝑒𝐴(𝑥) in Red color. 

3.7 | Logarithmic 

For the fuzzy sets 𝐴 with membership as  𝜇𝐴(𝑥) = 𝑒𝑥𝑝 [
−(𝑥−𝑚𝐴)2

2𝜎𝐴
2 ] , by solving the α–cut for the given fuzzy 

set we have, 𝐴𝛼 = 𝑚𝐴 + 𝜎𝐴√−2 ln 𝛼 . Apply logarithm throughout, we have  𝑙𝑛 𝐴𝛼 = 𝑙𝑛(𝑚𝐴 + 𝜎𝐴√−2 ln 𝛼). 

Then, let x = 𝑙𝑛(𝑚𝐴 + 𝜎𝐴√−2 ln 𝛼), from this make α the subject.  

Apply exponential throughout we have 

 

 

Let 𝑥 = exp (𝑚𝐴 + 𝜎𝐴√−2 ln 𝛼).  

μeA(x) = exp (−
1

2
(
ln x −mA 

σA
)
2

). (19) 

ex = (mA + σA√−2 lnα). (20) 

−2 ln α  =  (
ex −mA 

σA
)
2

. (21) 
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Then, 

Therefore, the membership function for logarithm is given by 

For example, if we choose arbitrary the specific values for  𝜎𝐴 = 1 and  𝑚𝐴 = 10, therefore we will have 

the membership as, 𝜇𝐴(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−10)2

2(1)2
) and  𝜇

𝑙𝑛(𝐴)
(𝑥) = 𝑒𝑥𝑝 (−

1

2
(
𝑒𝑥 −10 

1
)
2

).  

Fig. 7. Graphs of  𝛍𝐀(𝐱) = 𝐞𝐱𝐩 (
−(𝐱−𝟓)𝟐

𝟐(𝟏)𝟐
) and 𝛍𝐞𝐀(𝐱) = 𝐞𝐱𝐩 (−

𝟏

𝟐
(
𝐥𝐧 𝐱 −𝟓 

𝟏
)
𝟐
). 

On the same axes their graphs will be see as in the Fig. 8 below 𝜇𝐴(𝑥) in Green and  𝜇𝑙𝑛 𝐴(𝑥) in Red. 

Fig. 8. Graphs of  𝛍𝐀(𝐱) = 𝐞𝐱𝐩 (
−(𝐱−𝟏𝟎)𝟐

𝟐(𝟏)𝟐
) and  𝛍𝐥𝐧(𝐀)(𝐱) = 𝐞𝐱𝐩 (−

𝟏

𝟐
(
𝐞𝐱 −𝟏𝟎 

𝟏
)
𝟐

). 

 

3.8 | The nth power  

The nth power can be used to solve the fuzzy sets 𝐴 with membership as  𝜇𝐴(𝑥) = exp [
−(𝑥−𝑚𝐴)2

2𝜎𝐴
2 ] ,   

Solving the α–cut for the given fuzzy set we have, 𝐴𝛼 = 𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼 .  

α = exp (−
1

2
(
ex −mA 

σA
)
2

). (22) 

μln(A)(x) = exp (−
1

2
(

ex −mA 

σA
)

2

). (23) 
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For nth power we have,  𝐴𝛼

𝑛 = (𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼)
𝑛
  ∀𝑛𝜖ℝ. 

Letting 𝑥 = 𝐴𝛼
𝑛, that is 

Simplifying we have,  √𝑥
𝑛

= (𝑚𝐴 + 𝜎𝐴√−2 𝑙𝑛 𝛼) ∀𝑛𝜖ℝ. 

Then making α the subject we get 

For example, if we choose arbitrary the specific values for   𝜎𝐴 = 1,  𝑚𝐴 = 10 and 𝑛 = 1.3 therefore we will 

have the membership as, 𝜇𝐴(𝑥) = 𝑒𝑥𝑝 (
−(𝑥−10)2

2(1)2
) and 𝜇(𝐴𝑛)(𝑥) = 𝑒𝑥𝑝 (−

1

2
( √𝑥

1.3
 −10

1
)
2

).  

On the same axes their graphs will be see as in the Fig. 9 below 𝜇𝐴(𝑥) in Green and  𝜇(𝐴𝑛)(𝑥) in Red. 

Fig. 9. Graphs of 𝛍𝐀(𝐱) = 𝐞𝐱𝐩 (
−(𝐱−𝟏𝟎)𝟐

𝟐(𝟏)𝟐
)and 𝛍(𝐀𝟏.𝟑)(𝐱) = 𝐞𝐱𝐩 (−

𝟏

𝟐
( √𝐱

𝟏.𝟑
 −𝟏𝟎

𝟏
)
𝟐

). 

 

4 | Conclusions 

We have explored the basic operations which are, addition, subtraction, multiplication, division, logarithm, 

reciprocal, exponential and nth power for the fuzzy set with Gaussian membership function by using the 

alpha–cut. The sightseen operations can further be used in analysis of fuzzy sets with Gaussian 

Membership and using the alpha-cut method make things easier for the calculations of all the basic 

operations. Therefore, we propose this approach to be used when analyzing the fuzzy problem with 

Gaussian Membership. 
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Abstract 

 

1 | Introduction  

Many branches of science and engineering and also in the field of medical science, management 

science, economics, environmental science and so on, we face various problems where data are more 

ambiguous than precise. To describe such ambiguous data Zadeh [31] introduced the concept of fuzzy 

set in 1965. Then this was successfully applied in different branches of science and engineering by a 

host of researchers. There are some generalizations of fuzzy set according to the application in 

different fields of our real life problems. One of the generalization of fuzzy set is intuitionistic fuzzy 

fuzzy [1] which is capable to describe uncertainty more precisely than fuzzy set by taking positive 

membership and negative membership of an element of a universal set. But in many cases of our real 

life, we face some problems, where the term neutrality becomes essential to describe uncertainty. 

Voting is an example of such situation, where the human voters may be divided into four groups of 

those who: vote for, abstain, vote against, the refusal of the voting.  
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To describe such situation Cuong and Kreinovich [3] developed the latest generalization of fuzzy set as 

picture fuzzy set which is the direct extension of intuitionistic fuzzy set. Later a huge amount of works 

have been emerged on diverse aspects of picture fuzzy sets and their applications [see ([2], [4]-[6], [7], 

[10], [11], [13]-[15], [17], [19]-[24], [27], [30], [32])]. The averaging operators on picture fuzzy sets along 

their applications are also becoming a great attention by numerous researchers. In 2017, Wei [28] 

discussed the arithmetic and geometric operations for picture fuzzy sets and applied them in multiple 

attribute decision-making problems. Khan et al. [11], [12] investigated the information aggregation 

operators’ method under the picture fuzzy environment with the help of Einstein norms operations and 

applied a group decision-making problem in 2019 [12]. In 2018, Wei [30] discussed the multiple attribute 

decision-making problem based on the arithmetic, geometric aggregation operators and Hamacher 

operations of picture fuzzy [30]. Luo and Long [16] studied picture fuzzy geometric aggregation 

operators based on a trapezoidal fuzzy number and applied it to Multi-Attribute Decision-Making 

(MADM) and pattern recognition in 2021. Picture fuzzy aggregation operators are also discussed some 

researchers (see, [8], [9], [12], [18], [25], [26], [28]). In the above aggregation operators related to picture 

fuzzy set, the authors described the score function in such a way, where the properties of neutrality 

coincided with negative membership degree. But the properties neutrality should  coincide of the  term 

of positive membership degree. So in this article, we redefine the score function, where the the 

properties of neutrality coincide with the positive membership degree. On the other hand the existing 

aggregation operators are more complicated, because the aggregated value cannot find from the direct 

definition of  the aggregation. In this article, to overcome these difficulties, we have defined some mean 

operators, where the aggregated value can be found from direct definition. Some related properties of 

the operators are also explored. The practical application of these methods is also described with 

comparison in existing methods. 

The article is organized as follows: In Section 2, some basic definitions are given which are essential to 

rest of the paper. In Section 3, Picture Fuzzy Harmonic Mean (PFHM) operator and Picture Fuzzy 

Weighted Harmonic Mean (PFWHM) operator are discussed. In Section 4, picture fuzzy arithmetic 

operator and Picture Fuzzy Weighted Arithmetic Mean (PFWAM) operator are discussed. In Section 5, 

Picture Fuzzy Geometric Mean (PFGM) operator and picture Fuzzy Weighted Geometric Mean 

(PFWGM) operator are deliberated. In Section 6, the application of the proposed methods is illustrated. 

In Section 7, the comparison studies are showed. 

 2 | Preliminaries 

In this section, we recall some basic definitions which are used in later sections. 

Definition 1 ([31]). Let 𝑋 be non-empty set. A fuzzy set 𝐴 in 𝑋 is given by 

Definition 2 ([1]). Let 𝑋 be non-empty set. An intuitionistic fuzzy set 𝐴 in 𝑋 is given by 

The values 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) represent the membership degree and non-membership degree of the 

element 𝑥 to the set 𝐴 respectively. The pair (𝜇𝐴(𝑥), 𝜈𝐴(𝑥)) is called intuitionistic fuzzy value satisfying 

the condition, 

For any intuitionistic fuzzy set 𝐴 on the universal set 𝑋, for 𝑥 ∈ 𝑋, 

 

A = {(x, μA(x)): x ∈ X}, where μA: X → [0, 1].  

A = {(x, μA(x), νA(x)): x ∈ X}, where μA: X → [0, 1] and νA: X → [0, 1].  

0 ≤ μA(x) + νA(x) ≤ 1 ∀x ∈ X.  

πA(x) = 1 − (μA(x) + νA(x)).  
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is called the hesitancy degree (or intuitionistic fuzzy index) of an element 𝑥 in 𝐴. It is the degree of 

indeterminacy membership of the element 𝑥 whether belonging to 𝐴 or not. 

Obviously, 0 ≤ 𝜋𝐴(𝑥) ≤ 1 for any 𝑥 ∈ 𝑋. 

Definition 3 ([3]). A picture fuzzy set  𝐴 on a universal set 𝑋 ≠ ∅ is of the form 

 

where 𝜇𝐴(𝑥) ∈ [0, 1] is the degree of positive membership, 𝜂𝐴(𝑥) ∈ [0, 1] is the degree of neutral 

membership and 𝜈𝐴(𝑥) ∈ [0, 1] is the degree of negative membership of 𝑥 in 𝐴, where 𝜇𝐴(𝑥), 𝜂𝐴(𝑥) and 𝜈𝐴(𝑥) 

satisfy the following condition, 

 

Here 1 − (𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) + 𝜈𝐴(𝑥)); ∀𝑥 ∈ 𝑋  is called the degree of refusal membership of 𝑥 in 𝐴. The pair 

(𝜇𝐴, 𝜂𝐴, 𝜈𝐴) is called picture fuzzy value.   

Definition 4 ([3]). Let 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) and 𝐵 = (𝜇𝐵, 𝜂𝐵, 𝜈𝐵) be two picture fuzzy values of 𝑋. Then  

I. 𝐴 ≤ 𝐵  iff  𝜇𝐴 ≤ 𝜇𝐵, 𝜂𝐴 ≤ 𝜂𝐵 and 𝜈𝐴 ≥ 𝜈𝐵. 

II. 𝐴 = 𝐵  iff  𝜇𝐴 = 𝜇𝐵, 𝜂𝐴 = 𝜂𝐵 and 𝜈𝐴 = 𝜈𝐵. 

Definition 5. Let 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴)  be a picture fuzzy value. Then the score function 𝑆(𝐴) and the accuracy 

function 𝐻(𝐴) are defined as 

and 

 

where 𝑆(𝐴) ∈ [−1,1] and 𝐻(𝐴) ∈ [0,1].  

Definition 6. Let 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) and 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) be two picture fuzzy values. Then the following 

comparison rules can be used: 

I. If 𝑆(𝐴) > 𝑆(𝐵), then 𝐴 is greater than 𝐵, denoted by 𝐴 ≻ 𝐵. 

II. If 𝑆(𝐴) = 𝑆(𝐵), then 

III. 𝐻(𝐴) = 𝐻(𝐵), implies that 𝐴 is equivalent to 𝐵, denoted by 𝐴 ∼ 𝐵.     

IV. 𝐻(𝐴) > 𝐻(𝐵), implies that 𝐴 is greater than 𝐵, denoted by 𝐴 ≻ 𝐵.                                                                                                                                                                  

3 | PFHM Operators 

Definition 7. Let 𝐴𝑖 = (𝜇𝐴𝑖
 , 𝜂𝐴𝑖

 , 𝜈𝐴𝑖
) (𝑖 = 1, 2,⋯ , 𝑛) be collection of picture fuzzy values. Then the PFHM 

operator is mapping 𝑃𝐹𝐻𝑀:𝐴𝑛 → 𝐴  such that  

 

 

A = {(x, μA(x), ηA(x), νA(x)): x ∈ X},  

0 ≤ μA(x) + ηA(x) + νA(x) ≤ 1 ∀x ∈ X.  

S(A) = μA + ηA − νA.  

H(A) = μA + ηA + νA ,  

𝑃𝐹𝐻𝑀(𝐴1, 𝐴2,⋯ ,𝐴𝑛) =
(  
   
   
   
  
 

𝑛 (∑ (𝜇𝐴𝑖
)
−1

𝑛
𝑖=1 )

−1

, 𝑛 (∑ (𝜂𝐴𝑖
)
−1

𝑛
𝑖=1 )

−1

,

𝑛 (∑ (𝜈𝐴𝑖
)
−1

𝑛
𝑖=1 )

−1

 )  
   
   
   
  
 

.  



 

 

352 

H
a
sa

n
 e

t 
a
l.

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(4
) 

(2
0
2
2
) 

3
4
9
-3

6
1

 

 

 

Definition 8. Let 𝐴𝑖 = (𝜇𝐴𝑖
 , 𝜂𝐴𝑖

 , 𝜈𝐴𝑖
) (𝑖 = 1, 2,⋯ , 𝑛) be collection of picture fuzzy values and  𝑤 =

(𝑤1, 𝑤2,⋯ ,𝑤𝑛)
𝑇 be the weighting vector of  𝐴𝑖 (𝑖 = 1, 2,⋯ , 𝑛) such that 𝑤𝑖 ∈ [0, 1], (𝑖 = 1, 2,⋯ , 𝑛)  

and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . Then the PFWHM operator is a mapping 𝑃𝐹𝑊𝐻𝑀:𝐴𝑛 → 𝐴  such that 

 

 

where 𝜇𝐴𝑖
, 𝜂𝐴𝑖

, 𝜈𝐴𝑖
≠ 0.  

The following axioms are satisfied for 𝑃𝐹𝐻𝑀 and 𝑃𝐹𝑊𝐻𝑀: 

Theorem 1 (Idempotency). Let 𝐴𝑖 = (𝜇𝐴𝑖
 , 𝜂𝐴𝑖

 , 𝜈𝐴𝑖
) (𝑖 = 1, 2,⋯ , 𝑛) be collection of picture fuzzy 

values. 

If 𝐴𝑖 = 𝐴, (𝑖 = 1, 2,⋯ , 𝑛), then 

And 

Proof. For 𝐴𝑖 = 𝐴 and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 , we have 

And where 

Theorem 2 (Monotonicity). If 𝐴𝑖 ≤ 𝐴𝑖
∗, then 

And  

 

 

PFWHM(A 1, A 2,⋯ ,A n) = ((∑
wi

μAi

n
i=1 )

−1

, (∑
wi

ηAi

n
i=1 )

−1

, (∑
wi

νAi

n
i=1 )

−1

),  

PFHM(A 1, A 2,⋯ ,A n) = A,  

PFWHM(A 1, A 2,⋯ ,A n) = A.  

PFHM(A 1, A 2,⋯ ,A n) =
(  
   
   
   
  
 

n (∑ (μAi
)
−1

n
i=1 )

−1

, n (∑ (ηAi
)
−1

n
i=1 )

−1

,

n (∑ (νAi
)
−1

n
i=1 )

−1
)  
   
   
   
  
 

=

(  
   
   
 
n(∑ (μA)−1n

i=1 )
−1
, n(∑ (ηA)−1n

i=1 )
−1
,

n(∑ (νA)
−1n

i=1 )
−1 )  

   
   
 

= (
n

n(μA)−1
,

n

n(ηA)−1
,

n

n(νA)−1
) = (μA , ηA , νA) = A. 

 

PFWHM(A 1, A 2,⋯ ,A n) = (  
   
  
 

(  
   
 
 

∑
wi

μAi

n

i=1

)  
   
 
 −1

, (  
   
 
 

∑
wi

ηAi

n

i=1

)  
   
 
 −1

, (  
   
 
 

∑
wi

νAi

n

i=1

)  
   
 
 −1

)  
   
  
 

μAi
, ηAi

, νAi

≠ 0 

= ((∑
wi

μA

n
i=1 )

−1

, (∑
wi

ηA

n
i=1 )

−1

, (∑
wi

νA

n
i=1 )

−1

) =

(  
   
   
 
(∑ wi

n
i=1 )−1((μA)−1)

−1
, (∑ wi

n
i=1 )−1((ηA)

−1)
−1

,

(∑ wi
n
i=1 )−1((νA)−1)

−1 )  
   
   
 

 ;  ∑ wi = 1 = (μA, ηA, νA) = An
i=1 . 

 

PFHM(A 1, A 2,⋯ ,A n) ≤ PFHM(A 1
∗ , A 2

∗ ,⋯ ,A n
∗ ).  

PFWHM(A 1, A 2,⋯ ,A n) ≤ PFWHM(A 1
∗ , A 2

∗ ,⋯ ,A n
∗ ).  
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Proof. 

Since 𝐴𝑖 ≤ 𝐴𝑖
∗ or 

1

𝐴𝑖
≥

1

𝐴𝑖
∗ , for i = 1, 2,⋯ , 𝑛. 

Similarly, we can prove that 

Theorem 4 (Boundedness). Let 𝐴𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝐴1, 𝐴2,⋯ ,𝐴𝑛) and 𝐴𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐴1, 𝐴2,⋯𝐴𝑛), for 𝑖 =

1, 2,⋯ , 𝑛. Then 𝐴𝑚𝑖𝑛 ≤ 𝑃𝐹𝐻𝑀(𝐴1, 𝐴2,⋯ ,𝐴𝑛) ≤  𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑖𝑛 ≤ 𝑃𝐹𝑊𝐻𝑀(𝐴1, 𝐴2,⋯𝐴𝑛) ≤  𝐴𝑚𝑎𝑥. 

Proof. Boundedness is the consequence of monotonicity and idempotency. 

Theorem 5 (Commutatively). If (𝐴1
0, 𝐴2

0,⋯ ,𝐴𝑛
0) be any permutation of (𝐴1, 𝐴2,⋯ ,𝐴𝑛), then 

And 

Proof. 

because (𝐴1
0, 𝐴2

0,⋯⋯ ,𝐴𝑛
0) be any permutation of (𝐴1, 𝐴2,⋯⋯ ,𝐴𝑛). 

Hence, we have 

Again, 

PFHM(A 1, A 2,⋯ ,A n) − PFHM(A 1
∗ , A 2

∗ ,⋯ ,A n
∗ )

=

(  
   
   
   
   
   
   
   
   
   
   
   
  
 𝑛

1
𝜇𝐴1

+
1

𝜇𝐴2

+ ⋯+
1

𝜇𝐴𝑛

− 
𝑛

1
𝜇𝐴1

∗
+

1
𝜇𝐴2

∗
+ ⋯+

1
𝜇𝐴𝑛

∗

 ,

𝑛

1
𝜂𝐴1

+
1

𝜂𝐴2

+ ⋯+
1

𝜂𝐴𝑛

− 
𝑛

1
𝜂𝐴1

∗
+

1
𝜂𝐴2

∗
+ ⋯+

1
𝜂𝐴𝑛

∗

,

𝑛

1
𝜈𝐴1

+
1

𝜈𝐴2

+ ⋯+
1

𝜈𝐴𝑛

− 
𝑛

1
𝜈𝐴1

∗
+

1
𝜈𝐴2

∗
+ ⋯⋯+

1
𝜈𝐴𝑛

∗
)  
   
   
   
   
   
   
   
   
   
   
   
  
 

≤ 0. 
 

PFWHM(A1, A2, ⋯ , An) −   PFWHM(A1
∗ , A2

∗ , ⋯ , An
∗ ) ≤ 0.  

PFHM(A 1, A 2,⋯ ,A n) = PFHMO(A 1
0 , A 2

0 ,⋯ ,A n
0 ).  

PFWHM(A 1, A 2,⋯ ,A n) = PFWHM(A 1
0 , A 2

0 ,⋯ ,A n
0 ).  

PFHM(A 1, A 2,⋯ ,A n) − PFHMO(A 1
0 , A 2

0 ,⋯ ,A n
0 )

=

(  
   
   
   
   
   
   
   
   
   
   
   
   
 
 

n (  
   
 
 

∑(μAi
)
−1

n

i=1

)  
   
 
 −1

− n (  
   
 
 

∑(μAi
0)

−1
n

i=1

)  
   
 
 −1

,

n (  
   
 
 

∑(ηAi
)
−1

n

i=1

)  
   
 
 −1

− n (  
   
 
 

∑(ηAi
0)

−1
n

i=1

)  
   
 
 −1

,

n (  
   
 
 

∑(νAi
)
−1

n

i=1

)  
   
 
 −1

− n (  
   
 
 

∑(νAi
0)

−1
n

i=1

)  
   
 
 −1

)  
   
   
   
   
   
   
   
   
   
   
   
   
 
 

= 0, 
 

PFHM(A 1, A 2,⋯ ,A n) = PFHM(A 1
0 , A 2

0 ,⋯ ,A n
0 )  
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Because (𝐴1
0, 𝐴2

0,⋯ ,𝐴𝑛
0) be any permutation of (𝐴1, 𝐴2,⋯ ,𝐴𝑛). 

Hence, we have 

 

4 | Picture Fuzzy Arithmetic Mean (PFAM) Operators 

Definition 9. Let 𝐴𝑖 = (𝜇𝐴𝑖
 , 𝜂𝐴𝑖

 , 𝜈𝐴𝑖
) (𝑖 = 1, 2,⋯ , 𝑛) be collection of picture fuzzy values. Then the 

PFAM operator is mapping 𝑃𝐹𝐴𝑀:𝐴𝑛 → 𝐴  such that  

Definition 10. Let 𝐴𝑖 = (𝜇𝐴𝑖
 , 𝜂𝐴𝑖

 , 𝜈𝐴𝑖
) (𝑖 = 1, 2,⋯ , 𝑛) be collection of picture fuzzy values and 𝑤 =

(𝑤1, 𝑤2,⋯ ,𝑤𝑛)
𝑇 be the weighting vector of  𝐴𝑖 (𝑖 = 1, 2,⋯ , 𝑛) such that 𝑤𝑖 ∈ [0, 1], (𝑖 = 1, 2,⋯ , 𝑛)  

and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . Then the PFWAM operator is a mapping 𝑃𝐹𝑊𝐴𝑀:𝐴𝑛 → 𝐴  such that 

The following axioms are satisfied for 𝑃𝐹𝐴𝑀 and 𝑃𝐹𝑊𝐴𝑀. 

Theorem 6 (Idempotency). Let 𝐴𝑖 = (𝜇𝐴𝑖
 , 𝜂𝐴𝑖

 , 𝜈𝐴𝑖
) (𝑖 = 1, 2,⋯ , 𝑛) be collection of picture fuzzy 

values. 

If 𝐴𝑖 = 𝐴, (𝑖 = 1, 2,⋯ , 𝑛), then 𝑃𝐹𝐴𝑀(𝐴1, 𝐴2,⋯ ,𝐴𝑛) = 𝐴 and 𝑃𝐹𝑊𝐴𝑀(𝐴1, 𝐴2,⋯ ,𝐴𝑛) = 𝐴. 

Proof. For 𝐴𝑖 = 𝐴 and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 , we have 

Theorem 7 (Monotonicity). If  𝐴𝑖 ≤ 𝐴𝑖
∗, then 

And 

 

PFWHM(A 1, A 2,⋯⋯ ,A n) − PFWHM(A 1
0 , A 2

0 ,⋯⋯ ,A n
0 )

=

(  
   
   
   
   
   
   
   
   
   
   
   
   
 
 

(  
   
 
 

∑𝑤𝑖(𝜇𝐴𝑖
)
−1

𝑛

𝑖=1

)  
   
 
 −1

− (  
   
 
 

∑𝑤𝑖 (𝜇𝐴𝑖
0)

−1
𝑛

𝑖=1

)  
   
 
 −1

,

(  
   
 
 

∑𝑤𝑖(𝜂𝐴𝑖
)
−1

𝑛

𝑖=1

)  
   
 
 −1

− (  
   
 
 

∑𝑤𝑖 (𝜂𝐴𝑖
0)

−1
𝑛

𝑖=1

)  
   
 
 −1

,

(  
   
 
 

∑𝑤𝑖(𝜈𝐴𝑖
)
−1

𝑛

𝑖=1

)  
   
 
 −1

− (  
   
 
 

∑𝑤𝑖 (𝜈𝐴𝑖
0)

−1
𝑛

𝑖=1

)  
   
 
 −1

)  
   
   
   
   
   
   
   
   
   
   
   
   
 
 

. 
 

WHM(A 1, A 2,⋯ ,A n) = PFWHM(A 1
0 , A 2

0 ,⋯ ,A n
0 ).  

PFAM(A 1, A 2,⋯ ,A n) =  (
1

n
∑ μAi

n
i=1 ,

1

n
∑ ηAi

n
i=1  ,

1

n
∑ νAi

n
i=1 ).  

PFWAM(A 1, A 2,⋯ ,A n) = (
1

n
∑ wiμAi

n
i=1 ,

1

n
∑ wiηAi

n
i=1  ,

1

n
∑ wiνAi

n
i=1 ).   

PFAM(A 1, A 2,⋯ ,A n) = (  
   
 
 
1

n
∑μAi

n

i=1

,
1

n
∑ηAi

n

i=1

 ,
1

n
∑νAi

n

i=1

)  
   
 
 

= (  
   
 
 
1

n
∑μA

n

i=1

,
1

n
∑ηA

n

i=1

 ,
1

n
∑νA

n

i=1

)  
   
 
 

= (
1

n
nμA,

1

n
. nηA ,

1

n
. nνA) = (μA , ηA , νA) = A. 

 

PFAM(A 1, A 2,⋯ ,A n) ≤ PFAM(A 1
∗ , A 2

∗ ,⋯ ,A n
∗ ).  

PFWAM(A 1, A 2,⋯ ,A n) ≤ PFWAM(A 1
∗ , A 2

∗ ,⋯ ,A n
∗ ).  
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Proof.  

Since 𝐴𝑖 ≤ 𝐴𝑖
∗ or 

1

𝐴𝑖
≥

1

𝐴𝑖
∗ , for 𝑖 = 1, 2,⋯⋯⋯, 𝑛. 

Similarly, we can prove that 

This proves the monotonicity of 𝑃𝐹𝐴𝑀 and 𝑃𝐹𝑊𝐴𝑀. 

Theorem 8 (Boundedness). Let 𝐴𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝐴1, 𝐴2,⋯ ,𝐴𝑛) and 𝐴𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐴1, 𝐴2,⋯𝐴𝑛), for 𝑖 =

1, 2,⋯ , 𝑛, then 𝐴𝑚𝑖𝑛 ≤ 𝑃𝐹𝐴𝑀(𝐴1, 𝐴2,⋯ ,𝐴𝑛) ≤  𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑖𝑛 ≤ 𝑃𝐹𝑊𝐴𝑀(𝐴1, 𝐴2,⋯𝐴𝑛) ≤  𝐴𝑚𝑎𝑥. 

Proof. Boundedness is the consequence of monotonicity and idempotency. 

Theorem 9 (Commutatively). If (𝐴1
0, 𝐴2

0,⋯ ,𝐴𝑛
0) be any permutation of (𝐴1, 𝐴2,⋯ ,𝐴𝑛), then 

 

and 

 

Proof. 

 

 

 

Hence, we have 

 

Again, 

 

 

 

because (𝐴1
0, 𝐴2

0,⋯ ,𝐴𝑛
0) be any permutation of (𝐴1, 𝐴2,⋯ ,𝐴𝑛). 

            

PFAM(A 1, A 2,⋯ ,A n) − PFAM(A 1
∗ , A 2

∗ ,⋯ ,A n
∗ ) =

(  
   
   
   
   
   
 𝜇𝐴1

+𝜇𝐴2
+⋯⋯+𝜇𝐴𝑛

𝑛
−

𝜇𝐴1
∗+𝜇𝐴2

∗+⋯⋯+𝜇𝐴𝑛
∗

𝑛
,

𝜂𝐴1
+𝜂𝐴2

+⋯⋯+𝜂𝐴𝑛

𝑛
−

𝜂𝐴1
∗+𝜂𝐴2

∗+⋯⋯+𝜂𝐴𝑛
∗

𝑛
,

𝜈𝐴1
+𝜈𝐴2

+⋯⋯+𝜈𝐴𝑛

𝑛
−

𝜈𝐴1
∗+𝜈𝐴2

∗+⋯⋯+𝜈𝐴𝑛
∗

𝑛

)  
   
   
   
   
   
 

   ≤ 0. 
 

PFWAM(A 1, A 2,⋯ ,A n) −  PFWAM(A 1
∗ , A 2

∗ ,⋯ ,A n
∗ ) ≤ 0.  

PFAM(A 1, A 2,⋯ ,A n) = PFAM(A 1
0 , A 2

0 ,⋯ ,A n
0 ),  

PFWAM(A 1, A 2,⋯ ,A n) = PFWAM(A 1
0 , A 2

0 ,⋯ ,A n
0 ).                              

PFAM(A 1,A 2,⋯ ,A n) − PFAM(A 1
0 , A 2

0 ,⋯ ,A n
0 ) =

(  
   
   
   
   
   
   
   
   
   
   
   
 
1

n
∑μAi

n

i=1

−
1

n
∑μAi

0

n

i=1

,

1

n
∑ηAi

n

i=1

−
1

n
∑ηAi

0

n

i=1

,

1

n
∑νAi

n

i=1

−
1

n
∑νAi

0

n

i=1

)  
   
   
   
   
   
   
   
   
   
   
   
 

   = 0 

        

 

PFAM(A 1, A 2,⋯ ,A n) = PFAM(A 1
0 , A 2

0 ,⋯ ,A n
0 ).                 

 PFWAM(A 1,A 2,⋯⋯ ,A n) − PFWAM(A 1
0 , A 2

0 ,⋯⋯ ,A n
0 ) =

(  
   
   
   
   
 
 1
n
∑ wiμAi

n
i=1 −

1

n
∑ wiμAi

0
n
i=1 ,

1

n
∑ wiηAi

n
i=1 −

1

n
∑ wiηAi

0
n
i=1 ,

1

n
∑ wiνAi

n
i=1 −

1

n
∑ wiνAi

0
n
i=1

)  
   
   
   
   
 
 

= 0 
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Hence, we have  

 

 

5 | PFGM Operators 

Definition 11. Let 𝐴𝑖 = (𝜇𝐴𝑖
 , 𝜂𝐴𝑖

 , 𝜈𝐴𝑖
) (𝑖 = 1, 2,⋯ , 𝑛) be collection of picture fuzzy values. Then the 

PFGM operator is mapping 𝑃𝐹𝐺𝑀:𝐴𝑛 → 𝐴  such that  

Definition 12. Let 𝐴𝑖 = (𝜇𝐴𝑖
 , 𝜂𝐴𝑖

 , 𝜈𝐴𝑖
) (𝑖 = 1, 2,⋯ , 𝑛) be collection of picture fuzzy values and  𝑤 =

(𝑤1, 𝑤2, ⋯ , 𝑤𝑛)𝑇 be the weighting vector of  𝐴𝑖 (𝑖 = 1, 2,⋯ , 𝑛) such that 𝑤𝑖 ∈ [0, 1], (𝑖 = 1, 2,⋯ , 𝑛)  

and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . Then the picture PFWGM operator is a mapping 𝑃𝐹𝑊𝐺𝑀:𝐴𝑛 → 𝐴  such that 

The following axioms are satisfied for 𝑃𝐹𝐺𝑀 and 𝑃𝐹𝑊𝐺𝑀. 

Theorem 10 (Idempotency). Let 𝐴𝑖 = (𝜇𝐴𝑖
 , 𝜂𝐴𝑖

 , 𝜈𝐴𝑖
) (𝑖 = 1, 2,⋯ , 𝑛) be collection of picture fuzzy 

values. If 𝐴𝑖 = 𝐴, (𝑖 = 1, 2,⋯ , 𝑛), then 

And  

Proof. For 𝐴𝑖 = 𝐴 and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 , we have 

Theorem 11 (Monotonicity). If 𝐴𝑖 ≤ 𝐴𝑖
∗, then 

And 

Proof. 

 

PFWAM(A 1, A 2,⋯ ,A n) = PFWAM(A 1
0 , A 2

0 ,⋯ ,A n
0 ).   

PFGM(A 1, A 2,⋯ ,A n) = (
√

∏ μAi

n

i=1

n
 ,
√

∏ ηAi

n

i=1

n
 ,
√

∏ νAi

n

i=1

n

).  

PFWGM(A 1,A 2,⋯ ,A n) = (
√

∏ wiμAi

n

i=1

n
 ,
√

∏ wiηAi

n

i=1

n
,
√

∏ wiνAi

n

i=1

n

).  

𝑃𝐹𝐺𝑀(𝐴1, 𝐴2,⋯ ,𝐴𝑛) = 𝐴.  

PFWGM(A 1,A 2,⋯ ,A n) = A.  

PFGM(A 1,A 2,⋯ ,A n) = (
√

∏ μAi

n

i=1

n
 ,
√

∏ ηAi

n

i=1

n
 ,
√

∏ νAi

n

i=1

n

)

=

(  
   
   
   
   
 
 

√
∏ μA

n

i=1

n
 ,
√

∏ ηA

n

i=1

n
 ,

√
∏ νA

n

i=1

n
)  
   
   
   
   
 
 

= (√(μA)n
n

 , √(ηA)n
n

 , √(νA)n
n )

= (μA , ηA , νA) = A. 

 

PFGM(A 1, A 2,⋯ ,A n) ≤ PFGM(A 1
∗ , A 2

∗ ,⋯ ,A n
∗ ).       

PFWGM(A 1,A 2,⋯ ,A n) ≤ PFWGM(A 1
∗ ,A 2

∗ ,⋯ ,A n
∗ ).       

PFGM(A 1, A 2,⋯ ,A n) − PFGM(A 1
∗ , A 2

∗ ,⋯ ,A n
∗ ) =

(  
   
   
   
   
   
   
 
 

(μA1
. μA2

.⋯⋯ .μAn
)
1

n − (μA1
∗ . μA2

∗ .⋯⋯ .μAn
∗ )

1

n,

(ηA1
. ηA2

.⋯⋯ . ηAn
)
1

n − (ηA1
∗ . ηA2

∗ .⋯⋯ . ηAn
∗ )

1

n,

(νA1
. νA2

.⋯⋯. νAn
)
1

n − (νA1
∗ . νA2

∗ .⋯⋯ . νAn
∗ )

1

n )  
   
   
   
   
   
   
 
 

   ≤ 0. 
 

PFWGM(A 1,A 2,⋯ ,A n) −   PFWGM(A 1
∗ , A 2

∗ ,⋯ ,A n
∗ ) ≤ 0.       
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Similarly, we can prove that 

This proves the monotonicity of 𝑃𝐹𝐺𝑀 and 𝑃𝐹𝑊𝐺𝑀. 

Theorem 12 (Boundedness). Let 𝐴𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝐴1, 𝐴2,⋯ ,𝐴𝑛) and 𝐴𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐴1, 𝐴2,⋯𝐴𝑛), for 𝑖 =

1, 2,⋯ , 𝑛, Then  𝐴𝑚𝑖𝑛 ≤ 𝑃𝐹𝐺𝑀(𝐴1, 𝐴2,⋯ ,𝐴𝑛) ≤  𝐴𝑚𝑎𝑥  and 𝐴𝑚𝑖𝑛 ≤ 𝑃𝐹𝑊𝐺𝑀(𝐴1, 𝐴2,⋯𝐴𝑛) ≤  𝐴𝑚𝑎𝑥 . 

Proof. Boundedness is the consequence of monotonicity and idempotency. 

Theorem 13 (Commutatively). If (𝐴1
0, 𝐴2

0,⋯ ,𝐴𝑛
0) be any permutation of (𝐴1, 𝐴2,⋯ , 𝐴𝑛), the 

And 

Proof. 

 

 

 

 

because (𝐴1
0, 𝐴2

0,⋯⋯ ,𝐴𝑛
0) be any permutation of (𝐴1, 𝐴2,⋯⋯ ,𝐴𝑛). 

Hence, we have 

 

Again, 

Because (𝐴1
0, 𝐴2

0,⋯ ,𝐴𝑛
0) be any permutation of (𝐴1, 𝐴2,⋯ ,𝐴𝑛).   

Hence, we have 

 

6 | Application of the Picture Fuzzy Weighted Mean Operators to 

Multiple Attribute Decision-Making 

MADM problems are common in everyday decision environments. An MADM problem is to find a great 

concession solution from all possible alternatives measured on multiple attributes.                                                                                                                                                   

PFGM(A 1, A 2,⋯ ,A n) = PFGM(A 1
0 , A 2

0 ,⋯ ,A n
0 ).       

PFWGM(A 1,A 2,⋯ ,A n) = PFWGM(A 1
0 ,A 2

0 ,⋯ ,A n
0 ).      

PFGM(A 1, A 2,⋯ ,A n) − PFGM(A 1
0 , A 2

0 ,⋯ ,A n
0 ) =

(  
   
   
   
   
   
  
 

√
∏ μAi

n
i=1

n −
√

∏ μAi
0

n
i=1

n ,

√
∏ ηAi

n
i=1

n −
√

∏ ηAi
0

n
i=1

n ,

√
∏ νAi

n
i=1

n −
√

∏ νAi
0

n
i=1

n )  
   
   
   
   
   
  
 

 = 0 
 

PFGM(A 1, A 2,⋯ ,A n) = PFGM(A 1
0 , A 2

0 ,⋯ ,A n
0 ).      

PFWGM(A 1,A 2,⋯⋯ ,A n) − PFWGM(A 1
0 ,A 2

0 ,⋯⋯ ,A n
0 ) =

(  
   
   
   
   
   
  
 

√
∏ wiμAi

n
i=1

n −
√

∏ wiμAi
0

n
i=1

n ,

√
∏ wiηAi

n
i=1

n −
√

∏ wiηAi
0

n
i=1

n ,

√
∏ wiνAi

n
i=1

n −
√

∏ wiνAi
0

n
i=1

n )  
   
   
   
   
   
  
 

= 0. ,  
 

PFWGM(A 1,A 2,⋯ ,A n) = PFWGM(A 1
0 ,A 2

0 ,⋯ ,A n
0 ).   
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Let the discrete set of alternatives and attributes are 𝐴 = {𝐴1, 𝐴2,⋯𝐴𝑛} and 𝐶 = {𝐶1, 𝐶2,⋯𝐶𝑚} 

respectively. Let  𝑤 = (𝑤1, 𝑤2,⋯ ,𝑤𝑚)
𝑇 be the weighting vector of attributes  𝐶𝑗 (𝑗 = 1, 2,⋯ ,𝑚) such 

that 𝑤𝑗 ∈ [0, 1], (𝑗 = 1, 2,⋯ ,𝑚) and  ∑ 𝑤𝑗 = 1𝑚
𝑗=1 . Suppose decision maker gives the picture fuzzy values 

for the alternatives 𝐴𝑖 (𝑖 = 1, 2,⋯ , 𝑛) on attributes 𝐶𝑗 (𝑗 = 1, 2,⋯ ,𝑚) are 𝑘𝑖𝑗 = (𝜇𝑘𝑖𝑗
 , 𝜂𝑘𝑖𝑗

 , 𝜈𝑘𝑖𝑗
), where 

𝜇𝑘𝑖𝑗
 , 𝜂𝑘𝑖𝑗

 and 𝜈𝑘𝑖𝑗
are positive, neutral and negative membership values of 𝐴𝑖 under 𝐶𝑗 respectively. Here 

𝜇𝑘𝑖𝑗
 , 𝜂𝑘𝑖𝑗

 , 𝜈𝑘𝑖𝑗
∈ [0,1] and 0 ≤ 𝜇

𝑘𝑖𝑗
+ 𝜂

𝑘𝑖𝑗
+ 𝜈𝑘𝑖𝑗

≤ 1. Hence, an MADM problem can be briefly stated in a 

picture fuzzy decision matrix 

Step 1. Utilize the decision information given in matrix 𝐾, and the 𝑃𝐹𝑊𝐻𝑀,𝑃𝐹𝑊𝐴𝑀 and 𝑃𝐹𝑊𝐺𝑀 

operators to derive the overall preference values 𝑑𝑖 (𝑖 = 1, 2,⋯ , 𝑛)of the alternative 𝐴𝑖 (𝑖 = 1, 2,⋯ , 𝑛).                                                                                                                                               

Step 2. Calculate the scores 𝑆(𝑑𝑖) (𝑖 = 1, 2,⋯ , 𝑛) of the overall picture fuzzy values 𝑑𝑖 (𝑖 = 1, 2,⋯ , 𝑛).                                                                                                                                               

Step 3. Rank all the alternatives 𝐴𝑖 (𝑖 = 1, 2,⋯ , 𝑛) in accordance with the values of 𝑆(𝑑𝑖) (𝑖 = 1, 2,⋯ , 𝑛) 

and select the best one(s). If there is no difference between two scores 𝑆(𝑑𝑖) and 𝑆(𝑑𝑗), then we need to 

calculate the accuracy degrees 𝐻(𝑑𝑖) and 𝐻(𝑑𝑗) of the overall picture fuzzy values 𝑑𝑖 and 𝑑𝑗, respectively, 

and then rank the alternatives 𝐴𝑖 and 𝐴𝑗 in accordance with the accuracy degrees 𝐻(𝑑𝑖) and 𝐻(𝑑
𝑗
). 

Step 4. End. 

6.1 | Numerical Example 

A ceramic factory is looking for a general manager. There are five applicants 𝐴 = {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5}  

for this position. The company is also looking for four attributes 𝐶 = {𝐶1, 𝐶2, 𝐶3, 𝐶4} from these 

applicants. These attributes are leadership, problem-solving skill, communication skill, and 

experimentation. An expert will be graded for the four attributes. The decision matrix 𝐾 = (𝑘𝑖𝑗)
5×4

 is 

presented in Table 1, where 𝑘𝑖𝑗 (𝑖 = 1, 2,⋯ ,5, 𝑗 = 1, 2,⋯ ,4) are in the form of picture fuzzy values.  

              Table 1. Picture fuzzy decision matrix. 

                     

 

 

The information about the attribute weights is known as: 𝑤 =  (0.30, 0.35, 0.15, 0.20). 

Step 1. Utilize the decision information given in matrix 𝐾 and 𝑃𝐹𝑊𝐻𝑀, 𝑃𝐹𝑊𝐴𝑀 and 𝑃𝐹𝑊𝐺𝑀 

operators, we have overall preference values 𝑑𝑖 as following Table 2.   

                  Table 2. Preference values 𝐝𝐢(𝐢 = 𝟏, 𝟐,⋯ , 𝟓) for the operators 𝐏𝐅𝐖𝐇𝐌,𝐏𝐅𝐖𝐀𝐌 and 𝐏𝐅𝐖𝐆𝐌. 

 

Step 2. The scores 𝑆(𝑑𝑖) (𝑖 = 1, 2,⋯ ,5) of the overall picture fuzzy values 𝑑𝑖 (𝑖 = 1, 2,⋯ ,5) are as 

following Table 3. 

  K = (kij)
n×m

.  

 𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 

A 1 (0.5,0.1,0.3) (0.4,0.2,0.4) (0.7,0.1,0.1) (0.2,0.4,0.1) 

A 2 (0.4,0.3,0.3) (0.2,0.5,0.2) (0.4,0.2,0.4) (0.5,0.1,0.3) 

A 3 (0.2,0.3,0.4) (0.5,0.2,0.3) (0.5,0.2,0.1) (0.5,0.4,0.1) 

A 4 (0.8,0.1,0.1) (0.7,0.2,0.1) (0.4,0.2,0.4) (0.3,0.2,0.4) 

A 5 (0.3,0.2,0.4) (0.6,0.1,0.1) (0.4,0.2,0.2) (0.5,0.2,0.3) 

 𝐝𝟏 𝐝𝟐 𝐝𝟑 𝐝𝟒 𝐝𝟓 

PFWHM (0.37, 0.15, 0.19) (0.31, 0.22, 0.26) (0.34, 0.25, 0.18) (0.52, 0.15, 0.14) (0.42, 0.15, 0.18) 

PFWAM (0.11, 0.05, 0.07) (0.09, 0.08, 0.07) (0.10, 0.07, 0.07) (0.15, 0.04, 0.05) (0.12, 0.04, 0.06) 

PFWGM (0.10, 0.04, 0.04) (0.08, 0.06, 0.07) (0.09, 0.06, 0.04) (0.12, 0.04, 0.05) (0.10, 0.04, 0.05) 
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Table 4. Ranking all the alternatives 𝐀𝐢 (𝐢 = 𝟏, 𝟐,⋯ , 𝟓) in accordance with the values 

of 𝐒(𝐝𝐢) (𝐢 = 𝟏, 𝟐,⋯ , 𝟓). 

 

                         

7 | Comparison Studies 

Comparing our results with the method using Picture fuzzy aggregation operator Wei [29] we get following 

score values of weighted picture fuzzy aggregation operator 

Rank all the alternatives 𝐴𝑖 (𝑖 = 1, 2,⋯ ,5) in accordance with the values of 𝑆(𝑑𝑖) (𝑖 = 1, 2,⋯ ,5), 

Hence the best alternative is 𝐴4, which is same as our result.  

We compare our result with method of some geometric aggregation operators given by Wang et al. [26] 

we have following score values of weighted geometric aggregation operator 

Rank all the alternatives 𝐴𝑖 (𝑖 = 1, 2,⋯ ,5) in accordance with the values of 𝑆(𝑑𝑖) (𝑖 = 1, 2,⋯ ,5), 

Hence the best alternative is 𝐴4, which is same as our result.  

8 | Conclusions 

Mean operators are very useful tools to aggregate some picture fuzzy sets. It also helps us to make a 

decision in many problems of our real life. In literature, a host of researchers studied on different kind of 

aggregation operators of picture fuzzy sets and applied them to solve many problems in practical life. In 

this article, we have introduced some picture fuzzy mean operators and explored some related properties 

of them. A practical example is illustrated by using our proposed operators. Comparison studied are also 

discussed to show the effectiveness of our proposed operators. 

Operators Ranking Best Alternatives 
PFWHM A 4 ≻ A 3 ≻ A 5 ≻ A 1 ≻ A 2 A 4 

PFWAM A 4 ≻ A 3 > A 2 ≻ A 5 ≻ A 1 A 4 

PFWGM A 4 ≻ A 3 ≻ A 1 ≻ A 5 ≻ A 2 A 4 

S(d1) = 0.23. 

S(d2) = 0.09. 

S(d3) = 0.20. 

S(d4) = 0.49. 

 S(d5) = 0.26. 

 

A 4 ≻ A 5 ≻ A 1 ≻ A 3 ≻ A 2.  

S(d1) = 0.18. 

S(d2) = 0.11. 

S(d3) = 0.14. 

S(d4) = 0.37. 

S(d5) = 0.20. 

 

A 4 ≻ A 5 ≻ A 1 ≻ A 3 ≻ A 2.  
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