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Abstract 

 

1 | Introduction  

Despite to the initial reserve of the classical mathematicians, fuzzy mathematics and Fuzzy Logic (FL) 

have found nowadays many and important applications to almost all sectors of human activity (e.g. 

[1], Chapter 6, [2] Chapters 4-8, [3], etc.). Due to its nature of characterizing the ambiguous real life 

situations with multiple values, FL offers among others rich resources for assessment purposes, which 

are more realistic than those of the classical logic [4]-[6]. 

Fuzzy Numbers (FNs), which are a special form of Fuzzy Sets (FS) on the set of real numbers, play 

an important role in fuzzy mathematics analogous to the role played by the ordinary numbers in the 

traditional mathematics. The simplest forms of FNs are the Triangular FNs (TFNs) and the 

Trapezoidal FNs (TpFNs).  
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In the present work we study applications of TFNs and TpFNs to assessment processes and to Linear 

Programming (LP) under fuzzy conditions. The rest of the paper is formulated as follows: Section 2 

contains all the information about FS, FNs and LP which is necessary for the understanding of its 

contents. Section 3 is divided in two parts. In the first part an assessment method is developed using 

TFNs/TpFNs as tools, which enables the calculation of the mean performance of a group of uniform 

objects (individuals, computer systems, etc.) with respect to a common activity performed under fuzzy 

conditions. In the second part a method is developed for solving LP problems with fuzzy data (Fuzzy 

LP). In Section 4 examples are presented illustrating the applicability of both methods to real world 

situations. The assessment outcomes are validated with the parallel use of the GPA index, while the 

solution of the FLP problems is reduced to the solution of ordinary LP problems by ranking the 

corresponding fuzzy coefficients. The article closes with a brief discussion for the perspectives of future 

research on those topics and the final conclusions that are presented in Section 5. 

2| Background  

2.1| Fuzzy Sets and Logic 

For general facts on FS and FL we refer to [2] and for more details to [1]. The FL approach for a 

problem’s solution involves the following steps: 

Fuzzification of the problem’s data by representing them with properly defined FSs. 

Evaluation of the fuzzy data by applying principles and methods of FL in order to express the problem’s 

solution in the form of a unique FS. 

Defuzzification of the problem’s solution in order to “translate” it in the natural language for use with 

the original real-life problem. 

One of the most popular defuzzification methods is the Center of Gravity (COG) technique. When 

using it, the fuzzy outcomes of the problem’s solution are represented by the coordinates of the COG 

of the membership function graph of the FS involved in the solution [7]. 

2.2| Fuzzy Numbers 

It is recalled that a FN is defined as follows: 

Definition 1. A FN is a FS A on the set R of real numbers with membership function  

mA: R [0, 1], such that: 

A is normal, i.e. there exists x in R such that mA(x) = 1, 

A is convex, i.e. all its a-cuts Aa = {xU: mA (x)  a},  a in [0, 1], are closed real intervals, and 

Its membership function y = mA (x) is a piecewise continuous function. 

Remark 1. (Arithmetic operations on FNs): One can define the four basic arithmetic operations on 

FNS in the following two, equivalent to each other, ways: 
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With the help of their a-cuts and the Representation-Decomposition Theorem of Ralesscou - Negoita ([8], 

Theorem 2.1, p.16) for FS. In this way the fuzzy arithmetic is turned to the well known arithmetic of the 

closed real intervals. 

By applying the Zadeh’s extension principle ([1], Section 1.4, p.20), which provides the means for any 

function f  mapping a crisp set X to a crisp set Y to be generalized so that to map fuzzy subsets of X to 

fuzzy subsets of Y. 

In practice the above two general methods of the fuzzy arithmetic, requiring laborious calculations, are 

rarely used in applications, where the utilization of simpler forms of FNs is preferred. For general facts on 

FNs we refer to [9]. 

2.3| Triangular Fuzzy Numbers (TFNs) 

A TFN (a, b, c), with a, b, c in R represents mathematically the fuzzy statement “the value of b lies in the 

interval [a, c]”. The membership function of (a, b, c) is zero outside the interval [a, c], while its graph in [a, 

c] consists of two straight line segments forming a triangle with the OX axis (Fig.1). 

Fig. 1. Graph and COG of the TFN (a, b, c). 

Therefore the analytic definition of a TFN is given as follows: 

Definition 2. Let a, b and c be real numbers with a < b < c. Then the TFN (a, b, c) is a FN with membership 

function: 


 
  


   

   



x a
, x [a, b]

b a
c x

y m(x) x [b, c]
c b
0,        x a or x c

 

Proposition 1. (Defuzzification of a TFN). The coordinates (X, Y) of the COG of the graph of the TFN 

(a, b, c) are calculated by the formulas X = 
a b c

3

 
, Y = 

1

3
. 

Proof. The graph of the TFN (a, b, c) is the triangle ABC of Fig.1, with A (a, 0), B(b, 1) and C (c, 0). Then, 

the COG, say G, of ABC is the intersection point of its medians AN and BM. The proof of the proposition 

is easily obtained by calculating the equations of AN and BM and by solving the linear system of those two 

equations. 
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Remark 2. (Arithmetic Operations on TFNs) It can be shown [9] that the two general methods of 

defining arithmetic operations on FNs mentioned in Remark 2 lead to the following simple rules for the 

addition and subtraction of TFNs: 

Let A = (a, b, c) and B = (a1, b1, c1) be two TFNs. Then: 

The sum A + B = (a+a1, b+b1, c+c1). 

The difference A - B = A + (-B) = (a-c1, b-b1, c-a1), where –B = (-c1, -b1, -a1) is defined to be the opposite 

of. 

In other words, the opposite of a TFN, as well as the sum and the difference of two TFNs are always 

TFNs. On the contrary, the product and the quotient of two TFNs, although they are FNs, they are not 

always TFNs, unless if a, b, c, a1, b1, c1 are in R+ [9]. 

The following two scalar operations can be also be defined: 

k + A= (k+a,  k+b,  k+c), kR. 

kA = (ka,  kb,  kc), if k>0 and kA = (kc, kb, ka), if k<0. 

2.4| Trapezoidal Fuzzy Numbers (TpFNs) 

A TpFN (a, b, c, d) with a, b, c, d in R represents the fuzzy statement approximately in the interval [b, c]. 

Its membership function y=m(x) is zero outside the interval [a, d], while its graph in this interval [a, d] is 

the union of three straight line segments forming a trapezoid with the X-axis (see Fig. 2), 

Fig. 2. Graph of the TpFN (a, b, c, d). 

Therefore, the analytic definition of a TpFN is given as follows: 

Definition 3. Let a < b < c< d be given real numbers. Then the TpFN (a, b, c, d) is the FN with 

membership function: 


 
  

 
 


 

   


x a
, x [a, b]

b a
x 1, , x [b, c]

y m(x)
d x

x [c,d]
d c
0,        x a and x d
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Remark 3. It is easy to observe that the TpFNs are generalizations of TFNs. In fact, the TFN (a, b, d) can 

be considered as a special case of the TpFN (a, b, c, d) with b=c. 

The TFNs and the TpFNs are special cases of the LR – FNs of Dubois and Prade [10]. Generalizing the 

definitions of TFNs and TpFNs one can define n-agonal FNs of the form (a1, a2,… , an) for any integer n, 

n  3; e.g. see Section 2 of [11] for the definition of the hexagonal FNs.  

It can be shown [9] that the addition and subtraction of two TpFNs are performed in the same way that it 

was mentioned in Remark 2 for TFNs. Also, the two scalar operations that have been defined in Remark 2 

for TFNs hold also for TpFNs. 

The following two propositions provide two alternative ways for defuzzifying a given TpFN: 

Proposition 2. (GOG of a TpFN): The coordinates (X, Y) of the COG of the graph of the TpFN (a, b, c, 

d) are calculated by the formulas X = 
2 2 2 2c d a b dc ba

3(c d a b)

    

  
, Y = 

2c d a 2b

3( c d a b)

  

  
. 

Proof. We divide the trapezoid forming the graph of the TpFN (a, b, c, d) in three parts, two triangles and 

one rectangle (Fig. 2). The coordinates of the three vertices of the triangle ABE are (a, 0), (b, 1) and (b, 0) 

respectively, therefore by Proposition 4 the COG of this triangle is the point C1 (
a 2b 1

,
3 3


).          

Similarly one finds that the COG of the triangle FCD is the point C2 (
d 2c 1

,
3 3


). Also, it is easy to check 

that the COG of the rectangle BCFE, being the intersection point of its diagonals, is the point C3 (

b c 1
,

2 2


). Further, the areas of the two triangles are equal to S1 = 

b a

2


 and S2 = 

d c

2


respectively, while 

the area of the rectangle is equal to S3 = c- b.  

Therefore, the coordinates of the COG of the trapezoid, being the resultant of the COGs Ci (xi, yi), for 

i=1, 2, 3, are calculated by the formulas X = 
3

i i
í 1

1
S x

S 
 , Y = 

3

i i
í 1

1
S y

S 
  (1), where S = S1 + S2 + S3 = 

c d b a

2

  
 is the area of the trapezoid [12]. 

The proof is completed by replacing the above found values of S, Si, xi and yi, i = 1, 2, 3, in formulas (1) 

and by performing the corresponding operations. 

Proposition 3. (GOG of the GOGs of a TpFN): Consider the graph of the TpFN (α, b, c, d) (Fig. 3). Let 

G1 and G2 be the COGs of the rectangular triangles AEB and CFD and let G3 be the COG of the rectangle 
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BEFC respectively. Then G1G2G3 is always a triangle, whose COG has coordinates

2( a d) 7( b c ) 7
X , Y

18 18

  
  . 

Fig. 3. The GOG of the GOGs of the TpFN (a, b, c, d). 

Proof. By Proposition 4 one finds that G1 (
a 2b 1

,
3 3


) and G2 (

d 2c 1
,

3 3


). Further, it is easy to check that 

the GOG G3 of the rectangle BCFD, being the intersection of its diagonals, has coordinates (
b c 1

,
2 2



). 

The y – coordinates of all points of the straight line defined by the line segment G1G2 are equal to
1

3
, 

therefore the point G3, having y – coordinate equal to
1

2
, does not belong to this line. Hence, by 

Proposition 6, the COG G΄ of the triangle G1G2G3 has coordinates X = (
a 2b

3


  

d 2c

3




b c

2


): 3 = 

2( a d) 7( b c )

18

  
 and Y = (

1

3


1

3


1

2
): 3

7

18
 . 

Remark 4. Since the COGs G1, G2 and G3 are the balancing points of the triangles AEB and CFD and 

of the rectangle BEFC respectively, the COG G΄ of the triangle G1G2G3, being the balancing point of 

the triangle formed by those COGs, can be considered instead of the COG G of the trapezoid ABCD 

for defuzzifying the TpFN (a, b, c, d). The advantage of the choice of G΄ instead of G is that the formulas 

calculating the coordinates of G΄ (Proposition 3) are simpler than those calculating the COG G of the 

trapezoid ABCD (Proposition 2). 

An important problem of the fuzzy arithmetic is the ordering of FNs, i.e. the process of determining 

whether a given FN is larger or smaller than another one. This problem can be solved through the 

introduction of a ranking function, say R, which maps each FN on the real line, where a natural order 

exists. Several ranking methods have been proposed until today, like the lexicographic screening [13], 

the use of an area between the centroid and original points [14], the subinterval average method [11], 

etc. 

Here, under the light of Propositions (1) and (3) and of Remark 4, we define the ranking functions for 

TFNs and TpFNs as follows: 

Definition 11. Let A be a FN. Then: 

If A is a TFN of the form A {α, b, c), we define R(A) = 
a b c

3

 
.  

If A is a TpFN of the form A {α, b, c, d), we define R(A) =
2( a d) 7( b c )

18

  
. 

2.5| Linear Programming 

It is well known that Linear Programming (LP) is a technique for the optimization (maximization or 

minimization) of a linear objective function subject to linear equality and inequality constraints. The 
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feasible region of a LP problem is a convex polytope, which is a generalization of the three-dimensional 

polyhedron in the n-dimensional real space Rn, where n is an integer, n   2.   

A LP algorithm determines a point of the LP polytope, where the objective function takes its optimal value, 

if such a point exists. In 1947, Dantzig invented the SIMPLEX algorithm [15] that has efficiently tackled 

the LP problem in most cases. Further, in 1948 Dantzig, adopting a conjecture of John von Neuman, who 

worked on an equivalent problem in Game Theory, provided a formal proof of the theory of Duality [16]. 

According to the above theory every LP problem has a dual problem the optimal solution of which, if 

there exists, provides an optimal solution of the original problem. For general facts about the SIMPLEX 

algorithm we refer to Chapters 3 and 4 of [17]. 

LP, apart from mathematics, is widely used nowadays in business and economics, in several engineering 

problems, etc. Many practical problems of operations research can be expressed as LP problems. However, 

in large and complex systems, like the socio-economic, the biological ones, etc. ., it is often very difficult 

to solve satisfactorily the LP problems with the standard theory, since the necessary data cannot be easily 

determined precisely and therefore estimates of them are used in practice. The reason for this is that such 

kind of systems usually involve many different and constantly changing factors the relationships among 

which are indeterminate, making their operation mechanisms to be not clear. In order to obtain good 

results in such cases one may apply techniques FLP, e.g. see [18] and [19], etc.  

3| Main Results 

3.1| Assessment under Fuzzy Conditions  

Assume that one wants to evaluate the mean performance of a group of uniform objects (individuals, 

computer systems, etc.) participating in a common activity. When the individual performance of the 

group’s members is assessed by using numerical grades (scores), the traditional method for evaluating the 

group’s mean performance is the calculation of the mean value of those scores. However, cases appear 

frequently in practice, where the individual performance is assessed by using linguistic instead of numerical 

grades. For example, this frequently happens for student assessment, usually for reasons of more elasticity 

that reduces the student pressure created by the existence of the strict numerical scores. 

A standard method for such kind of assessment is the use of the linguistic expressions (labels) A = 

excellent, B = very good, C = good, D = fair and F = unsatisfactory (failed). In certain cases some insert 

the label E = less than satisfactory between D and F, while others use labels like B+, B-, etc., for a more 

strict assessment. It becomes evident that such kind of assessment involves a degree of fuzziness caused 

by the existence of the linguistic labels, which are less accurate than the numerical scores. Obviously, in 

the linguistic assessment the calculation of the mean value of the group’s members’ grades is not possible. 

An alternative method for assessing a group’s overall performance in such cases is the calculation of the 

Grade Point Average (GPA) index ([2], Chapter 6, p.125). The GPA index is a weighted mean calculated 

by the formula  

In the above formula n denotes the total number of the group’s members and nA, nB, nC, nD and nF denote 

the numbers of the group’s members that demonstrated excellent, very good, good, fair and unsatisfactory 

performance respectively. In case of the ideal performance (nA = n) formula (1) gives that GPA = 4, 

whereas in case of the worst performance (nF = n) it gives that GPA = 4. Therefore, we have in general 

that 0    GPA   4, which means that values of GPA greater than 2 could be considered as indicating a 

more than satisfactory performance. However, since in Eq. (1) greater coefficients (weights) are assigned 

to the higher scores, it becomes evident that the GPA index reflects actually not the mean, but the group’s 

quality performance.  

   
F D C B A

0n 1n 2n 3n 4n

n
 (1) 
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Here a method will be developed for an approximate evaluation in such cases of the group’s mean 

performance that uses TFNs or TpFNs as tools. For this, we need the following definition: 

Definition 5. Let Ai = (a1i, a2i, a3i, a4i), i = 1, 2,…, n  be TFNs/TpFNs (see Remark 3), where n is a 

nonnegative integer, n  2. Then the mean value of the Ai’s is defined to be the TFN /TpFN, 

 

 

In case of utilizing TFNs as tools the steps of the new assessment method are the following: 

Assign a scale of numerical scores from 1 to 100 to the linguistic grades A, B, C, D and F as follows: A 

(85–100), B (75–84), C (60–74), D (50–59) and F (0–49)1.  

For simplifying the notation use the same letters to represent the above grades by the TFNs.  

A = (85, 92.5, 100), B = (75, 79.5, 84), C (60, 67, 74), D (50, 54.5, 59) and F (0, 24.5, 49), respectively, 

where the middle entry of each of them is equal to the mean value of its other two entries.  

Evaluate the individual performance of all the group’s members using the above qualitative grades. This 

enables one to assign a TFN A, B, C, D or F to each member. Then the mean value M of all those TFNs 

is equal to the TFN 

M (a, b, c) = 
1

n
 (nA A + nB B + nCC + nDD + nFF). 

Use the TFN M (a, b, c) for evaluating the group’s mean performance. It is straightforward to check 

that the three entries of the TFN M are equal to  

A B C D F
85n 75n 60n 50n 0n

a
n

   
   A B C D F

92.5n 79.5n 67 n 54.5n 24.5n
b

n

   
  and  

A B C D F
100n 84n 74n 59n 49n

c .
n

   
  Then, by Proposition 6 one gets that  

X (M) = 
a b c

3

 
  A B C D F

92.5n 79.5n 67 n 54.5n 24.5n a c
 =  = b ( 3)

n 2

    
. 

Observe that, in the extreme (hypothetical) case where the lowest possible score has been assigned to 

each member of the group (i.e. the score 85 to nA members, the score 75 to nB members, etc.) the mean 

value of all those scores is equal to a. On the contrary, if the greatest score has been assigned to each 

member, then the mean value of all scores is equal to c. Therefore the value of X(M), being equal to the 

mean value of a and c, provides a reliable approximation of the group’s mean performance. 

1The scores assigned to the linguistic grades are not standard and may differ from case to case. For instance, in a more rigorous 

assessment one could take A(90-100), B (80-89), C(70-79), D (60-69), F(<60), etc. 

1

n
 (2) 
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In cases where multiple referees of the group’s performance exist one could utilize TpFNs instead of TFNs 

for evaluating the group’s mean performance. In that case a different TpFN is assigned to each member 

of the group representing its individual performance, while the other steps of the method remain 

unchanged (see Example 16). 

3.2| Fuzzy Linear Programming  

The general form of a FLP problem is the following: Maximize (or minimize) the linear expression  

F = A1x1 + A2x2 +….+ Anxn subject to constraints of the form  xj   0, 

Ai1x1+ Ai2x2 +…..+ Ainxn ( )  Bi, where i = 1, 2, …, m ,  j = 1, 2,,,, n and Aj, Aij, Bi are FNs.  Here a new 

method will be proposed for solving FLP problems. We start with the following definition: 

Definition 5. The Degree of Fuzziness (DoF) of a n-agonal FN A = (a1, … , an) is defined to be the real 

number D = an – a1. We write then DoF (A) = D. 

The following two propositions are needed for developing the new method for solving FLP problems:  

Proposition 4. Let A be a TFN with DoF (A) = D and R(A) = R. Then A can be written in the form  

A = (α, 3R-2α-D, α + D), where α is a real number such that R - 
2D

3
< α < R - 

D

3
. 

Proof. Let A (α, b, c) be the given TFN, with α, b, c real numbers such that α<b<c. Then, since  

DoF(A) = c - α = D, is c = α + D.  Therefore, R(A) = 
a b c

3

 
= 

2a b D

3

 
= R, which gives that  

b = 3R-2α-D. Consequently we have that α < 3R-2α-D < α + D. The left side of the last inequality implies 

that 3α < 3R-D, or α< R-
D

3
. Also its right side implies that -3α < 2D-3R, or α> R-

2D

3
, which completes 

the proof. 

Proposition 5. Let A be a TpFN with DoF (A) = D and R(A) = R. Then A can be written in the form  

A = (α, b, c, α + D), where α, b and c are real numbers such that α < b    c < a + D and   

b + c =
18R 4a 2D

7

 
. 

Proof. Let A (α, b, c, d) be the given TFN, with α, b, c, d real numbers such that a < b   c < d. Since  

D(A) = d - α  = D, it is d = α + D. Also, by Definition 11 we have that R = 
2( 2a D) 7( b c )

18

  
 wherefrom 

one gets the expression of b + c in the required form. 

The proposed in this work method for solving a Fuzzy LP problem involves the following steps: 

Ranking of the FNs Aj, Aij and Bi. 

Solution of the obtained in the previous step ordinary LP problem with the standard theory. 
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Conversion of the values of the decision variables in the optimal solution to FNs with the desired DoF. 

The last step is not compulsory, but it is useful in problems of vague structure, where a fuzzy expression 

of their solution is often preferable than the crisp one (see Examples 17 and 18). 

4| Applications 

4.1| Examples of Assessment Problems  

Example 1. Table 1 depicts the performance of students of two Departments, say D1 and D2, of the 

School of Management and Economics of the Graduate Technological Educational Institute (T. E. I.) 

of Western Greece in their common progress exam for the course “Mathematics for Economists I” in 

terms of the linguistic grades A, B, C, D and F: 

Table 1. Student performance in terms of the linguistic grades. 

   

 

 

 

It is asked to evaluate the two Departments overall quality and mean performance. 

Quality performance (GPA index): Replacing the data of Table 1 to Formula (1) and making the 

corresponding calculations one finds  the same value GPA = 
43

17
  2.53 for the two Departments that 

indicates a more than satisfactory quality performance. 

Mean performance (using TFNs): According to the assessment method developed in the previous 

section it becomes clear that Table 1 gives rise to 170 TFNs representing the individual performance of 

the students of D1 and 255 TFNs representing the individual performance of the students of D2. 

Applying equation (2) it is straightforward to check that the mean values of the above TFNs are: 

D1 =  
1

170
. (60A+40B+20C+30D+20F)   (63.53, 73.5, 83.47), and D2 =  

1

255
. 

(60A+90B+45C+45D+15F)   (65.88, 72.71, 79.53).   

Therefore, Eq. (3) gives that X(D1) =  73.5 and  X(D2) =  72.71. Consequently, both departments 

demonstrated a good (C) mean performance, with the performance of D1 being slightly better. 

Example 2. The individual performance of the five players of a basket-ball team who started a game 

was assessed by six different athletic journalists using a scale from 0 to 100 as follows: P1 (player 1): 43, 

48, 49, 49, 50, 52, P2: 81, 83. 85, 88, 91, 95, P3: 76, 82, 89, 95, 95, 98, P4: 86, 86, 87, 87, 87, 88 and P5: 

35, 40, 44, 52, 59, 62. It is asked to assess the mean performance of the five players and their overall 

quality performance by using the linguistic grades A, B, C, D and F. Also, for reasons of comparison, it 

is asked to approximate their mean performance in two ways, by using TFNs and TpFNs. 

Mean performance: Adding the 5 * 6 = 30 in total scores assigned by the journalists to the five players 

and dividing the corresponding sum by 30 one finds that the mean value of those scores is   

Grade D1 D2 

A 60 60 
B 40 90 
C 20 45 
D 30 45 
F 20 15 
Total  170 255 
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approximately equal to 72.07. Therefore the mean performance of the five players can be characterized as 

good (C).  

Quality performance: A simple observation of the given data shows that 14 of the 30 in total scores 

correspond to the linguistic grade A, four to B, one to C, four to D and seven to F. Replacing those values 

to Formula (1) one finds that the GPA index is approximately equal to 2.47. Therefore, the five players’ 

overall quality performance can be characterized as more than satisfactory. 

Using TFNS: Forming the TFNs A, B, C, D and F and observing the 5*6 = 30 in total player scores it 

becomes clear that 14 of them correspond to the TFN A, four to B, one to C, four to D and seven to F. 

The mean value of the above TFNs (Definition 11) is equal to M = 
1

30
(14A + 4B + C + 4D + 7F)  (58.33, 

68.98, 79.63).  

Therefore the mean performance of the five players is approximated by X(M) = 68.98 (good). 

Using TpFNs: A TpFN (denoted, for simplicity, by the same letter) is assigned to each basket-ball player 

as follows: P1 = (0, 43, 52, 59), P2 = (75, 81, 95, 100), P3 = (75, 76, 98, 100), P4 = (85, 86, 88, 100) and P5 = 

(0, 35, 62, 74). Each of the above TpFNs describes numerically the individual performance of the 

corresponding player in the form (a, b, c, d), where a and d are the lower and higher scores respectively 

corresponding to his performance, while c  and b are the lower and higher scores respectively assigned to 

the corresponding player by the athletic journalists. For example, the performance of the player P1 was 

characterized by the journalists from unsatisfactory (scores 43, 48, 49, 49) to fair (scores 50, 52), which 

means that a = 0 (lower score for F) and d = 59 (lower score for D), etc.  

The mean value of the TpFNs Pi , i =1, 2, 3, 4, 5 (Definition 13), is equal to P = 
5

i
i 1

1
P

5 
 = (47, 64.2, 79, 86.6).  

Therefore, under the light of Remark 10 and Proposition 9 one finds that X(P) = 

2( 47 86.6) 7(64.2 79)
70.53

18

  
 . This outcome shows that the five players demonstrated a good (C) 

mean performance. 

The outcomes obtained from the application of the assessment methods used in Examples (15) and (16) are 

depicted in Tables (2)-(3) below. 

Table 2. The outcomes of Example 1. 

 

 

 

     Table 3. The outcomes of Example 2. 

   

 

 

 

Method D1 D2 Performance 

GPA index 2.53 2.53 More than 
satisfactory 

TFNs 73.5 72.68 Good (C) 

Method  Performance 

Mean value 72.07 Good (C) 
GPA index 2.47 More than 

satisfactory 
TFNs 68.98 Good (C) 
TpFNs 70.53 Good (C) 
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Observing those Tables one can see that the fuzzy outcomes (TFNs/TpFNs) are more or less 

compatible to the crisp ones (mean value/GPA index). This provides a strong indication that the fuzzy 

assessment method developed in this work “behaves” well. The appearing, relatively small, numerical 

differences are due to the different “philosophy” of the methods used (mean and quality performance, 

bi-valued and fuzzy logic).  

The approximation of the player mean performance (70.53) obtained in Example 2 using TpFNs is better 

(nearer to the accurate mean value 72.07 of the numerical scores) than that obtained by using TFNs 

(68.98). This is explained by the fact that the TpFNs, due to the way of their construction, describe more 

accurately than the TFNs each player’s individual performance. However, it is not always easy in practice 

to use TpFNs instead of TFNs. Another advantage of using TpFNs as assessment tools is that, in 

contrast to TFNs, they make possible the comparison of the individual performance of any two 

members of the group, even among those whose performance has been characterized by the same 

qualitative grade. At any case, the fuzzy approximation of a group’s mean performance is useful only 

when no numerical scores are given assessing the idividual performance of its members. 

4.2| Examples of FLP Problems 

Example 3. In a furniture factory it has been estimated that the construction of a set of tables needs 2 

- 3 working hours (w. h.) for assembling, 2.5 - 3.5 w. h. for elaboration (plane, etc.) and 0.75 - 1.25 w. h. 

for polishing, while the construction of a set of desks needs 0.8 - 1.2, 2 - 4 and 1.5 - 2.5 w. h. respectively 

for each of the above procedures. According to the factory’s existing number of workers, at most 20 w. 

h. per day can be spent for the assembling, at most 30 w. h. for the elaboration and at most 18 w. h. for 

the polishing of the tables and desks. If the profit from the sale of a set of tables is between 2.7 and 3.3 

hundred euros and of a set of desks is between 3.8 and 4.2 hundred euros1, find how many sets of tables 

and desks should be constructed daily to maximize the factory’s total profit. Express the problem’s 

optimal solution with TFNs of DoF equal to 1. 

Solution. Let x1 and x2 be the sets of tables and desks to be constructed daily. Then, using TFNs, the 

problem can be mathematically formulated as follows2: 

Maximize F = (2.7, 3, 3.3)x1 + (3.8, 4, 4.2)x2 subject to  x1, x2   0 and 

(2, 2.5, 3)x1 + (0.8, 1, 1.2]x2   (19, 20, 21), 

(2.5, 3, 3.5)x1 + (2, 3, 4)x2   (29, 30, 31), 

(0.75, 1, 1.25)x1 + (1.5, 2, 2.5)x2   (15, 16, 17). 

The ranking of the TFNs involved leads to the following LP maximization problem of canonical form:  

Maximize f(x1, x2) = 3x1 + 4x2 subject to x1, x2   0 and 2.5x1 + x2  20, 3x1 + 3x2   30 , and x1 + 2x2   

16. 

1The profit is changing depending upon the price of the wood, the salaries of the workers, etc. 

2 The mathematical formulation of the problem using TFNs is not unique. Here we have taken 



a c

b
2

 for all the TFNs involved, 

but this is not compulsory. The change of the values of the above TFNs, changes of course the ordinary LP problem obtained by 
ranking them, but the change of its optimal solution is relatively small.  
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Adding the slack variables s1, s2, s3 for converting the last three inequalities to equations one forms the 

problem’s first SIMPLEX matrix, which corresponds to the feasible solution f(0, 0) = 0, as follows: 

 
 
 
        
 

 
 
  
 
 
 
       
 
   
 
  

1 2 1 2 3

1

2

3

x x s s s | Const.

2.5 1 1 0 0 | 20 s

3 3 0 1 0 | 30 s

1 2 0 0 1 | 16 s

|

3 4 0 0 0 | 0 f(0,0)

. 

Denote by L1, L2, L3, L4 the rows of the above matrix, the fourth one being the net evaluation row.  Since -4 

is the smaller (negative) number of the net evaluation row and 
16 30 20

2 3 1
  , the pivot element 2 lies in the 

intersection of the third row and second column Therefore, applying the linear transformations L3
  

1

2

L3 = L΄3 and L1 L1 – L΄3, L2 L2 – 3L΄3, L4 L4 + 4L΄3, one obtains the second SIMPLEX matrix, 

which corresponds to the feasible solution f(0, 8) = 32 and is the following: 

 
 
 
        
 
 

  
 
 

  
 
 
 
 
      
 
   
  

1 2 1 2 3

1

2

2

x x s s s | Const.

1
2 0 1 0 | 12 s

23 3
0 0 1 | 6 s

2 21 1
1 0 0 | 8 x

2 2 |

1 0 0 0 0 | 32 f(0,8)

. 

In this matrix the pivot element
3

2
lies in the intersection of the second row and first column, therefore 

working as above one obtains the third SIMPLEX matrix, which is: 

 
 
 
        
 
 

   
 
 
  
 
 
  
 
      
 
 
 

 
 
 

1 2 1 2 3

1

1

2

x x s s s | Const.

4 3
0 0 1 | 4 s

3 22
1 0 0 1 | 4 x

31
0 1 0 1 | 6 x

3 |

2
0 0 0 1 | 36 f(4,6)

3

. 

Since there is no negative index in the net evaluation row, this is the last SIMPLEX matrix. Therefore f (4, 

6) = 36 is the optimal solution maximizing the objective function. Further, since both the decision variables 

x1 and x2 are basic variables, i.e. they participate in the optimal solution, the above solution is unique. 



 

 

202 

V
o

sk
o

g
lo

u
 |

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(3
) 

(2
0
2
0
) 

18
9
-2

0
5

 

 

Converting, with the help of Proposition 15, the values of the decision variables in the above solution to 

TFNs  with DoF equal to 1, one finds that x1 = (α, 11-2α, α+1] with 
10 11

a
3 3

   and x2 = (a, 17-2a, a+1) 

with. 
16 17

a
3 3
  . Therefore a fuzzy expression of the optimal solution states that the factory’s maximal 

profit corresponds to a daily production between α and α+1 groups of tables with 3.33 a 3.67  and 

between a and a+1 groups of desks with 5.33 < a < 5.67.  

However, taking for example α = 3.5 and a = 5.5 and considering the extreme in this case values of the 

daily construction of 4.5 groups of tables and 6.5 groups of desks, one finds that they are needed 33 in 

total w. h. for elaboration, whereas the maximum available w. h. are only 30. In other words, a fuzzy 

expression of the solution does not guarantee that all the values of the decision variables within the 

boundaries of the corresponding TFNs are feasible solutions. 

Example 4. Three kinds of food, say F1, F2 and F3, are used in a poultry farm for feeding the chickens, 

their cost varying between 38 - 42, 17 - 23 and 55 - 65 cents per kilo respectively. The food F1 contains 

between 1.5 - 2.5 units of iron and 4 - 6 units of vitamins per kilo, F2 contains 3.2 - 4.8, 0.6 – 1.4 and F3 

contains 1.7 – 2.3, 0.8 – 1.2 units per kilo respectively. It has been decided that the chickens must receive 

at least 24 units of iron and 8 units of vitamins per day. How must one mix the three foods so that to 

minimize the cost of the food? Express the problem’s solution with TpFNs of DoF equal to 2. 

Solution. Let x1, x2 and x3 be the quantities of kilos to be mixed for each of the foods F1, F2 and F3 

respectively. Then, using TpFNs the problem’s mathematical model could be formulated as follows1:  

Minimize F = (38, 39, 41, 42) x1 + (17, 18, 22, 23) x2 + (55, 56, 64, 65] x3 subject to x1, x2 , x3  0 and 

(1.5, 1.8, 2.2, 2.5) x1+ (3.2, 3.5, 4.5, 4.8) x2+ (1.7, 1.9, 2.1,  2.3] x3 [22, 23, 25, 26] 

[4, 4.5, 5.5, 6] x1+ [0.6, 0.8, 1.2, 1.4] x2 +[0.8, 0.9, 1.1, 1.2]x3   (6, 7, 9, 1 0). 

The ranking of the TpFNs by Definition 13 leads to the following LP minimization problem of canonical 

form: 

Minimize f (x1, x2, x2) = 40x1 + 20x2 + 60x3 subject to  x1, x2 , x3  0  and 2x1+ 4x2+ 2x3 24, 5x1 + x2 

+ x3     8. 

The dual of the above problem is: the following:  

Maximize g (z1, z2) = 24z1 + 8z2 subject to t z1, z2   0, 2z1 + 5z2  40, 4z1 + z2    20, 2z1 + z2    60 

Working similarly with Example 3 it is straightforward to check that the last SIMPLEX matrix of the 

dual problem is the following: 

1The problem‘s mathematical formulation using TpFNs is not unique, but the change of its optimal solution in each case is relatively 

small.  
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1 2 1 2 3

2

1

3

z z s s s | Const.

2 1 20
0 1 0 | z

9 9 31 5 10
1 0 0 | z

18 18 31 4 140
0 0 1 | s

9 9 3|

4 52 400 10 20
0 0 0 | g( , )

9 9 3 3 3

. 

  Therefore the solution of the original minimization problem is f min = f(
4

9
,

52

9
, 0) = 

400

3
.  

 In other words, the minimal cost of the chicken food is 
400

3
  133 cents and will be succeeded by mixing 

4

9
  0.44 kilos from food F1 and 

52

9
  5.77 kilos from food F2.   

Converting the values of the decision variables in the above solution to TpFNs with DoF equal to 2 one 

finds with the help of Proposition 16 that x1, x2, x3 must be of the form (α, b, c, α + 2) with  

α < b   c < α + 2, b+ c =
18R 4a 4

7

 
 and R = 

4

9
 or R = 

52

9
 or R= 0 respectively. 

For R = 
4

9
 one finds that b + c =

4 4a

7


. Therefore b <

4 4a

7


 - b or b < 

2 2a

7


which gives that   

α < 
2 2a

7


 or  α < 

2

9
. Taking for example α =

1

9
, one finds that b < 

2
2

9
7



=
16

63
. Therefore, taking for 

example b =
15

63
, we obtain that c =

4
4

9
7



 - 
15

63
 = 

17

63
. Therefore x1 = (

7

63
, 

15

63
, 

17

63
, 

133

63
). 

Working similarly for R = 
52

9
and R = 0 one obtains that x2 = (

196

63
, 

340

63
, 

362

63
, 

488

63
) 

and x3 = (-
21

63
, -

15

63
, -

9

63
, 

60

63
), respectively. 

Therefore, since a TpFN (a, b, c, d) expresses mathematically the fuzzy statement that the interval  [b, c] 

lies within the interval [a, d], a fuzzy expression of the problem’s optimal solution states that the minimal 

cost of the chickens’ food will be succeeded by mixing  between 
15

63
0.24 , 

17

63
  0.27, between 

340

63


5.4 , 
362

63
5.75  and between -

15
0.24

63
  , - 

17
0.27

63
  kilos from each one of the foods F1, F2 and F3 

respectively. The values of x3 are not feasible and must be replaced by 0, whereas the values of x1 and x2 

must be checked as we did in Example 3. 
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5| Discussion and Conclusions 

The target of the present paper was two-folded. First, a combination of TFNs / TpFNs and of the 

COG defuzzification technique was used for assessment purposes. Examples were presented on student 

and basket-ball player assessment and the new fuzzy method was validated by comparing its outcomes 

with those of traditional assessment methods (calculation of the mean value of scores and of the GPA 

index). The advantage of this method is that it can be used for evaluating a group’s mean performance 

when qualitative grades are used instead of numerical scores for assessing the individual performance of 

its members.  

Second, a new technique was developed for solving Fuzzy LP problems by ranking the FNs involved 

and by solving the ordinary LP problem obtained in this way with the standard theory. Real-life examples 

were presented to illustrate the applicability of the new technique in practice. In LP problems with a 

vague structure a fuzzy expression of their solution is often preferable than a crisp one. This was 

attempted in the present work by converting the values of the decision variables in the optimal solution 

of the obtained ordinary LP problem to FNs with the desired DoF. The smaller the value of the chosen 

DoF, the more creditable is the fuzzy expression of the problem’s optimal solution. 

The new assessment method that has been developed in this work has a general character. This means 

that, apart for student and athlete assessment, it could be utilized for assessing a great variety of other 

human or machine (e.g. Case – Based Reasoning or Decision – Making systems) activities. This is an 

important direction for future research. Also a technique similar to that applied here for solving FLP 

problems could be used for solving systems of equations with fuzzy coefficients, as well as for solving 

LP problems and systems of equations with grey coefficients [20]. 
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