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Abstract 

1 | Introduction   

The fuzzy theory was introduced the first time in 1965 by Zadeh [1]. A fuzzy set is determined by a 

membership function limited to [0, 1]. Until now, there is a giant research construction of fuzzy 

theory as well as its application. The fuzzy set is used in pattern recognition, artificial intelligent, 

decision making, or data mining [2] and [3], and so on. Besides that, the expansion of fuzzy theory is 

also an interesting topic. The interval-valued fuzzy set [4], the type-2 fuzzy set [5], and the 

intuitionistic fuzzy set [6] are all developed from the fuzzy set. They replaced the value type or added 

the other evaluation to the fuzzy set in order to overcome the inadequate simple approach of this 

traditional fuzzy set. Such as in 1986, the intuitionistic fuzzy set of Atanassov [6] builds up the concept 

of the non-membership degree. This supplement gives more accurate results in pattern recognition, 

medical diagnosis and decision making [7]-[9], and so on. In 1998, Smarandache [10] introduced 
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neutrosophic set to generalize intuitionistic fuzzy set by three independent components. Until today, 

many subclasses of neutrosophic sets were studied such as complex neutrosophic sets [11] and [12]. As 

a particular case of standard neutrosophic sets [13] and [14], the picture fuzzy set introduced in 2013 by 

Cuong [15], considered as a complete development of the fuzzy theory, allows an element to belong to 

it with three corresponding degrees where all of these degrees and their sum are limited to [0, 1]. 

Concerning extended fuzzy set, some recent publications may be mentioned here as in [16]-[20]. 

As one of the important pieces of set theory, distance measure between the sets is a tool for evaluating 

different or similar levels between them. Some literature on the application of intuitionistic fuzzy 

measure from 2012 to present can be found in [7], [21]-[23]. In 2018, Wei introduced the generalized 

Dice similarity measures for picture fuzzy sets [17]. However, the definition of Wei is without 

considering the condition related to order relation on picture fuzzy sets. In a decision-making model, a 

distance measure can be used to compare the similarities between the sets of attributes of the samples 

and that of the input, such as in predicting dental diseases from images [24]. In this paper, we define the 

concept of the single-valued neutrosophic distance measure, picture fuzzy distance measure, and 

represent the specific measure formula. We prove the characteristics of this formula as well as the 

relation among it and some of the other operators of picture fuzzy sets. The proposed distance measure 

is inspired by the H-max distance measure of intuitionistic fuzzy sets [8]. Hence, it inherits the advantage 

of the cross-evaluation in the H-max and moreover it has the completeness of picture fuzzy 

environment. 

The decision-making problems appear in most areas aiming to provide the optimal solution. Saving 

interconnection network power is always interested, researched and becoming more and more urgent in 

the current technological era. In 2010, Alonso et al. introduced the power saving mechanism in regular 

interconnection network [25]. This decision-making model dynamically increases or reduces the number 

of links based on a thresholds policy. In 2015, they continue to study power consumption control in fat-

tree interconnection networks based on the static and dynamic thresholds policies [26]. In general, these 

threshold policies are rough and hard because they are without any fuzzy approaches, parameter learning 

and optimizing processes. In 2017, Phan et al. [27] proposed a new method in power consumption 

estimation of network-on-chip based on fuzzy logic. However, this fuzzy logic system based on Sugeno 

model [27] is too rudimentary and the parameters here are chosen according to the authors' 

quantification. 

In this paper, aiming to replace the above threshold policy, an Adaptive Neuro Picture Fuzzy Inference 

System (ANPFIS) based on picture fuzzy distance measure is proposed to make the decisions for the 

link states in interconnection networks. ANPFIS is a modification and combination between Adaptive 

Neuro Fuzzy Inference System (ANFIS) [28]-[30], picture fuzzy set, and picture fuzzy distance measure. 

Hence, ANPFIS operates based on the picture fuzzification and defuzzification processes, the picture 

fuzzy operators [18] and distance measure, and the learning capability for automatic picture fuzzy rule 

generation and parameter optimization. In order to evaluate performance, we tested the ANPFIS 

method on the real datasets of the network traffic history taken from the UPV (Universitat Politècnica 

de València) university with related methods. The result is that ANPFIS is the most effective algorithm. 

The rest of the paper is organized as follows. Section 2 provides some fundamental concepts of the 

fuzzy, intuitionistic fuzzy, single-valued neutrosophic, and picture fuzzy theories. Section 3 proposes 

the distance measure of single-valued neutrosophic sets and points out its important properties. Section 

4 shows the new decision-making method named Adaptive Neuro Picture Fuzzy Inference System 

(ANPFIS) and an application of ANPFIS to controlling network power consumption. Section 5 shows 

the experimental results of ANPFIS and the related methods on real-world datasets. Finally, conclusion 

is given in Section 6.  
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2|  Preliminary 

In this part, some concepts of the theories of fuzzy sets, intuitionistic fuzzy sets, single-valued neutrosophic 

sets, and picture fuzzy sets are showed. 

Let X  be a space of points. 

Definition 1. [1]. A fuzzy set (FS) A  in X , 

 

is characterized by a membership function, 
A
ᾧ , with a range in 0 , 1è ø

é ùê ú
. 

Definition 2. [6] . A Intuitionistic Fuzzy Set (IFS) A  in X , 

 

is characterized by a membership function 
A
ᾧ  and a non-membership function 

A
ᾨ  with a range in 0 , 1è ø

é ùê ú
 

such that 
A A

0 ᾧ ᾨ ẙ¢ + ¢. 

Definition 3. [31]. A Single-Valued Neutrosophic Set (SVNS) A  in X , 

 

is characterized by a truth-membership function 
A

T , an indeterminacy-membership function 
A

I , and a 

false-nonmembership function 
A

T  with a range in 0 , 1è ø
é ùê ú

 such that 
A A A

0 T I F 3¢ + + ¢.  

Definition 4. [15]. A Picture Fuzzy Set (PFS) A  in X , 

 

is characterized by a positive membership function 
A
ᾧ , a neutral function 

A
ᾢ , and a negative membership 

function 
A
ᾨ  with a range in 0 , 1è ø

é ùê ú
 such that 

A A A
0 ᾧ ᾢ ᾨ ẙ¢ + + ¢. 

We denote that SVNS()X  is the set of all SVNSs in X and PFS()X  is the set of all PFSs inX . We 

consider the sets *N and *P  defined by 

 

 

()( ){ }= Í
A

A x :ᾧ ợ ợ ể Ẕ (1) 

() ()( ){ }= Í
A A

A x :ᾧ ợ Ẕᾨ ợ ợ ể Ẕ (2) 

() () ()( ){ }= Í
A A A

A x : T x ,I x ,F x x X ,  (3) 

() () ()( ){ }= Í
A A A

A x :ᾧ ợ Ẕᾢ ợ Ẕᾨ ợ ợ ể Ẕ (4) 

( ){ }= = ¢ ¢
 

(5) 

( ){ }= = ¢ + + ¢
 

(6) 
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Definition 5. The orders on *N  and *P  are defined as follows 

( )( )( )1 1 3 3 1 1 3 3 1 1 3 3 2 2
x y x y ,x y x y ,x y x y ,x y ,x y ,¢ Ú < ² Ù = > Ù = = ¢ " Í *x,y P ,  [19]. 

*

1 1 2 2 3 3
x y x y , x y , x y , x , y N .Ú ¢ ¢ ² " Í=  

Clearly, on *P , if x y=  then x y.¢  

Remark 1. The lattice ( )*P ,¢  is a complete lattice [19] but ( )*P ,=  is not. For example, let 

( )x 0.2,0.3,0.5=  and ( )y 0.3,0,0.7= , then there is not any supremum value of x  and y  on ( )*P , .=  

Otherwise, we have ( )( )sup x, y 0.3,0,0.5=  on the lattice ( )*P , .¢  We denote the units of ( )*P ,¢  as 

follows ( )*P
0 0,0,1=  and ( )*P

1 1,0,0=  [19]. It is easy to see that *P
0  and *P

1  are also the units on 

( )*P , .= Now, some logic operators on PFS()X  are presented. 

Definition 6. [19]. A picture fuzzy negation N  is a function satisfying 

( ) ( )* * * *

* *

P P P P
: P P , N 0 1 , N 1 0 ,­ = =N  and () ()x y x y.² Ú ¢N N  

Example 1. For every *x PÍ , then  ()( )0 3 1
N x x ,0, x= and ()( )S 3 4 1

N x x ,x , x=  are picture fuzzy 

negations, where 
4 1 2 3

x 1 x x x .= - - - 

Remark 2. The operator 
0

N  also satisfies () () *

0 0
x y x y , x, y P .Ú " Í? =N N  

Now, let *x , y , z PÍ  and () ( ){ }*

1 2 3 2 2
I x y P : y x , y , x ,0 y x .= Í = ¢ ¢ 

Definition 7. [19]. A picture fuzzy t-norm T  is a function satisfying 

( ) ( ) ( )( ) ( )( )* * *: P P P , T x, y T y , x , T T x, y , z T x,T y , z ,³ ­ = =T ( ) ()*P
T 1 ,x I x ,Í and  

( ) ( )T x, y T x,z , y z.¢ " ¢ 

Definition 8. [19]. A picture fuzzy t-conorm S  is a function satisfying 

( ) ( ) ( )( ) ( )( )* * *: P P P , S x, y S y , x , S S x, y , z S x,S y , z ,³ ­ = =S ( ) ()*P
S 0 ,x I x ,Í and  

( ) ( )S x, y S x,z , y z.¢ " ¢ 

Example 2.  For all *x , y P ,Í  the following operators are the picture fuzzy t-norms: 

( ) ( ) ( ) ( )( )0 1 1 2 2 3 3
T x, y min x , y ,min x , y ,max x , y .=  
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( )( )1 1 1 2 2 3 3 3 3
T x, y x y , x y , x y x y .= + -   

( ) ( ) ( ) ( )( )2 1 1 2 2 3 3
T x, y max 0,x y 1 ,max 0,x y 1 ,min 1,x y .= + - + - + 

( ) ( ) ( )( )3 1 1 2 2 3 3 3 3
T x, y max 0,x y 1 ,max 0,x y 1 ,x y x y .= + - + - + - 

( ) ( )( )4 1 1 2 2 3 3 3 3
T x, y x y ,max 0,x y 1 ,x y x y .= + - + -  

( ) ( )( )5 1 1 2 2 3 3 3 3
T x, y max 0,x y 1 ,x y , x y x y .= + - + -  

Example 3.  For all *x , y P ,Í  the following operators are the picture fuzzy t-conorms: 

( ) ( ) ( ) ( )( )0 1 1 2 2 3 3
S x, y max x , y ,max 0,x y 1 ,min x , y .= + -  

( )( )1 1 1 1 1 2 2 3 3
S x, y x y x y , x y , x y .= + -  

( ) ( ) ( ) ( )( )2 1 1 2 2 3 3
S x, y min 1,x y ,max 0,x y 1 ,max 0,x y 1 .= + + - + - 

( ) ( ) ( )( )3 1 1 1 1 2 2 3 3
S x, y x y x y ,max 0,x y 1 ,max 0,x y 1 .= + - + - + - 

( ) ( )( )4 1 1 1 1 2 2 3 3
S x, y x y x y ,max 0,x y 1 ,x y .= + - + -  

( ) ( )( )5 1 1 1 1 2 2 3 3
S x, y x y x y , x y ,max 0,x y 1 .= + - + - 

Remark 3. For all *x , y , z PÍ  and y z ,=  the operators 
( )i i 0 ,...,5

T
=

 also satisfy the condition 

( ) ( )T x, y T x, z .=  Similarly, 
( )i i 0 ,...,5

S
=

 also satisfy ( ) ( )S x, y S x, z .=  

The logic operators N ,T  and S  on *P  are corresponding to the basic set-theory operators on PFS()X  

as follows. 

Definition 9. Let N , T  and S  be the picture fuzzy negation, t-norm and t-conorm, respectively, and 

A,B Í PFS()X . Then, the complement of A  w.r.t N  is defined as follows: 

 

the intersection of A   and B   w.r.t T  is defined as follows: 

 

() () ()( )( )( ){ }Í=
A

N

A A
x : ᾧ ợ Ẕᾢ ợ Ẕᾨ ợA xN X ,  (7) 

() () ()( ) () () ()( )( )( ){ }Æ = Í
A A AT B B B

x : ᾧ ợ Ẕᾢ ợ Ẕᾨ ợ ᾧ ợ Ẕᾢ ợ ẔᾨA B , x xT X ,  (8) 
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and the union of A   and B   w.r.t T  is defined as follows: 

 

 

3|  The Single-valued Neutrosophic Distance Measure and the 

Picture Fuzzy Distance Measure 

Recently, Wei has introduced the generalized Dice similarity measures for picture fuzzy sets [17]. 

However, the definition of Wei is without considering the condition related to order relation on picture 

fuzzy sets. The new distance measure on picture fuzzy sets is proposed in this section. It is developed 

from intuitionistic distance measure of Wang et al. [32] and Ngan et al. [8]. 

Definition 10. A single-valued neutrosophic distance measure d  is a function satisfying 

)* *: N N 0, ,è³ ­ +¤éê
d  

( ) ( )x, y y , x ,=d d  

( )x, y 0 x y ,= Ú =d  

If x y z= =  then ( ) ( )x, y x, z¢d d  and ( ) ( )y , z x, z .¢d d  

Definition 11. A picture fuzzy distance measure d  is a single-valued neutrosophic distance measure 

and ( ) *d x, y 0,1 , x, y P .è øÍ " Íé ùê ú
 

Definition 12. The measure 
0

D  is defined as follows 

Proposition 1. The measure 
0

D  is a picture fuzzy distance measure. 

Proof.  Firstly, we have { } { }1 3 3 1
max x , y max x , y 0,1è ø- Íé ùê ú

 and  

( )( )( )1 1 2 2 3 3 1 1 2 2 3 3
x y x y x y x y x y x y- + - + - ¢ + + + + +

( )( )1 2 3 1 2 3
x x x y y y 2.¢ + + + + + ¢ 

Therefore, { } { }( )1 1 2 2 3 3 1 3 3 1

1
0 x y x y x y max x , y max x , y .1

3
¢ - + - + - + ¢-  

Secondly, we obtain that ( ) ( )0 0
x, y y , x=D D  since 

0
D  has the symmetry property between the 

arguments. 

Thirdly, ( ) { } { }1 1 2 2 3 3 1 3 3 10
x y x y x y max x , y max x , y 0 x y.x, y 0 - = - = - = - = Ú= =ÚD  

() () ()( ) () () ()( )( )( ){ }Ç = Íɛ x ,ɖ x ,ɜ x ɛ x ,ɖ x ,ɜ
 

(9) 

( ) { } { }( )= - + - + - " Í- +
 

(10) 
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Finally, let x y z= = , then 
1 1 1 2 2 2 3 3 3

x y z , x y z , x y z .¢ ¢ ¢ ¢ ² ² We obtain that 

1 1 1 1 2 2 2 2 3 3 3 3
x y x z , x y x z , x y x z .- ¢ - - ¢ - - ¢ - 

Moreover, { } { } { } { }1 13 1 133 3
max ,x max y ,x max x , y max x z .z ,² ² ² Hence, 

{ } { } { } { }1 3 3 1 1 3 3 1 x
max x , y max x , y max x , z max x , z .lim

­¤
- ¢ - . Thus, ( ) ( )0 0

x, y x, z .¢D D  Similarly, 

we also have ( ) ( )0 0
y , z x, z .¢D D  

Remark 4. If d  is a picture fuzzy distance measure, then d  is a single-valued neutrosophic distance 

measure. The opposite is not necessarily true. Some picture fuzzy operations were introduced by the group 

of authors of this paper [18] and [19]. Hence, this research is seen as a complete link to the authors' previous 

work on picture fuzzy inference systems. An inference system of neutrosophic theory will be developed in 

another paper as a future work. 

Proposition 2. Let *x, y PÍ . The measure 
0

D  satisfies the following properties: 

() ()( )0 0 S 4

1
N x , N x x .

3
D =  

If 
2 4

x x ,²  then ()( ) ()( )0 0 0 S 4

1
x , N x x , N x x .

3
-D D =  

()( ) ()( )0 0 0 0 2 2

1
x , N y N x , y x y .

3
- -D D =  

( ) () ()( )0 0 0 0 2 2

1
x , y N x , N y x y .

3
- -D D =  

If 
1 3 1 3

x x y y+ = +, then ( ) () ()( )0 0 S S
x, y N x ,N y .D = D  

If 
1 3 1 3

x x y y+ = +, then ()( ) ()( )0 S 0 S
x,N y N x , y .D = D  

()( )0 0 1 3 2

1
x , N x x x x .

3
- +D =  

()( )0 S 1 3 2 4

1
x , N x x x x x .

3
- + -D =  

( ) ( )*0 1 2 3P

1
x ,1 2 2x x x .

3
- + +D =  

( ) ( )*0 3 1 2P

1
x ,0 2 2x x x .

3
- + +D =  

( )* *0 P P
0 ,1 1.D =  
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()( )0 0
x,N x 1D =  if and only if { }* *P P

x 0 ,1 .Í   

()( )0 S
x,N x 1D =  if and only if { }* *P P

x 0 ,1 .Í  

()( )0 0
x,N x 0D =  if and only if 

1 3 2
x x , x 0.= =   

()( )0 S
x,N x 0D =  if and only if 

1 3 2 4
x x , x x .= =   

( )( )( ) ( )( )( ) ( )( )( )0 0 0
0,0,0 , 0,a,0 0,0,0 , a,0,0 0,0,0 , 0,0,a<D D = D  

( )( )( ) ( )( )( ) ( )( )( ) (0 0 0
a,0,0 , 0,0,a a,0,0 , 0,a,0 0,0,a , 0,a,0 , a 0,1 .ø< = = " Íùú

D D D   

Proof.  These properties are proved as follows: 

We have () ()( ) ( )( )( )0 0 S 0 3 1 3 4 1
N x ,N x x ,0,x , x , x , xD = D  

{ } { }( )3 3 4 1 1 3 1 3 1 4

1 1
x x 0 x x x max x , x max x , x x .

3 3
- += =- + - + -   

We have  

()( ) ()( ) ( )( )( ) ( )( )( )0 0 0 S 0 1 2 3 3 1 0 1 2 3 3 4 1
x , N x x , N x x , x , x , x ,0 , x x , x , x , x , x , x- -D D = D D  

{ } { }( )1 3 3 1 12 1 3 3

1
x x 0 x x max x , x max x , xx

3
- + - + - + -=  

{ } { }( )1 3 4 3 12 1 1 3 3

1
x x x x x max x , x ma x

3
,x x x- - + - + -- +   

2 4 42
x x .

3 3

1 1
x x- == -   

We have  

()( ) ()( ) ( )( )( ) ( )( )( )0 0 0 0 0 1 2 3 3 1 0 3 1 1 2 3
x , N y N x , y x , x , x , y ,0 , y x ,0 , x , y , y , y- -D D = D D  

{ } { }( )1 3 3 1 12 1 3 3

1
x y 0 x y max x , y max y , xx

3
- + - + - + -=  

{ } { }( )3 1 2 1 3 3 3 1 1

1
x y 0 y x y ma

3
x x , y max y , x- + - + - + --

2 2

1
x y .

3
= -  

We have  

( ) () ()( ) ( )( )( ) ( )( )( )0 0 0 0 0 1 2 3 1 2 3 0 3 1 3 1
x , y N x , N y x , x , x , y , y , y x ,0 , x , y ,0 , y- -D D = D D  
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{ } { }( )1 1 2 2 3 3 1 3 3 1

1
x y x y x y ma

3
x x , y max x , y- + - -= + - +  

{ } { }( )3 3 1 1 3 1 3 1

1
x y 0 0 x y max x , m

3
y ax y , x- + - + - + --

2 2

1
x y .

3
= -  

We have () ()( ) ( )( )( )0 S S 0 3 4 1 3 4 1
N x ,N y x ,x , x , y , y , y=D D  

{ } { }( )3 3 4 4 1 1 3 1 3 1

1
x y x y x y max x , y a x

3
m x y , .- + - + - + -= Further, 

( )( )4 4 1 2 3 1 2 3 2 2
x y 1 x x x 1 y y y x y- = - - - - - - - = -. Thus, () ()( ) ( )0 S S 0

N x ,N y x, y .=D D  

We have ()( ) ( )( )( )0 S 0 1 2 3 3 4 1
x,N y x ,x , x , y , y , yD = D  

{ } { }( )1 3 2 4 3 1 1 1 3 3

1
x y x y x y max x , y a x

3
m x y , .- + - + - + -= In other hand, 

()( ) ( )( )( )0 S 0 3 4 1 1 2 3
N x , y x , x , x , y , y , y=D D   

{ } { }( )3 1 4 2 1 3 3 3 1 1

1
x y x y x y max x , y a x

3
m x y , .- + - + - + -= Further,  

2 4 2 1 2 3 2 1 2 3 2 4
x y x 1 y y y x 1 x y x y x .- = - + + + = - + + + = -Thus, 

()( ) ()( )0 S 0 S x
x , N y N x , y .lim

­¤
D = D  

We have ()( ) ( )( )( )0 0 0 1 2 3 3 1
x,N x x ,x , x , x ,0, xD = D  

{ } { }( )1 3 1 1 3 33 2 1 1 3 2

1
x 0 x max x , x max x , x

1
x x x x x x .

3 3
= - + - - ++ - =-+  

We have  

()( ) ( )( )( )0 S 0 1 2 3 3 4 1
x,N x x ,x , x , x , x , xD = D

{ } { }( )3 21 3 1 1 34 1 1 3 2 43

1
x x max x ,

1
x x x x xx max x , x

3
x x x .

3
- + - + - + - == - + - 

We have ( ) ( )( )( )*0 0 1 2 3P
x,1 x , x , x , 1,0,0D = D  

{ } { }( ) ( )21 3 1 3 1 2 3

1
x 1 0 x 0 max x ,0

1
max x ,x 2 2x x x .

3
1

3
- + - + - + - + +- ==  

We have ( ) ( )( )( )*0 0 1 2 3P
x,0 x , x , x , 0,0,1D = D  

{ } { }( ) ( )21 3 1 3 3 1 2

1
x 0 0 x 1 max x ,1

1
max x ,x 2 2x x x .

3
0

3
- + - + - + - + +- ==  

We have ( ) ( )( )( )* *0 0P P
0 ,1 1,0,0 , 0,0,1 1.=D = D  
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Assume that ()( )0 0
x,N x 1,D = we have 

1 3 2

1
x x x 1.

3
- + =  Since ( )1 3 2 1 3 2

1
x x x x x x 1

3
- + ¢ + + ¢.  

Therefore, ( )1 3 2 1 3 2

1
x x x x x x 1.

3
- + = + + = We obtain that 

2
x 0=  and 

1 3
x x 1.- =  Thus, 

{ }* *P P
x 0 ,1 .Í Assume that ()( )0 S

x,N x 1,D = we have 
1 3 2 4

1
x x x x 1.

3
- + -=  Since 

( )( )1 3 2 4 1 3 2 4

1
x x x x x x x x 1.

3
- + - ¢ + + + = We obtain that 

2 4
x x 0= = and 

1 3
x x 1.- =  Thus, 

{ }* *P P
x 0 ,1 .Í  Assume that ()( )0 0

x,N x 0,D = we have 
1 3 2

1
x x x 0.

3
- + =  Hence, 

2
x 0=  and 

1 3
x x .=

Assume that ()( )0 S
x,N x 0,D = we have 

1 3 2 4

1
x x x x 0.

3
- + -=  Hence, 

2 4
x x=  and 

1 3
x x .=  

We have ( )( )( )0

a
0 ,0 ,0 , 0 ,a,0 ,

3
=D  

( )( )( ) ( )( )( )0 0

2a
0 ,0 ,0 , a,0 ,0 0 ,0 ,0 , 0 ,0 ,a ,

3
=D = D  and  

( )( )( ) ( )( )( ) ( )( )( )0 0 0
a,0,0 , 0,0,a a,0,0 , 0,a,0 0,0,a , 0,a,0 a.= = =D D D   

Remark 5. The order ò= ó on *P  corresponds to the following order on PFS()X : 

 

Remark 6. The picture fuzzy distance measure on *P  corresponds to the picture fuzzy distance 

measure on PFS()X , i.e., for all A,B Í PFS { }( )1 2 m
X x ,x ,..., x= , we have the picture fuzzy distance 

measure 
0

D  between A  and B  as follows: 

 

 

Proposition 3. Consider the picture fuzzy distance measure 
0

D  in Eq. (10), the picture fuzzy t-norms 

i( i 0 ,...,5 )
T

=
 in Example 2, the picture fuzzy t-conorms i( i 0 ,...,5 )

S
=

 in Example 3, and the picture fuzzy negation 

0
N  in Example 1. Let A  and B  be two picture fuzzy sets on the universe { }1 2 m

X x ,x ,..., x= . Then, we 

have the following properties: 

( ) ( ) ( ){ }
2 i j k0 T 0 T T 0 T

D A B,B max D A B,A B ,D A B,B ,Æ ² Æ Æ Æ  

( ) ( ) ( ){ }
2 i j k0 T 0 T T 0 T

D A B,A max D A B,A B ,D A B,A ,Æ ² Æ Æ Æ  

0 0 0 0 0 0

2 i j k

N N N N N N

0 T 0 T T 0 T
D A B , A max D A B , A B ,D A B , A ,

ë ûå õ å õ å õî îæ ö æ ö æ öÆ ² Æ Æ Æì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 

() () () () () ()Ì Ú ¢ ¢ ² " Íɛ x ɛ x ,ɖ x ɖ x ,ɜ x ɜ x , x X.
 

(11) 

( ) () () () () () ()(

() (){ } () (){ })
=

= - + - + -

+ -

äɛ x ɛ x ɖ x ɖ x ɜ x ɜ x

ɛ x ,ɜ x max ɜ x ,ɛ
 

(12) 
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0 0 0 0 0 0

2 i j k

N N N N N N

0 T 0 T T 0 T
D A B ,B max D A B , A B ,D A B ,B ,

ë ûå õ å õ å õî îæ ö æ ö æ öÆ ² Æ Æ Æì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 

( ) ( ){ } ( ){ }i , j x , y | x , y 0,...,5 \ 4,5" Í =  and k 0 , 1,3 , 4 ,5.=  

( ) ( ) ( ){ }
5 i j k0 S 0 S S 0 S

D A B,A max D A B,A B ,D A B,A ,Ç ² Ç Ç Ç  

( ) ( ) ( ){ }
5 i j k0 S 0 S S 0 S

D A B,B max D A B, A B ,D A B,B ,Ç ² Ç Ç Ç  

0 0 0 0 0 0

5 i j k

N N N N N N

0 S 0 S S 0 S
D A B , A max D A B , A B ,D A B , A ,

ë ûå õ å õ å õî îæ ö æ ö æ öÇ ² Ç Ç Çì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 

0 0 0 0 0 0

5 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,B max D A B , A B ,D A B ,B ,

ë ûå õ å õ å õî îæ ö æ ö æ öÇ ² Ç Ç Çì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 

( ) ( ){ } ( ){ }i , j x , y | x, y 0,1,3,4,5 \ 1,3" Í =  and k 0 , 1,3 , 4.=  

( ) ( ) ( ){ }
2 i j k0 S 0 S S 0 S

D A B,A max D A B,A B ,D A B,A ,Ç ² Ç Ç Ç  

( ) ( ) ( ){ }
2 i j k0 S 0 S S 0 S

D A B,B max D A B, A B ,D A B,B ,Ç ² Ç Ç Ç  

0 0 0 0 0 0

2 i j k

N N N N N N

0 S 0 S S 0 S
D A B , A max D A B , A B ,D A B , A ,

ë ûå õ å õ å õî îæ ö æ ö æ öÇ ² Ç Ç Çì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 

0 0 0 0 0 0

2 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,B max D A B , A B ,D A B ,B ,

ë ûå õ å õ å õî îæ ö æ ö æ öÇ ² Ç Ç Çì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 

i , j 0 , 2 ,3 , 4 ," =  and k 0 ,3, 4.=  

( ) ( )
i j 0 00 T S 0 T S

D A B, A B D A B, A BÆ Ç ² Æ Ç  and 

0 0 0 0

i j 0 0

N N N N

0 T S 0 T S
D A B , A B D A B , A B , i , j 0 ,...,5.
å õ å õ
æ ö æ öÆ Ç ² Æ Ç " =æ ö æ öæ ö æ ö
ç ÷ ç ÷

 

Proof.  These properties are proved as follows. Firstly, we see that for all x , y 0 , 1 ,è øÍé ùê ú 

( ) ( )max 0,x y 1 xy min x, y+ - ¢ ¢  and ( ) ( )min 1,x y x y xy max 0,x y 1 .+ ² + - ² + -Hence, 

( ) ( ) ( )( ) ( )1 1 2 2 3 3 1 1 2 2 3 3 3 3
max 0,x y 1 ,max 0,x y 1 ,min 1,x y x y , x y , x y x y .+ - + - + + -= This means 

2 1
T T .=  Similarly, we obtain that 

2 3 4 1 0
T T T T T= = = =  and  

2 3 5 1 0
T T T T T .= = = = Hence,  

2 3 4 1 0T * T * T * T * T *
A B A B A B A B A B A,Æ Ì Æ Ì Æ Ì Æ Ì Æ Ì 
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2 3 5 1 0T * T * T * T * T *
A B A B A B A B A B A,Æ Ì Æ Ì Æ Ì Æ Ì Æ Ì 

2 3 4 1 0T * T * T * T * T *
A B A B A B A B A B B,Æ Ì Æ Ì Æ Ì Æ Ì Æ Ì and 

2 3 5 1 0T * T * T * T * T *
A B A B A B A B A B B.Æ Ì Æ Ì Æ Ì Æ Ì Æ Ì 

Since 
0

D  is the picture fuzzy distance measure, thus  

( ) ( ) ( ){ }
2 i j k0 T 0 T T 0 T

D A B,A max D A B,A B ,D A B,AÆ ² Æ Æ Æ  and 

( ) ( ) ( ){ }
2 i j k0 T 0 T T 0 T

D A B,B max D A B,A B ,D A B,B ,Æ ² Æ Æ Æ  

( ) ( ){ } ( ){ }i , j x , y | x , y 0,...,5 \ 4,5" Í =  and k 0 , 1,3 , 4 ,5.=  Furthermore, we have 

() () ()( )( )( ){ } () ()( )( ){ }0

A A A A A

N

0
x : ᾧ ợ Ẕᾢ ợ Ẕᾨ ợ ợ ể ợấ ᾨ ợ Ẕẘ ợ,XA ,ᾧN x= Í Í= Ã. 

It is easy to prove the following lemma: If 
*

A B,Ì  then 
0 0N N

*
B A .Ì  Thus, 

0 0 0 0 0 0

2 i j k

N N N N N N

0 T 0 T T 0 T
D A B , A max D A B , A B ,D A B , A

ë ûå õ å õ å õî îæ ö æ ö æ öÆ ² Æ Æ Æì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 and 

0 0 0 0 0 0

2 i j k

N N N N N N

0 T 0 T T 0 T
D A B ,B max D A B , A B ,D A B ,B ,

ë ûå õ å õ å õî îæ ö æ ö æ öÆ ² Æ Æ Æì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 

( ) ( ){ } ( ){ }i , j x , y | x , y 0,...,5 \ 4,5" Í =  and k 0 , 1,3 , 4 ,5.=  

Secondly, we have 
0 4 3 5

S S S S ,= = =  
0 4 3 2

S S S S ,= = =  and 
0 4 1 5

S S S S .= = =  Hence, 

0 4 3 5* S * S * S * S
A A B A B A B A B,Ì Ç Ì Ç Ì Ç Ì Ç 

0 4 3 5* S * S * S * S
B A B A B A B A B,Ì Ç Ì Ç Ì Ç Ì Ç 

0 4 1 5* S * S * S * S
A A B A B A B A B,Ì Ç Ì Ç Ì Ç Ì Ç and 

0 4 1 5* S * S * S * S
B A B A B A B A B.Ì Ç Ì Ç Ì Ç Ì Ç 

Therefore ( ) ( ) ( ){ }
5 i j k0 S 0 S S 0 S

D A B,A max D A B,A B ,D A B,A ,Ç ² Ç Ç Ç  

( ) ( ) ( ){ }
5 i j k0 S 0 S S 0 S

D A B,B max D A B, A B ,D A B,B ,Ç ² Ç Ç Ç  
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0 0 0 0 0 0

5 i j k

N N N N N N

0 S 0 S S 0 S
D A B , A max D A B , A B ,D A B , A ,

ë ûå õ å õ å õî îæ ö æ ö æ öÇ ² Ç Ç Çì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 and 

0 0 0 0 0 0

5 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,B max D A B , A B ,D A B ,B ,

ë ûå õ å õ å õî îæ ö æ ö æ öÇ ² Ç Ç Çì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 

( ) ( ){ } ( ){ }i , j x , y | x, y 0,1,3,4,5 \ 1,3" Í =  and k 0 , 1,3 , 4.=  

Now, we have 
0 4 3 2* S * S * S * S

A A B A B A B A BÌ Ç Ì Ç Ì Ç Ì Ç and  

0 4 3 2* S * S * S * S
B A B A B A B A BÌ Ç Ì Ç Ì Ç Ì Ç. 

Thus, for all i , j 0 , 2 ,3, 4,=  and k 0 ,3 , 4 ,= we have 

( ) ( ) ( ){ }
2 i j k0 S 0 S S 0 S

D A B, A max D A B, A B ,D A B, AÇ ² Ç Ç Ç , 

( ) ( ) ( ){ }
2 i j k0 S 0 S S 0 S

D A B,B max D A B, A B ,D A B,B ,Ç ² Ç Ç Ç  

0 0 0 0 0 0

2 i j k

N N N N N N

0 S 0 S S 0 S
D A B , A max D A B , A B ,D A B , A ,

ë ûå õ å õ å õî îæ ö æ ö æ öÇ ² Ç Ç Çì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 and 

0 0 0 0 0 0

2 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,B max D A B , A B ,D A B ,B .

ë ûå õ å õ å õî îæ ö æ ö æ öÇ ² Ç Ç Çì üæ ö æ ö æ öæ ö æ ö æ öî îç ÷ ç ÷ ç ÷í ý
 

Finally, we see that 
2 0 0 5T * T * * S * S

A B A B A A B A B.Æ Ì Æ Ì Ì Ç Ì Ç  

Thus, we obtain that ( ) ( )
2 5 0 00 T S 0 T S

D A B, A B D A B, A BÆ Ç ² Æ Ç  and the remaining inequalities of 

Proposition 3.     

4| An Application of the Picture Fuzzy Distance Measure for 

Controlling Network Power Consumption 

4.1| The Problem and the Solution 

The interconnection network is important in the parallel computer systems. Saving interconnection 

network power is always interested, researched and becoming more and more urgent in the current 

technological era. In order to achieve high performance, the architectural design of the interconnection 

network requires an effective power saving mechanism. The aim of this mechanism is to reduce the 

network latency (the average latency of a message) and the percentages between the number of links that 

are kept switched on by the saving mechanism and the total number of links [25]. As a simplified way of 

understanding, this is a matter of optimizing the number of links opened in a networking system. This is a 

decision-making problem for the trunk link state. 

In 2010, Alonso et al. introduced the power saving mechanism in regular interconnection network [25]. 

This model dynamically increases or reduces the number of links that compose a trunk link. This is done 
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by measuring network traffic and dynamically turning these individual links on or off based on a 

on off
u / u  threshold policy with keeping at least one operational link (see Fig. 1 and Fig. 2). 

The two parameters 
on

u  and 
off

u  are designed based on different requirements of mechanism 

aggressiveness (controlled by the value 
avg on off

u (u u ) / 2= + ) and mechanism responsiveness (controlled 

by the difference 
on off

u u- ).  

 

 

 

Fig. 1. Four trunk link states. 

 

 

 

 

 

Fig. 2. The operational mechanism of switches. 

In order to avoid the possibility of cyclic state transitions that makes the system become unstable, the 

following restrictions hold in the selection on  and off : 

Thus, the different values of 
off

u  and 
on

u  that satisfy Eq. (13) are stiffly chosen in order to achieve 

different goals of responsiveness and aggressiveness for the power saving mechanism. In 2015, they 

continue to study and modify power consumption control in fat-tree interconnection networks based 

on the static and dynamic thresholds policies [26]. In general, this threshold policy is hard because it is 

without any fuzzy approaches, parameter learning and optimizing processes. 

In 2017, Phan et al. [27] proposed a new method in power consumption estimation of network-on-chip 

based on fuzzy logic [27]. However, this fuzzy logic system based on Sugeno model is too rudimentary 

and the parameters here are chosen according to the authors' quantification. In this paper, aiming to 

replace the above threshold policy in decision making problem for the trunk link state, we propose a 

higher-level fuzzy system based on the proposed single-valued neutrosophic distance measure in Section 

3. 

4.2|  The Adaptive Neuro Picture Fuzzy Inference System (ANPFIS) 

In this subsection, an ANPFIS based on picture fuzzy distance measure is introduced to decision making 

problems. ANPFIS is a modification and combination between ANFIS [28], picture fuzzy set, and 

picture fuzzy distance measure. Hence, ANPFIS operates based on the picture fuzzification and 

< ¢ ¢
 

(13) 
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defuzzification processes, the picture fuzzy operators and distance measure, and the learning capability for 

automatic picture fuzzy rule generation and parameter optimization. The model is showed as in the Fig. 3. 

Fig. 3. The proposed ANPFIS decision making model. 

The model has the inputs are number values and the output { }i
S , i 1,..., nÍ  is the chosen solution. 

ANPFIS includes four layers as follows: 

Layer 1-Picture Fuzzification. Each input value is connected to three neuros 1

i
O  , in other words is 

fuzzified by three corresponding picture fuzzy sets named òHighó, òMediumó, and òLowó. We use the 

Picture Fuzzy Gaussian Function (PFGF): the PFGF is specified by two parameters. The Gaussian 

function is defined by a central value m   and width k 0> . The smaller the k , the narrower the curve is. 

Picture fuzzy Gaussian positive membership, neutral, and negative membership functions are defined as 

follows 

()
( )

2

2

x m
ᾧ ợ Ốợớ

2k

å õ
æ ö-æ ö

= -æ ö
æ ö
æ öæ ö
ç ÷

, 

() ()( )1
ᾨ ợ Ỏ ẙ ᾧ ợ Ẕ= - ( )1

c 0,1 ,è øÍé ùê ú
 and 

() () ()( )2
ᾢ ợ Ỏ ẙ ᾧ ợ ᾨ ợ Ẕ= - - ( )2

c 0,1 ,è øÍé ùê ú
where the parameters mÃ and k >  are trained. 

Layer 2-Automatic Picture Fuzzy Rules. The picture fuzzy t-norm T  (see. Definition 7 and Example 2) 

is used in this step in order to establish the IF-THEN picture fuzzy rules, i.e., the links between the neuros 
1

i
O  of Layer 1 and the neuros 2

k
O  of Layer 2 as follows 

òIf 1

i
O  is x  and 1

j
O  is y  then 2

k
O  is ( )T x, y .ó 

For examples ( ) ( )ᾦ

1
T x, y T x, y= , where [18] 
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( )
( )( ) ( )( )

( )3 3 3 3 3

1
ᾦ ᾦ ᾦ ᾦᾦ ᾦ1 1 2 2

1 3 3 3 3

1 1 1 1 1 1 2 2 2 2 2 2

x y x y
T x , y , , x y x y ,

ᾦ ẙ ᾦ ợ Ụ ợ Ụ ᾦ ẙ ᾦ ợ Ụ ợ Ụ

å õ
æ ö
æ ö= + -æ ö
æ öæ ö+ - + - + - + -
ç ÷

here 

*x , y P ,Í  and the parameters )1 2 3
ᾦ Ẕᾦ Ẕᾦ ẙẔèÍ +¤éê

 are trained. 

Layer 3 – Calculate the difference to the samples. The difference between the input  and the 

sample  is calculated by the proposed picture fuzzy distance measure 
0

D  in Eq. (10) as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ){ } ( ) ( ){ }}

=

= - + - + -

+ -

ä
m

i 1 i 2 i 1 i 2 i 1 i 2 i
i 1

1 i 2 i 2 i 1

0

i

1
I,K ᾴẖ ᾧ ợ ᾧ ợ ᾢ ợ ᾢ ợ ᾨ ợ ᾨ ợ

3m
max ᾧ ợ Ẕᾨ ợ ỘỌợ ᾧ ợ Ẕᾨ ợ

D

,
 

where, m  is the number of attribute neuro values and 
( )i i 1,...,m
ᾴ

=
 are the trained weights. 

Layer 4-Picture Defuzzification. In this final step, we point out the minimum difference value in all 

values received from Layer 3, ( ) ( )0 t0
I ,KMinD D I ,K .=  

Then, the output value of the ANPFIS is the solution 
t

S  which is corresponding to the sample 
t

K .  

4.3|  Application of the ANPFIS algorithm in Controlling Network Power 

Consumption 

In this part, we present the installation of ANPFIS algorithm in the trunk link state Controller of 

interconnection network.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The architecture of the trunk link state controller based on ANPFIS. 

Fig. 4 describes the architecture of the trunk link state Controller based on ANPFIS. This Controller is 

developed from the previous architecture which is proposed by Phan et al. in 2017 for network-on-chip 

[27]. For details, each router input port will be equipped with a traffic counter. These counters count 

the data flits passing through the router in certain clock cycles based on the corresponding response 

signals from the router. The flits through the router is counted in a slot of time. When the counting 
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finish, the traffic through the corresponding port will be calculated [27]. Each port of the router is 

connected with a Counter, then there are four average values of the traffic.  

The Max Average (MA) block receives the values of traffic from the counters which are connected with 

the routers ports. It compares these values and chose the maximum value for Input 1 of the ANPFIS.  

The Derivative (DER) block calculates the derivative of traffics obtained from the counters. This value is 

defined as an absolute value of the traffics change in a unit of time. This value is determined according to 

the maximum traffic value decided by MA block. After that, the DER gives it to the Input 2 of the ANPFIS 

for further processes.  

The value domain of Input 1 and Input 2 is from 0 to the maximum bandwidth value. They are normed 

into [0, 1] by Min Max normalization. 

Through the ANPFIS block, the received Output is the trunk link state { }i
S , i 1,2,3,4 .Í  The received 

new state are adjusted by the Link State Adjusting block. 

5|  Experiments on Real-World Datasets 

5.1|  Experimental Environments 

In order to evaluate performance, we test the ANPFIS method on the real datasets of the network traffic 

history taken from the UPV (Universitat Politècnica de València) university with related methods. The 

descriptions of the experimental dataset are presented in Table 1. 

Table 1. The descriptions of the experimental dataset. 

 

 

 

We compare the ANPFIS method against the methods of Hung (M2012) [21], Junjun et al. (M2013) [22], 

Maheshwari et al. (M2016) [23], Ngan et al. (H-max) [8], and ANFIS [28] in the Matlab 2015a programming 

language. The Mean Squared Error (MSE) degrees of these methods are given out to compare their 

performance. 

5.2|  The Quality 

The MSE degree of the ANPFIS method are less than those of other methods. The specific values are 

expressed in Table 2. 

Table 2. The performance of the methods. 

 

 

No. elements (checking-cycles) 16.571  
No. attributes 2  
 (MA, DER)  
The normalized value domain of attributes MA DER 
 [0,1] [-1,1] 
No. classes (No. link states) 4  

Method M2012 [21] M2013 [22] M2016 [23] H -max [8] ANFIS [28] ANPFIS 

MSE 
0.2009
  

0.2606 0.2768 0.1259 0.2006 0.0089 
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Fig. 5 clearly show the difference between the performance values of six considered algorithms. In Fig. 

5, the blue columns illustrate the MSE values of the methods. It can be seen that the columns of the 

other methods are higher than that of the ANPFIS method. That means the accuracy of the proposed 

method is better than that of the related methods on the considered dataset. 

Fig. 5. The MSE values of 6 methods. 

 

6|  Conclusion 

The neutrosophic theory increasingly attracts researchers and is applied in many fields. In this paper, a 

new single-valued neutrosophic distance measure is proposed. It is also a distance measure between 

picture fuzzy sets and is a development of the H-max measure which was introduced by Ngan et al. [8]. 

Further, an Adaptive NPFIS based on the proposed measure is shown and applied to the decision 

making for the link states in interconnection networks. The proposed model is tested on the real datasets 

taken from the UPV university. The MSE value of the proposed methods is less than that of other 

methods. 
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Appendix 

Source code and datasets of this paper can be found at this link, 

https://sourceforge.net/projects/pfdm-datasets-code/. 

 

 

 

 

 

 

 

  

 

 

 

 

 


