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Abstract 

 

1 | Introduction  

In 1965, Zadeh [18] and [19] introduced the concept of a fuzzy set. He also developed the notion of 

interval-valued fuzzy set in 1975, which extends the fuzzy set. A semigroup is an algebraic structure 

comprising a non-empty set together with an associative binary operation. Atanassov [2] introduced 

the intuitionistic fuzzy set with some properties. Atanassov [3] developed the concept of interval-

valued intuitionistic fuzzy set. Thillaigovindan and Chinnadurai [15, 16] discussed interval-valued 

fuzzy ideals in algebraic structures. In 2018, Chen [4] and [5] introduced the concept of interval-

valued Pythagorean fuzzy outranking of various methods in the application. Garg [8] and [9] 

presented the notion of interval-valued Pythagorean fuzzy sets of multi-criteria decision-making 

methods. In 2013, Yager [17] started the notion of Pythagorean fuzzy set, the sum of the squares of 

membership and non-membership belongs to the unit interval [0, 1]. Peng [13] developed the new 

operations for an interval-valued Pythagorean fuzzy set. Peng and Yang [14] presented the notion of 

interval-valued Pythagorean fuzzy set.  
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In 2019, Hussain et al. [10] started the notions of rough Pythagorean fuzzy ideals in the semigroups. 

Akram[1] established the properties of fuzzy lie algebras. Kumar et al. [11] approached transportation 

decision making problems using Pythagorean fuzzy set. Das and Edalatpanah [6] studied the concept of 

fuzzy linear fractional progress with trapezoidal fuzzy numbers. Edalatpanah [7] used triangular 

intuitionistic fuzzy numbers to deal with data envelopment analysis model. Najafi and Edalatpanah [12] 

used iterative methods to study linear complementarily problems. In this paper, we discuss some of the 

properties of interval-valued Pythagorean fuzzy ideals in the semigroups. 

2| Preliminaries   

Definition 1. [12]. Let 𝑋 be a universe of discourse, A Pythagorean Fuzzy Set (PFS) 𝑃 =

{𝑤, 𝜙𝑝(𝑤), 𝜓𝑝(𝑤)/𝑤 ∈ 𝑋} where 𝜙:𝑋 → [0,1] and 𝜓:𝑋 → [0,1] represent the degree of membership and 

non-membership of the object 𝑤 ∈ 𝑋 to the set 𝑃 subset to the condition 0 ≤ (𝜙𝑝(𝑤))
2
+ (𝜓𝑝(𝑤))

2
≤ 1 

for all 𝑤 ∈ 𝑋. For the sake of simplicity a PFS is denoted as 𝑃 = (𝜙𝑝(𝑤), 𝜓𝑝(𝑤)). 

3| Interval-Valued Pythagorean Fuzzy Ideals in Semigroups   

Definition 2. An Interval-Valued Pythagorean Fuzzy Set (IVPFS) 𝑃̃ = [𝜙𝑝̃, 𝜓𝑝̃] on S is known to be an 

interval-valued Pythagorean fuzzy sub-semigroup of S. If for all  𝑤1, 𝑤2 ∈ 𝑆, it holds. 

 ϕp̃(w1w2) ≥ min{ϕp̃(w1), ϕp̃(w2)}, 

ψp̃(w1w2) ≤ max{ψp̃(w1), ψp̃(w2)}. 

Example 1. Consider a semigroup 𝑆 = {𝑢, 𝑣, 𝑤, 𝑥, 𝑦} with the Cayley Table. 

Table 1. Cayley table.  

 

 

 

 

 

 Define an interval-valued Pythagorean fuzzy set(IVPFS) 𝑃̃ = [𝜙𝑝̃, 𝜓𝑝̃] in 𝑆 as follows. 

 

 

 

 

 

 

• u v w x y 

𝑢 u u u u u 

𝑣 u v u x u 

𝑤 u y w w y 

𝑥 u v x x v 

𝑦 u y u w u 

S [ϕp̃(w1), ψp̃(w1)], 

u [0.7,0.8], [0.1,0.2], 

v [0.4,0.6], [0.4,0.5], 

w [0.3,0.5], [0.5,0.6], 

x [0.1,0.2], [0.3,0.5], 

y [0.3,0.5], [0.5,0.6]. 
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 ϕp̃(uv) ≥ min{ϕp̃(u), ϕp̃(v)} 

([0.7,0.8],[0.1,0.2]) ≥[0.4,0.6],[0.1,0.2]. 

ψp̃(uv) ≤ max{ψp̃(u), ψp̃(v)}. 

([0.7,0.8],[0.1,0.2])≤[0.7,0.8],[0.4,0.5]. 

Thus 𝑃̃ = [𝜙𝑝̃, 𝜓𝑝̃] is an Interval-Valued Pythagorean Fuzzy Sub-Semigroup (IVPFSS) of 𝑆.   

Definition 3. An IVPFS 𝑃̃ = (𝜙𝑝̃, 𝜓𝑝̃) on semigroup 𝑆, is said to be an interval-valued Pythagorean fuzzy 

left (P̃LI)(resp.right(P̃RI)) ideal of S. If for all 𝑤1, 𝑤2 ∈ 𝑆, it holds. 

 ϕp̃(w1w2) ≥ ϕp̃(w2); 

     ψp̃(w1w2) ≤ ψp̃(w2) (resp.right(P̃RI)); 

ϕp̃(w1w2) ≥ ϕp̃(w1); 

     ψp̃(w1w2) ≤ ψp̃(w1).   

Definition 4. An IVPFS 𝑃̃ = [𝜙𝑝̃, 𝜓𝑝̃] on S is called IVPFI (𝑃̃I) of S. If for all 𝑤1, 𝑤2 ∈ 𝑆 , it 𝑃 ̃is both a left 

and right IVPFI of 𝑆. 

(w1w2) ≥ max{ϕp̃(w1), ϕp̃(w2)}; 

 ψp̃(w1w2) ≤ min{ψp̃(w1), ψp̃(w2)}.    

Definition 5. An IVPFS 𝑃̃ = [𝜙𝑝̃, 𝜓𝑝̃] on S is known to be an interval-Valued Pythagorean Fuzzy Bi-Ideal 

(IVPFBI) (𝑃̃𝐵𝐼) of S. If for all  𝑎,𝑤1, 𝑤2 ∈ 𝑆 and satisfy. 

ϕp̃(w1aw2) ≥ min{ϕp̃(w1), ϕp̃(w2)}; 

ψp̃(w1aw2) ≤ max{ψp̃(w1), ψp̃(w2)}. 

Example 2. Consider a semigroup 𝑆 = {𝑢, 𝑣, 𝑤, 𝑥, 𝑦} with the Cayley Table. 

Define an interval-valued Pythagorean fuzzy set 𝑃̃ = [𝜙𝑝̃, 𝜓𝑝̃] in 𝑆 as follows.  

 

 

 

 

Thus 𝑃̃ = [𝜙𝑝̃, 𝜓𝑝̃] is an interval valued Pythagorean fuzzy bi-ideal of 𝑆.   

S [ϕp̃(w1), ψp̃(w1)], 

u [0.8,0.9], [0.1,0.3], 

v [0.3,0.5], [0.7,0.9], 

w [0.4,0.6], [0.6,0.7], 

x [0.3,0.5], [0.7,0.9], 

y [0.7,0.8], [0.4,0.5]. 
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Definition 7. An IVPFS 𝑃̃ = ⟨[𝜙𝑝̃, 𝜓𝑝̃]⟩ on S is known to be an interval-valued Pythagorean fuzzy 

interior ideal (IVPFII) (𝑃̃𝐼𝐼) of S. If for all  𝑎,𝑤1, 𝑤2 ∈ 𝑆 and satisfy. 

ϕp̃(w1aw2) ≥ ϕp̃(a); 

ψp̃(w1aw2) ≤ ψp̃(a).   

Definition 8. For any non-empty subset 𝑁 of a semigroup 𝑆 is defined to be a structure 𝜒𝑁 =

{𝑤1, [𝜙̃𝜒𝑁
(𝑤1), 𝜓̃𝜒𝑁

(𝑤1)]|𝑤1 ∈ 𝑆} which is briefly denoted by 𝜒𝑁 = [𝜙̃𝜒𝑁
, 𝜓̃𝜒𝑁

]  

where,  𝜙̃𝜒𝑁
(𝑤1) = { 

 
  
 
 
1 ̃𝑖𝑓 𝑥 ∈ 𝑁

0̃ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝜓̃𝜒𝑁
(𝑤1) = {

0̃ 𝑖𝑓 𝑥 ∈ 𝑁

1 ̃𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

Theorem 1. Let 𝑆 be a semigroup. Then the following are equivalent. 

The intersection of two interval-valued Pythagorean fuzzy sub-semigroup of 𝑆, is an interval-valued 

Pythagorean fuzzy sub-semigroup of 𝑆. 

The intersection of two interval-valued Pythagorean fuzzy left (resp. right) ideal of 𝑆, is IVPFLI (resp. 

IVPFRI) of 𝑆.  

Proof. Let 𝑃1̃ = [𝜙̃𝑝1
, 𝜓̃𝑝1

] and 𝑃2̃ = [𝜙̃𝑝2
, 𝜓̃𝑝2

] be two interval-valued Pythagorean fuzzy sub-semigroup 

of S. Let 𝑤1, 𝑤2 ∈ 𝑆. 

Then, 

(ϕ̃p1 ∩ ϕ̃p2)(w1,w2) = min{ϕ̃p1(w1,w2), ϕ̃p2(w1, w2)} 

≥ min {min{ϕ̃p1(w1), ϕ̃p1(w2)},min{ϕ̃p2(w1), ϕ̃p2(w2)}} 

= min {min{ϕ̃p1(w1), ϕ̃p2(w1)},min{ϕ̃p1(w2), ϕ̃p2(w2)}} 

= min{ϕ̃p1 ∩ ϕ̃p2(w1), ϕ̃p1 ∩ ϕ̃p2(w2)}; 

(ψ̃p1 ∪ ψ̃p2
)(w1, w2) = max{ψ̃p1

(w1,w2), ψ̃p2
(w1,w2)} 

≤ max {max{ψ̃p1
(w1), ψ̃p1

(w2)},max{ψ̃p2
(w1), ψ̃p2

(w2)}} 

= max {max{ψ̃p1
(w1), ψ̃p2

(w1)},max{ψ̃p1
(w2), ψ̃p2

(w2)}} 

= max{ψ̃p1 ∪ ψ̃p2
(w1), ψ̃p1 ∪ ψ̃p2

(w2)}. 

Therefore, P̃1 ∩ P̃2 = {⟨(ϕ̃p1
∩ ϕ̃p2

), (ψ̃p1
∪ ψ̃p2

)⟩}. 

Interval-valued Pythagorean fuzzy sub-semigroup of 𝑆. 



297 

 

In
te

rv
a
l 

va
lu

e
d

 P
y
th

a
g

o
re

a
n

 f
u

z
z
y
 i

d
e
a
ls

 i
n

 s
e
m

ig
ro

u
p

s
 

(ϕ̃p1 ∩ ϕ̃p2)(w1,w2) = min{ϕ̃p1(w1, w2), ϕ̃p2(w1, w2)}   

 ≥ min{ϕ̃p1(w2), ϕ̃p2(w2)} 

= (ϕ̃p1 ∩ ϕ̃p2)(w2); 

(ψ̃p1 ∪ ψ̃p2
)(w1,w2) = max{ψ̃p1

(w1, w2), ψ̃p2
(w1, w2)} 

≤ max{ψ̃p1
(w2), ψ̃p2

(w2)} 

= (ψ̃p1 ∪ ψ̃p2
)(w2). 

Therefore, 𝑃̃1 ∩ 𝑃̃2 = {⟨(𝜙̃𝑝1
∩ 𝜙̃𝑝2

), (𝜓̃𝑝1
∪ 𝜓̃𝑝2

)⟩} is an interval-valued Pythagorean fuzzy left (resp. right) 

ideal of 𝑆.   

Theorem 2. An IVPFS 𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] of a semigroup 𝑆 is an IVPFBI of S, if and only if ⟨(𝜙𝑝
𝐿, 𝜙𝑝

𝑈), (𝜓𝑝
𝐿, 𝜓𝑝

𝑈)⟩ 

of 𝑆.  

Proof. Let  𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] be an interval-valued Pythagorean fuzzy bi-ideal of 𝑆, for any 𝑤1, 𝑤2 ∈ 𝑆. 

Then, we have membership 

[ϕp
L(w1w2), ϕp

U(w1w2)] = ϕ̃p(w1w2) 

≥ min{ϕ̃p(w1), ϕ̃p(w2)} 

= min{[ϕp
L(w1), ϕp

U(w1)], [ϕp
L(w2), ϕp

U(w2)]} 

= min{[ϕp
L(w1), ϕp

L(w2)], [ϕp
U(w1), ϕp

U(w2)]}. 

It follows that 𝜙𝑝
𝐿(𝑤1𝑤2) ≥ 𝑚𝑖𝑛{𝜙𝑝

𝐿(𝑤1), 𝜙𝑝
𝐿(𝑤2)} and 𝜙𝑝

𝑈(𝑤1𝑤2) ≥ 𝑚𝑖𝑛{𝜙𝑝
𝑈(𝑤1), 𝜙𝑝

𝑈(𝑤2)}and non-

membership 

[ψp
L(w1w2), ψp

U(w1w2)] = ψ̃p(w1w2) 

≤ max{ψ̃p(w1), ψ̃p(w2)} 

= max{[ψp
L(w1), ψp

U(w1)], [ψp
L(w2), ψp

U(w2)]} 

= max{[ψp
L(w1), ψp

L(w2)], [ψp
U(w1), ψp

U(w2)]}. 

It follows that 𝜓𝑝
𝐿(𝑤1𝑤2) ≤ 𝑚𝑎𝑥{𝜓𝑝

𝐿(𝑤1), 𝜓𝑝
𝐿(𝑤2)} and 𝜓𝑝

𝑈(𝑤1𝑤2) ≤ 𝑚𝑎𝑥{𝜓𝑝
𝑈(𝑤1), 𝜙𝑝

𝑈(𝑤2)} 

Therefore,  𝑃̃ = ⟨(𝜙𝑝
𝐿, 𝜙𝑝

𝑈), (𝜓𝑝
𝐿, 𝜓𝑝

𝑈)⟩ are Pythagorean fuzzy ideal of 𝑆. 
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Conversely, suppose that ([𝜙𝑝
𝐿, 𝜙𝑝

𝑈], [𝜓𝑝
𝐿, 𝜓𝑝

𝑈]) are Pythagorean fuzzy ideal of S, le𝑤1, 𝑤2 ∈ 𝑆 t. 

ϕ̃p(w1w2) = [ϕp
L(w1w2), ϕp

U(w1w2)] 

≥ [min{ϕp
L(w1), ϕp

L(w2)},min{ϕp
U(w1), ϕp

U(w2)}] 

= min{[ϕp
L(w1), ϕp

U(w1)], [ϕp
L(w2), ϕp

U(w2)]} 

= min{ϕ̃p(w1), ϕ̃p(w2)}; 

ψ̃p(w1w2) = [ψp
L(w1w2), ψp

U(w1w2)] 

≤ [max{ψp
L(w1), ψp

L(w2)},max{ψp
U(w1), ψp

U(w2)}] 

= max{[ψp
L(w1), ψp

U(w1)], [ψp
L(w2), ψp

U(w2)]} 

= max{ψ̃p(w1), ψ̃p(w2)}. 

𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] is an interval-valued Pythagorean fuzzy sub-semigroup of  𝑆. 

ϕ̃p(w1aw2) = [ϕp
L(w1aw2), ϕp

U(w1aw2)] 

≥ [min{ϕp
L(w1), ϕp

L(w2)},min{ϕp
U(w1), ϕp

U(w2)}] 

= min{[ϕp
L(w1), ϕp

U(w1)], [ϕp
L(w2), ϕp

U(w2)]} 

= min{ϕ̃p(w1), ϕ̃p(w2)}; 

ψ̃p(w1aw2) = [ψp
L(w1aw2), ψp

U(w1aw2)] 

≤ [max{ψp
L(w1), ψp

L(w2)},max{ψp
U(w1), ψp

U(w2)}] 

= max{[ψp
L(w1), ψp

U(w1)], [ψp
L(w2), ψp

U(w2)]} 

= max{ψ̃p(w1), ψ̃p(w2)}. 

𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] is an interval-valued Pythagorean fuzzy bi-ideal of 𝑆.  

Theorem 3. If {𝑃𝑖}𝑖∈𝐼 is a family of interval-valued Pythagorean fuzzy bi-ideal of a semigroup 𝑆. Then 

∩ 𝑃𝑖 is an interval-valued Pythagorean fuzzy bi-ideal of S. Where ∩ 𝑃𝑖 = (∩ 𝜙̃𝑝𝑖
,∪ 𝜓̃𝑝𝑖

). 

∩ (𝜙̃𝑝𝑖
) = 𝑖𝑛𝑓{(𝜙̃𝑝𝑖

)(𝑤1)/𝑖 ∈ 𝐼, 𝑤1 ∈ 𝑆}, ∪ (𝜓̃𝑝𝑖
) = 𝑠𝑢𝑝{(𝜓̃𝑝𝑖

)(𝑤1)/𝑖 ∈ 𝐼, 𝑤1 ∈ 𝑆} and 𝑖 ∈ 𝐼 is any index set.  

Proof. Since  𝑃̃𝑖 = ⟨[𝜙̃𝑝𝑖
, 𝜓̃𝑝𝑖

]|𝑖 ∈ 𝐼⟩ is a family of interval-valued Pythagorean fuzzy bi-ideal of 𝑆.  

Let 𝑎, 𝑤1, 𝑤2 ∈ 𝑆. 
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∩ ϕ̃pi(w1, w2) = inf{ϕ̃pi(w1, w2)/i ∈ I,w1, w2 ∈ S} 

≥ inf {min{ϕ̃pi(w1), ϕ̃pi(w2)}} 

= min {inf (ϕ̃pi(w1)) , inf (ϕ̃pi(w2))} 

= min{∩ ϕ̃pi(w1),∩ ϕ̃pi(w2)}; 

∪ ψ̃pi
(w1w2) = sup{ψ̃pi

(w1w2)/i ∈ I,w1, w2 ∈ S} 

≤ sup {max{ψ̃pi
(w1), ψ̃pi

(w2)}} 

= max {sup (ψ̃pi
(w1)) , sup (ψ̃pi

(w2))} 

= max{∪ ψ̃pi
(w1),∪ ψ̃pi

(w2)}. 

Hence, ∩  𝑃̃𝑖 = (∩ 𝜙̃𝑝𝑖
,∪ 𝜓̃𝑝𝑖

) is an interval-valued Pythagorean fuzzy sub-semigorup of 𝑆. 

∩ ϕ̃pi(w1aw2) = inf{ϕ̃pi(w1aw2)/i ∈ I, a,w1, w2 ∈ S} 

≥ inf {min{ϕ̃pi(w1), ϕ̃pi(w2)}} 

= min {inf (ϕ̃pi(w1)) , inf (ϕ̃pi(w2))} 

= min{∩ ϕ̃pi(w1),∩ ϕ̃pi(w2)}. 

∪ ψ̃pi
(w1aw2) = sup{ψ̃pi

(w1aw2)/i ∈ I, a,w1, w2 ∈ S} 

≤ sup {max{ψ̃pi
(w1), ψ̃pi

(w2)}} 

= max {sup (ψ̃pi
(w1)) , sup (ψ̃pi

(w2))} 

          = max{∪ ψ̃pi
(w1),∪ ψ̃pi

(w2)}. 

Hence, ∩ 𝑃𝑖 = (∩ 𝜙̃𝑝𝑖
,∪ 𝜓̃𝑝𝑖

) is an interval-valued Pythagorean fuzzy bi-ideals of 𝑆.  

Theorem 4. Let N be any non-empty subset of a semigroup 𝑆. Then 𝑁 is a bi-ideal of 𝑆, if and only if the 

characteristic interval-valued Pythagorean fuzzy set 𝜒𝑁 = [𝜙̃𝑝𝜒𝑁
, 𝜓̃𝑝𝜒𝑁

] is IVPFBI of 𝑆.  

Proof. Assume that 𝑁 is a bi-ideal of 𝑆.  Let 𝑎, 𝑤1, 𝑤2 ∈ 𝑆. 

Suppose that 𝜙̃𝑝𝜒𝑁
(𝑤1𝑤2) < 𝑚𝑖𝑛{𝜙̃𝑝𝜒𝑁

(𝑤1), 𝜙̃𝑝𝜒𝑁
(𝑤2)} and 𝜓̃𝑝𝜒𝑁

(𝑤1𝑤2) > 𝑚𝑎𝑥{𝜓̃𝑝𝜒𝑁
(𝑤1), 𝜓̃𝑝𝜒𝑁

(𝑤2)} it follows 
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 that 𝜙̃𝑝𝜒𝑁
(𝑤1𝑤2) = 0, 𝑚𝑖𝑛{𝜙̃𝑝𝜒𝑁

(𝑤1), 𝜙̃𝑝𝜒𝑁
(𝑤2)} = 1, 𝜓̃𝑝𝜒𝑁

(𝑤1𝑤2) = 1, 𝑚𝑎𝑥{𝜓̃𝑝𝜒𝑁
(𝑤1), 𝜓̃𝑝𝜒𝑁

(𝑤2)} = 0.  

This implies that 𝑤1, 𝑤2 ∈ 𝑁 by 𝑤1, 𝑤2 ∉ 𝑁 a contradiction to 𝑁.  

So 𝜙̃𝑝𝜒𝑁
(𝑤1𝑤2) ≥ 𝑚𝑖𝑛{𝜙̃𝑝𝜒𝑁

(𝑤1), 𝜙̃𝑝𝜒𝑁
(𝑤2)}, 𝜓̃𝑝𝜒𝑁

(𝑤1𝑤2) ≤ 𝑚𝑎𝑥{𝜓̃𝑝𝜒𝑁
(𝑤1), 𝜓̃𝑝𝜒𝑁

(𝑤2)}.  

Suppose that 𝜙̃𝑝𝜒𝑁
(𝑤1𝑎𝑤2) < 𝑚𝑖𝑛{𝜙̃𝑝𝜒𝑁

(𝑤1), 𝜙̃𝑝𝜒𝑁
(𝑤2)} and 𝜓̃𝑝𝜒𝑁

(𝑤1𝑎𝑤2) > 𝑚𝑎𝑥{𝜓̃𝑝𝜒𝑁
(𝑤1), 𝜓̃𝑝𝜒𝑁

(𝑤2)} it 

follows that 𝜙̃𝑝𝜒𝑁
(𝑤1𝑎𝑤2) = 0, 𝑚𝑖𝑛{𝜙̃𝑝𝜒𝑁

(𝑤1), 𝜙̃𝑝𝜒𝑁
(𝑤2)} = 1, 𝜓̃𝑝𝜒𝑁

(𝑤1𝑤2) = 1,

𝑚𝑎𝑥{𝜓̃𝑝𝜒𝑁
(𝑤1), 𝜓̃𝑝𝜒𝑁

(𝑤2)} = 0.  

This implies that 𝑎,𝑤1, 𝑤2 ∈ 𝑁 by 𝑎,𝑤1, 𝑤2 ∉ 𝑁 a contradiction to 𝑁. 

So 𝜙̃𝑝𝜒𝑁
(𝑤1𝑎𝑤2) ≥ 𝑚𝑖𝑛{𝜙̃𝑝𝜒𝑁

(𝑤1), 𝜙̃𝑝𝜒𝑁
(𝑤2)},  𝜓̃𝑝𝜒𝑁

(𝑤1𝑎𝑤2) ≤ 𝑚𝑎𝑥{𝜓̃𝑝𝜒𝑁
(𝑤1), 𝜓̃𝑝𝜒𝑁

(𝑤2)}. 

This shows that 𝜒𝑁  is an interval-valued Pythagorean fuzzy bi-ideal of 𝑆.  

Conversely, 𝜒𝑁 = [𝜙̃𝑝𝜒𝑁
, 𝜓̃𝑝𝜒𝑁

] is an IVPFBI of 𝑆 for any subset 𝑁 of 𝑆. 

Let 𝑤1, 𝑤2 ∈ 𝑁 then 𝜙̃𝑝𝜒𝑁
(𝑤1) = 𝜙̃𝑝𝜒𝑁

(𝑤2) = 1̃, 𝜓̃𝑝𝜒𝑁
(𝑤1) = 𝜓̃𝑝𝜒𝑁

(𝑤2) = 0̃, since 𝜒𝑁  is an IVPFBI of 𝑆. 

 𝜙̃𝑝𝜒𝑁
(𝑤1𝑤2) ≥ 𝑚𝑖𝑛{𝜙̃𝑝𝜒𝑁

(𝑤1), 𝜙̃𝑝𝜒𝑁
(𝑤2)} ≥ 𝑚𝑖𝑛{1̃, 1̃} = 1̃, 𝜓̃𝑝𝜒𝑁

(𝑤1𝑤2) ≤ 𝑚𝑎𝑥{𝜓̃𝑝𝜒𝑁
(𝑤1), 𝜓̃𝑝𝜒𝑁

(𝑤2)} ≤

𝑚𝑎𝑥{0̃, 0̃} = 0̃.  

This implies that 𝑤1,𝑤2 ∈ 𝑁. 

Let 𝑎, 𝑤1, 𝑤2 ∈ 𝑁 then 𝜙̃𝑝𝜒𝑁
(𝑤1) = 𝜙̃𝑝𝜒𝑁

(𝑎) = 𝜙̃𝑝𝜒𝑁
(𝑤2) = 1̃, 

 𝜓̃𝑝𝜒𝑁
(𝑤1) = 𝜓̃𝑝𝜒𝑁

(𝑎) = 𝜓̃𝑝𝜒𝑁
(𝑤2) = 0̃, since 𝜒𝑁  is an IVPFBI of 𝑆. 

 𝜙̃𝑝𝜒𝑁
(𝑤1𝑎𝑤2) ≥ 𝑚𝑖𝑛{𝜙̃𝑝𝜒𝑁

(𝑤1), 𝜙̃𝑝𝜒𝑁
(𝑤2)} ≥ 𝑚𝑖𝑛{1̃, 1̃} = 1̃, 𝜓̃𝑝𝜒𝑁

(𝑤1𝑎𝑤2) ≤ 𝑚𝑎𝑥{𝜓̃𝑝𝜒𝑁
(𝑤1), 𝜓̃𝑝𝜒𝑁

(𝑤2)} ≤

𝑚𝑎𝑥{0̃, 0̃} = 0̃.  

Which implies that 𝑤1, 𝑤2 ∈ 𝑁. Hence 𝑁 is a bi- ideal of 𝑆.  

Theorem 5. If { 𝑃̃𝑖}
𝑖∈𝐼

 is a family of interval-valued Pythagorean fuzzy interior ideal of a semigroup 𝑆. 

Then ∩  𝑃̃𝑖 is an interval-valued Pythagorean fuzzy interior ideal (IVPFII) of 𝑆.  

Where ∩  𝑃̃𝑖 = (∩ 𝜙̃𝑝𝑖
,∪ 𝜓̃𝑝𝑖

); 

∩ (𝜙̃𝑝𝑖
) = 𝑖𝑛𝑓{(𝜙̃𝑝𝑖

)(𝑤1)/𝑖 ∈ 𝐼, 𝑤1 ∈ 𝑆}, ∪ (𝜓̃𝑝𝑖
) = 𝑠𝑢𝑝{(𝜓̃𝑝𝑖

)(𝑤1)/𝑖 ∈ 𝐼, 𝑤1 ∈ 𝑆} and 𝑖 ∈ 𝐼 is any index set.   

Theorem 6. Let 𝑁 be any non-empty subset of a semigroup 𝑆. Then 𝑁 is a interior ideal of 𝑆, if and 

only if the characteristic interval-valued Pythagorean fuzzy set 𝜒𝑁 = [𝜙̃𝑝𝜒𝑁
, 𝜓̃𝑝𝜒𝑁

] is IVPFII of 𝑆.   

4| Homomorphism of Interval-Valued Pythagorean Fuzzy Ideals in 

Semigroups 

Let 𝑅 and 𝑇 be two non-empty sets of semigroup S. A mapping 𝑓: 𝑅 → 𝑇 is called a homomorphism if 

(𝑟𝑡) = 𝑓(𝑟)𝑓(𝑡) ∀𝑟, 𝑡 ∈ 𝑅.   
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Definition 9. Let f be a mapping from a set 𝑅 to a set 𝑇 and 𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] be an interval-valued Pythagorean 

fuzzy set 𝑅 the image of 𝑅 (i.e.) 𝑓(𝑃̃) = (𝑓(𝜙̃𝑝), 𝑓(𝜓̃𝑝)) is an interval-valued Pythagorean fuzzy set of 𝑇 is 

defined by  

f(P̃)(r) =

{ 
  
  
  
  
  
 
  
  
  
  
  
  
 
 

f(ϕP̃)(r) =
{ 
  
  
  
 
sup
t∈f′(r)

(ϕP̃)(t), iff −1(r) = 0

  [0,0] otherwise

f(ψP̃)(r) =
{ 
  
  
  
 
inf
t∈f′(r)

(ψP̃)(t), iff −1(r) = 0

  [1,1] otherwise

 

Let 𝑓 be a mapping from a set 𝑅 to 𝑇 and 𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] be an interval-valued Pythagorean fuzzy set of 𝑇 

then the preimage of 𝑇 (i.e.) 𝑓−1(𝑃̃) = {(𝑓−1(𝜙̃𝑝), 𝑓
−1(𝜓̃𝑝))} is an interval-valued Pythagorean fuzzy set of 𝑅 

is defined as  

f −1(P̃)(r) = { 
  
 
f −1(ϕp̃)(r) = ϕp̃(f(r))

f −1(ψp̃)(r) = ψp̃(f(r))
. 

Theorem 7. Let 𝑅, 𝑇 be a semigroups, 𝑓: 𝑅 → 𝑇 be a homomorphism of semigroups. 

If 𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] is an interval-valued Pythagorean fuzzy sub-semigroup of 𝑇 the the preimage 𝑓−1(𝑃̃) =

(𝑓−1(𝜙̃𝑝), 𝑓
−1(𝜓̃𝑝)) is an interval-valued Pythagorean fuzzy sub-semigroup of 𝑅. 

If 𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] is an interval-valued Pythagorean fuzzy left (resp.right) ideal of 𝑇 the the preimage 𝑓−1(𝑃̃) =

(𝑓−1(𝜙̃
𝑝
), 𝑓−1(𝜓̃

𝑝
)) is an interval-valued Pythagorean fuzzy left ideal (resp. right ideal) of 𝑅.  

Proof. Assume that 𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] is an interval-valued Pythagorean fuzzy sub-semigroup of 𝑇 and 𝑟, 𝑡 ∈ 𝑅. 

Then 

f −1(ϕ̃p)(rt) = ϕ̃p(f(rt)) 

= ϕ̃p(f(r)f(t)) 

 ≥ min{ϕ̃p(f(r)), ϕ̃p(f(t))} 

 = min{f −1(ϕ̃p)(r), f
−1(ϕ̃p)(f(t))}; 

f −1(ψ̃p)(rt) = ψ̃p(f(rt)) 

= ψ̃p(f(r)f(t)) 

 ≤ max{ψ̃p(f(r)), ψ̃p(f(t))} 

        = max{f −1(ψ̃p)(r), f
−1(ψ̃p)(f(t))}. 

Hence, 𝑓−1(𝑃̃) = (𝑓−1(𝜙̃𝑝), f
−1(ψ̃p)) is an interval-valued Pythagorean fuzzy sub-semigroup of 𝑅. 
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 f −1(ϕ̃p)(rt) = ϕ̃p(f(rt)) 

= ϕ̃p(f(r)f(t)) 

≥ ϕ̃p(f(t)) 

= f −1(ϕ̃p)(f(t)); 

f −1(ψ̃p)(rt) = ψ̃p(f(rt)) 

= ψ̃p(f(r)f(t)) 

≤ ψ̃p(f(t)) 

= f −1(ψ̃p)(f(t)). 

Hence, 𝑓−1(𝑃̃) = (𝑓−1(𝜙̃𝑝), 𝑓
−1(𝜓̃𝑝)) is an interval-valued Pythagorean fuzzy left (resp.right) ideal of 𝑅.  

Theorem 8. Let 𝑅, 𝑇 be a semigroups, 𝑓: 𝑅 → 𝑇 be a homomorphism of semigroups. If 𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] is 

an interval-valued Pythagorean fuzzy bi-ideal of 𝑇 the the preimage 𝑓−1(𝑃̃) = (𝑓−1(𝜙̃
𝑝
), 𝑓−1(𝜓̃

𝑝
)) is an 

interval-valued Pythagorean fuzzy bi-ideal of 𝑅.  

Proof. Assume that 𝑃̃ = [𝜙̃𝑝, 𝜓̃𝑝] is an interval-valued Pythagorean fuzzy sub-semigroup of 𝑇 and 𝑎, 𝑟, 𝑡 ∈

𝑅. Then 

f −1(ϕ̃p)(rat) = ϕ̃p(f(rat)) 

= ϕ̃p(f(r)f(a)f(t)) 

≥ min{ϕ̃p(f(r)), ϕ̃p(f(t))} 

 = min{f −1(ϕ̃p)(r), f
−1(ϕ̃p)(f(t))}; 

f −1(ψ̃p)(rat) = ψ̃p(f(rat)) 

= ψ̃p(f(r)f(a)f(t)) 

≤ max{ψ̃p(f(r)), ψ̃p(f(t))} 

= max{f −1(ψ̃p)(r), f
−1(ψ̃p)(f(t))}. 

Hence 𝑓−1(𝑃̃) = (𝑓−1(𝜙̃𝑝), 𝑓
−1(𝜓̃𝑝)) is an interval-valued Pythagorean fuzzy bi-ideal of 𝑅.  

Theorem 9. Let 𝑅, 𝑇 be a semigroups, 𝑓: 𝑅 → 𝑇 be a homomorphism of semigroups. If 𝑃̃ = [𝜙̃
𝑝
, 𝜓̃

𝑝
] is 

an interval-valued Pythagorean fuzzy interior ideal of 𝑇 the preimage 𝑓−1(𝑃) = (𝑓−1(𝜙̃𝑝), 𝑓
−1(𝜓̃𝑝)) is an 

interval-valued Pythagorean fuzzy interior ideal of R.   
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5| Conclusion 

In this paper interval valued Pythagorean fuzzy sub-semigroup, interval valued Pythagorean fuzzy left 

(resp. right) ideal, interval valued Pythagorean fuzzy ideal, interval valued Pythagorean fuzzy bi-ideal, 

interval valued Pythagorean fuzzy interior ideal and Homomorphism of interval valued Pythagorean fuzzy 

ideal in semigroups are studied and investigated some properties with suitable examples. 
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