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Abstract 

 

1 | Introduction  

Data envelopment analysis is a linear programming method whose basic purpose is to compare and 

evaluate the performance of a number of identical decision-making units that have different amounts 

of inputs used and outputs produced. Data Envelopment Analysis (DEA) models used in evaluating 

the performance of the unit under study can use two separate approaches: reducing the amount of 

inputs without decreasing the amount of outputs, increasing the outputs without increasing the 

amount of inputs. 

In real world problems, inputs and outputs are considered vague and random. In fact, decision makers 

may face a specific hybrid environment where there is fuzziness and randomness in the problem.  

 

           Journal of Fuzzy Extension and Applications 

    www.journal-fea.com 

J. Fuzzy. Ext. Appl. Vol. 1, No. 4 (2020) 272–278. 

Paper Type: Review Paper 

An Overview of Data Envelopment Analysis Models in 

Fuzzy Stochastic Environments 
 

Fatemeh Zahra Montazeri* 

 

Department of Industrial Engineering, Ayandegan Insttitute of Higher Education, Tonekabon, Iran; montazeri.fatemehzahra@gmail.com. 

 
 

Citation: 

 Montazeri, F. Z. (2020). An overview of data envelopment analysis models in fuzzy stochastic 

environments. Journal of fuzzy extension and application, 1 (4), 272-278. 

 

Accept: 23/10/2020 Revised: 11/09/2020 Reviewed: 29/07/2020 Received: 05/07/2020 
                                      

One of the appropriate and efficient tools in the field of productivity measurement and evaluation is data envelopment 

analysis, which is used as a non-parametric method to calculate the efficiency of decision-making units. Today, the use 

of data envelopment analysis technique is expanding rapidly and is used in the evaluation of various organizations and 

industries such as banks, postal service, hospitals, training centers, power plants, refineries, etc. In real-world problems, 

the values observed from input and output data are often ambiguous and random. To solve this problem, data 

envelopment analysis in stochastic fuzzy environment was proposed. Although the DEA has many advantages, one of 

the disadvantages of this method is that the classic DEA does not actually give us a definitive conclusion and does not 

allow random changes in input and output. In this paper, we review some of the proposed models in data envelopment 

analysis with fuzzy and random inputs and outputs. 
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Hatami-Marbini et al. classified the fuzzy DEA methods in the literature into five general groups [1], the 

tolerance approach [2] and [3], the α-level based approach, the fuzzy ranking approach [4] and [5], the 

possibility approach [6], and the fuzzy arithmetic approach [7]. Among these approaches, the α-level based 

approach is probably the most popular fuzzy DEA model in the literature. This approach generally tries 

to transform the FDEA model into a pair of parametric programs for each α-level. Kao and Liu, one of 

the most cited studies in the α-level approach’s category, used Chen and Klein [8] method for ranking 

fuzzy numbers to convert the FDEA model to a pair of parametric mathematical programs for the given 

level of α [9]. Saati et al. proposed a fuzzy CCR model as a possibilistic programming problem and changed 

it into an interval programming problem by means of the α-level based approach [10]. Parameshwaran et 

al. proposed an integrated fuzzy analytic hierarchy process and DEA approach for the service performance 

measurement [11]. Puri and Yadav [12] applied the suggested methodology by Saati et al. [10] to solve 

fuzzy DEA model with undesirable outputs. Khanjani et al. [13] proposed fuzzy free disposal hull models 

under possibility and credibility measures. Momeni et al. used fuzzy DEA models to address the 

impreciseness and ambiguity associated with input and output data in supply chain performance evaluation 

problems [14]. Payan evaluated the performance of DMUs with fuzzy data by using the common set of 

weights based on a linear program [15]. Aghayi et al. formulated a model to measure the efficiency of 

DMUs with interval inputs and outputs based on common sets weights [16].  

In recent years, several scholars work on DEA with fuzzy set extension. For example, Edalatpanah et al. 

[17] for the first time established triangular single-valued neutrosophic data envelopment analysis with 

application to hospital performance. He also presented data envelopment analysis based on triangular 

neutrosophic numbers [18]; see also [19]-[22]. 

In this research, some models of data envelopment analysis with fuzzy and random data will be mentioned. 

2| Existing Models 

In this section, we review the proposed models in a random fuzzy environment with undesirable outputs. 

Nasseri et al. [23] proposed a DEA-based method for evaluating the efficiencies of DMUs that not only 

depicts the impact of undesirable output on the performance of units, but also evaluated the efficiencies 

of DMUs with stochastic inputs and fuzzy stochastic outputs.  

They considered n DMUs, indexed by j=1,…,n. Each of with consumes m fuzzy random inputs, denoted 

by 
% % βα

ij ij ij ij LR
x ( x , x , x ) , i=1,…,m to produce 

1 2
s s s    fuzzy random outputs, denoted by 

% %
g g

g ,α g ,β

rj rj rj rj
y ( y , y , y ) , r==1,…,s1 as desirable outputs and 

% %
b b

b ,βb ,α

pj pj pj pj LR
y ( y , y , y ) , p=1,…,s2 as 

undesirable outputs. Let the random parameters %
ijx , % g

rj
y  and % b

pj
y , denoted by 

g g b b

ij ij rj rj pj pj
N( x ,σ ),  N( y ,σ ),  N( y ,σ ) , respectively, be normally distributed. Here, g b

ij rj pj
x ( y , y )  and 

g b

ij rj pj
σ (σ ,σ ) , are the mean value and the variance for  % % %g b

ij rj pj
x ( y , y ) , respectively. 

The Chance-Constrained Programming (CCP) developed by Cooper et al. [24] is a stochastic optimization 

approach suitable for solving optimization problems with uncertain parameters. Using the concepts of 

CCP and probability (possibility) of stochastic (fuzzy) events, the deterministic model will be as follows: 
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This model is always feasible as the traditional DEA-UO model. 

Then, they presented the CCR-UO model with fuzzy probability-necessity constraints. They considered 

n DMUs with m fuzzy stochastic inputs, s1 desirable and s2 undesirable outputs. The deterministic model 

will be as following: 

 

Analogously to the previous models, the corresponding fuzzy probability-credibility CCR-UO model 

was introduced. Thus, this model for δ 0.5  and δ 0.5  can be transformed into the following two 

models: 

For δ 0.5 : 
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1 2

Pos

k

s sg b
g g,β y1 b 1 b,α 1

rk pkr rk p pk k 1 γ
r 1 p 1

m
β1 x 1

ik
i ik k 1 γ

i 1
m

1 α x 1
ik

i ik k 1 γ
i 1

E (γ,δ) max   φ

s.t.

φ u (y R (δ)y ) u (y L (δ)y ) σ ,

v (x R (δ)x ) σ 1,

v (x L (δ)x ) σ 1,                                      

% %

% %

%

  


 

 

 





     

  

  

 

 



1 2

1 2

s sg b
g g,β y1 b 1 b,α 1

rj pjr j rj p j pj j 1 γ
r 1 p 1
s sg b

g g,α b,β1 b 1

rj pjr rj p pj
r 1 p 1

m
β1 A

ij
i ij j

i 1

                                    

u (y R (δ )y ) u (y L (δ )y ) σ 0,      j

u (y L (δ)y ) u (y R (δ)y )

v (x R (δ)x ) σ 


 

     

1

1 γ

g b

r p i

0,      j

u 0 r,   u 0 p,   v 0 i.

 
(1) 

% %

%

%

  


 

 




 








      

   

   

 





1 2

Nec

k

s sg b
g g,α b,β y1 b 1 1

rk pkr rk p pk k 1 γ
r 1 p 1

m
1 α x 1

ik
i ik k 1 γ

i 1
m

β1 x 1
ik

i ik k 1 γ
i 1

E (γ,δ) max   φ

s.t.

φ 1,

φ u (y L (1 δ)y ) u (y R (1 δ)y ) σ ,

v (x L (1 δ)x ) σ 1,

v (x R (1 δ)x ) σ 1,                          

% %

% % %

  


 

  

  

       

        

 

  

1 2

1 2

s sg b
g g,α b,β y1 b 1 1

rj pjr rj p pj j 1 γ
r 1 p 1
s s mg b

g g,β1 b 1 b,α 1 α A
ijrj pjr rj p pj i ij j 1

r 1 p 1 i 1

                          

u (y L (1 δ)y ) u (y R (1 δ)y ) σ 0,      j

u (y R (1 δ)y ) u (y L (1 δ)y ) v (x L (1 δ)x ) σ 





 

  

 



  

   

     



 

  

1 2

1 2

1

γ

m
x 2 2 1/2

k i ik
i 1
s s

y g g2 2 b 2 b 2 1/2

j r rj p pj
r 1 p 1

s s m
g gA 2 2 b 2 b 2 2 2 1/2

j r rj p pj i ik
r 1 p 1 i 1

g b

r p i

0,      j

σ ( v σ )

σ ( (u ) (σ ) (u ) (σ ) ) ,   j

σ ( (u ) (σ ) (u ) (σ ) v σ ) ,   j

u 0 r,   u 0 p,   v 0 i.

 

(2) 

% %

%
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1 2

Cr

k

s sg b
g g,β y1 b 1 b,α 1

rk pkr rk p pk k 1 γ
r 1 p 1

m
β1 x 1

ik
i ik k 1 γ

i 1
m

1 α x 1
ik

i ik k 1 γ
i 1

E (γ,δ) max   φ

s.t.

φ 1,

φ u (y R (2δ)y ) u (y L (2δ)y ) σ ,

v (x R (2δ)x ) σ 1,

v (x L (2δ)x ) σ 1,                                                                    

 
(3) 
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And for δ 0 / 5 :  

In 2016, Nasseri et al. [24] proposed a new model of fuzzy stochastic DEA with input-oriented primal 

data. In this model, the properties and characteristics of the extended normal distribution are used. They 

considered n DMUs, each unit consumes m fuzzy stochastic inputs, denoted by 
% βm α

ij ij ij ij LR
x ( x , x , x ) , 

i=1,…,m, j=1,…,n, and produces s fuzzy stochastic outputs, denoted by 
% βm α

rj rj rj rj LR
y ( y , y , y )  , r=1,…,s, 

j=1,…,n. Also, they considered m

ij
x  and m

rj
y , denoted by m 2

ij ij ij
x N( x ,σ ): and m 2

rj rj rj
y N( y ,σ ):  be 

normally distributed. Therefore, 
ij rj

x ( y )  and 2 2

ij rj
σ (σ )  are the mean and the variance of m m

ij rj
x ( y ) for 

j
DMU , respectively. Each unit has an extended normal distribution as 

%
ij ij ij

x N( x ,σ ):  with 

βα
ij ij ij ij

x ( x , x , x )  and 
%

rj rj rj
y N( y ,σ ):  with βα

rj rj rj rj
y ( y , y , y ) . Finally, the final model is as follows: 
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1 2

m
β1 A 1

ij
i ij j 1 γ

i 1
m

x 2 2 1/2

k i ik
i 1
s s

y g g g2 2 b 2 2 1/2

j r rk p pk
r 1 p 1

s s m
g gA 2 2 b 2 b 2 2 2 1/2

j r rj p pj i ij0
r 1 p 1 i 1

g b

r p

) v (x R (2δ)x ) σ 0,      j

σ ( v σ )

σ ( (u ) (σ ) (u ) (σ ) ) ,   j

σ ( (u ) (σ ) (u ) (σ ) v σ ) ,   j

u 0 r,   u    
i

0 p,   v 0 i.
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Cr

k

s sg b
g g,α b,β y1 b 1 1

rk pkr rk p pk k 1 γ
r 1 p 1

n
1 α x 1

ik
i ik k 1 γ

j 1
n

β1 x 1
ik

i ik k 1 γ
j 1

E (γ,δ) max   φ

s.t.

φ 1,

φ u (y L (2(1 δ))y ) u (y R (2(1 δ))y ) σ ,

v (x L (2(1 δ))x ) σ 1,

v (x R (2(1 δ))x ) σ 1,               

% %

% %

  


 

 

 

       

    

 

 

1 2

1 2
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g g,α b,β y1 b 1 1

rj pjr rj p pj j 1 γ
r 1 p 1
s sg b

g g,β1 b 1

rj pjr rj p
r 1 p 1

                                                        

u (y L (2(1 δ))y ) u (y R (2(1 δ))y ) σ 0,      j

u (y R (2(1 δ))y ) u (y L (2(1 %  






 

  

     



  

   





 

  

1 2

1 2

m
b,α 1 α A 1

ij
pj i ij j 1 γ

i 1
m

x 2 2 1/2

k i ik
i 1
s s

y g g g2 2 b 2 2 1/2

j r rk p pk
r 1 p 1

s s m
g gA 2 2 b 2 b 2 2 2 1/2

j r rj p pj i ij
r 1 p 1 i 1

δ))y ) v (x L (2(1 δ))x ) σ 0,      j

σ ( v σ )

σ ( (u ) (σ ) (u ) (σ ) ) ,   j

σ ( (u ) (σ ) (u ) (σ ) v σ ) ,   j

u      
g b

r p i
0 r,   u 0 p,   v 0 i.

 

(4) 

$

$

$ $





 







  





 

δ,γ ) max  φ

φ y ,

 (5) 
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Theorem 1. Assume that ξ  is a fuzzy random vector, and 
j

g  are real-valued continuous functions for 

i=1,2,…,n. We have: 

The possibility 
j

pos{g (ξ(ω)) 0,   j 1,..., n}  is a random variable. 

The necessity 
j

Nec{g (ξ(ω)) 0,   j 1,...,n}  is a random variable. 

The credibility 
j

Cr{g (ξ(ω)) 0,   j 1,..., n}  is a random variable. 

Lemma 1. Let 1λ  and 2λ  be two fuzzy numbers with continuous membership functions. For a given 

confidence level 1 2α 0,1 ,Pos{λ λ } α     
 if and only if R R

1,α 2 ,α
λ λ  and 1 2Nec{λ λ } α   if and 

only if L R

1,1 α 2 ,α
λ λ


 . Where L R

1,α 1,α
λ ,λ  and L R

2 ,α 2 ,α
λ ,λ  are the left and the right side extreme points of the 

α -level sets 1λ  and 2λ , respectively, and 1 2Pos{λ λ } and  1 2Nec{λ λ }  present the degree of 

possibility and necessity, respectively.  

Definition 1. A DMU is said to be probabilistic-possibility, probabilistic-necessity and probabilistic-

credibility ( γ,δ) -efficient if the objective function of Models (1)- (4), φ , is equal to unity at the threshold 

level ( γ,δ) ; otherwise, it is said to be probabilistic-possibility, probabilistic-necessity and probabilistic-

credibility ( γ,δ) -inefficient. 

Theorem 2. Consider T ,Pos

k
E (δ, γ)  as the objective function value of DMUk, then  

T ,Pos T ,Pos

k 1 k 2
E (δ , γ) E (δ , γ)  and T ,Pos T ,Pos

k 1 k 2
E (δ, γ ) E (δ, γ )  where 

1 2
δ δ  and 

1 2
γ γ . 

The model related to T ,Pos

k
E (δ, γ)  is feasible for any δ  and γ . 

3| Conclusion 

A DEA model basically draws three critical elements: the model specification, the reference set itself, 

and the definition of the production possibility set. Starting from the latter, the production possibility 

set can either be defined as complete and known (like in conventional DEA) or as potentially extending 

beyond or excluding the reference set (like in stochastic DEA). The reference set, the very observations 

that form the engine of the non-parametric approach, can be either precise (as in conventional DEA), 

outcomes of stochastic processes (as in stochastic frontier analysis), or imprecise (as in the fuzzy DEA 

models). 

Classic DEA models were originally formulated for optimal inputs and outputs, although undesirable 

outputs may also appear during production, which should be minimized. In addition, in the real world, 

there are dimensions and uncertainties in the data. Although DEA has many advantages, one of the 

$

$

   

 

   

 

        

        



α 1 1 β 1

γ γ

α 1 1 β 1

γ γ

δ)y σ ) y u (y R (δ)y σ ), r, j

δ)x σ ) x v (x R (δ)x σ ), i, j   
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disadvantages of this method is that in fact the classic DEA does not lead us to a definite conclusion and 

does not allow random changes in input and output. 

 References 

 Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data 

envelopment analysis literature: two decades in the making. European journal of operational research, 

214(3), 457-472. 

 Sengupta, J. K. (1992). A fuzzy systems approach in data envelopment analysis. Computers & mathematics 

with applications, 24(8-9), 259-266. 

 Triantis, K., & Girod, O. (1998). A mathematical programming approach for measuring technical 

efficiency in a fuzzy environment. Journal of productivity analysis, 10(1), 85-102. 

 Guo, P., & Tanaka, H. (2001). Fuzzy DEA: a perceptual evaluation method. Fuzzy sets and systems, 119(1), 

149-160. 

 Hatami-Marbini, A., Tavana, M., & Ebrahimi, A. (2011). A fully fuzzified data envelopment analysis 

model. International journal of information and decision sciences, 3(3), 252-264. 

 Lertworasirikul, S., Fang, S. C., Joines, J. A., & Nuttle, H. L. (2003). Fuzzy data envelopment analysis 

(DEA): a possibility approach. Fuzzy sets and systems, 139(2), 379-394. 

 Wang, Y. M., Luo, Y., & Liang, L. (2009). Fuzzy data envelopment analysis based upon fuzzy arithmetic 

with an application to performance assessment of manufacturing enterprises. Expert systems with 

applications, 36(3), 5205-5211. 

 Chen, C. B., & Klein, C. M. (1997). A simple approach to ranking a group of aggregated fuzzy utilities. 

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(1), 26-35. 

 Kao, C., & Liu, S. T. (2000). Fuzzy efficiency measures in data envelopment analysis. Fuzzy sets and 

systems, 113(3), 427-437. 

 Saati, S. M., Memariani, A., & Jahanshahloo, G. R. (2002). Efficiency analysis and ranking of DMUs with 

fuzzy data. Fuzzy optimization and decision making, 1(3), 255-267. 

 Parameshwaran, R., Srinivasan, P. S. S., Punniyamoorthy, M., Charunyanath, S. T., & Ashwin, C. (2009). 

Integrating fuzzy analytical hierarchy process and data envelopment analysis for performance 

management in automobile repair shops. European journal of industrial engineering, 3(4), 450-467. 

 Puri, J., & Yadav, S. P. (2014). A fuzzy DEA model with undesirable fuzzy outputs and its application to 

the banking sector in India. Expert systems with applications, 41(14), 6419-6432. 

 Shiraz, R. K., Tavana, M., & Paryab, K. (2014). Fuzzy free disposal hull models under possibility and 

credibility measures. International journal of data dnalysis techniques and strategies, 6(3), 286-306. 

 Momeni, E., Tavana, M., Mirzagoltabar, H., & Mirhedayatian, S. M. (2014). A new fuzzy network slacks-

based DEA model for evaluating performance of supply chains with reverse logistics. Journal of intelligent 

& fuzzy systems, 27(2), 793-804. 

 Payan, A. (2015). Common set of weights approach in fuzzy DEA with an application. Journal of intelligent 

& fuzzy systems, 29(1), 187-194. 

 Aghayi, N., Tavana, M., & Raayatpanah, M. A. (2016). Robust efficiency measurement with common set 

of weights under varying degrees of conservatism and data uncertainty. European journal of industrial 

engineering, 10(3), 385-405. 

 Edalatpanah, S.A., & Smarandache, F. (2020). Traingular single valued neutrosophic analysis: 

application to hospital performance measurement. Symmetry, 12(4), 588. 

 Edalatpanah, S. A. (2020). Data envelopment analysis based on triangular neutrosophic numbers. CAAI 

transactions on intelligence technology, 5(2), 94-98. DOI:  10.1049/trit.2020.0016  

 Edalatpanah, S. A., & Smarandache, F. (2019). Data envelopment analysis for simplified neutrosophic 

sets. Neutrosophic sets and systems, 29. Retrieved from 

https://digitalrepository.unm.edu/nss_journal/vol29/iss1/17 

 Edalatpanah, S. A. (2019). A data envelopment analysis model with triangular intuitionistic fuzzy 

numbers. International journal of data envelopment analysis, 7(4), 47-58. 

 Edalatpanah, S. A. (2018). Neutrosophic perspective on DEA. Journal of applied research on industrial 

engineering, 5(4), 339-345. 

file:///J:/ARTICLES/JFEA/2020/1(4)/10.1049/trit.2020.0016
https://digitalrepository.unm.edu/nss_journal/vol29/iss1/17


 

 

278 

M
o

ta
z
e
ri

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(4
) 

(2
0
2
0
) 

2
7
2
-2

7
8

 

 

 Soltani, M. R., Edalatpanah, S. A., Sobhani, F. M., & Najafi, S. E. (2020). A novel two-stage DEA model 

in fuzzy environment: application to industrial workshops performance measurement. International 

journal of computational intelligence systems, 13(1), 1134-1152. 

 Nasseri, S. H., Ebrahimnejad, A., & Gholami, O. (2018). Fuzzy stochastic data envelopment analysis 

with undesirable outputs and its application to banking industry. International journal of fuzzy 

systems, 20(2), 534-548. 

 Cooper, W. W., Deng, H., Huang, Z., & Li, S. X. (2002). Chance constrained programming approaches 

to technical efficiencies and inefficiencies in stochastic data envelopment analysis. Journal of the 

operational research society, 53(12), 1347-1356. 

 


