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Abstract 

 

1 | Introduction  

Decision making problems in decentralized organizations are often modeled as stackelberg games, 

and they are formulated as bi-level mathematical programming problems. A bi-level problem with a 

single decision maker at the upper level and two or more decision makers at the lower level is referred 

to as a decentralized bi-level programming problem. Real-world applications under non cooperative 

situations are formulated by bi-level mathematical programming problems and their effectiveness is 

demonstrated. 

The use of fuzzy set theory for decision problems with several conflicting objectives was first 

introduced by Zimmermann. Thereafter, various versions of Fuzzy Programming (FP) have been 

investigated and widely circulated in literature. The use of the concept of tolerance membership 

function of fuzzy set theory to Bi-Linear Programming Problems (BLPPs) for satisfactory decisions 
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was first introduced by Lai in 1996 [1]. Shih and Lee further extended Lai’s concept by introducing the 

compensatory fuzzy operator for solving BLPPs [2]. Sinha studied alternative BLP techniques based on 

Fuzzy Mathematical Programming (FMP). 

The basic concept of these FMP approaches is the same as Fuzzy Goal Programming (FGP) approach 

which implies that the lower level DMs optimizes, his/her objective function, taking a goal or preference 

of the higher level DMs in to consideration. In the decision process, considering the membership functions 

of the fuzzy goals for the decision variables of the higher level DM, the lower level DM solves a FMP 

problem with a constraint on an overall satisfactory degree of the higher level DMs. If the proposed 

solution is not satisfactory, to the higher level DMs, the solution search is continued by redefining the 

elicited membership functions until a satisfactory solution is reached [2]. The main difficulty that arises 

with the FMP approach of Sinha is that there is possibility of rejecting the solution again and again by the 

higher level DMs and re-evaluation of the problem is repeatedly needed to reach the satisfactory decision, 

where the objectives of the DMs are over conflicting [2]. 

Taking in to account vagueness of judgments of the decision makers, we will present interactive fuzzy 

programming for bi-level linear programming problems. In the interactive method, after determining the 

fuzzy goals of the decision makers at both levels, a satisfactory solution is derived by updating some 

reference points with respect to the satisfactory level. In the real world, we often encounter situations 

where there are two or more decision makers in an organization with a hierarchical structure, and they 

make decisions in turn or at the same time so as to optimize their objective functions. In particular, consider 

a case where there are two decision makers; one of the decision makers first makes a decision. Such a 

situation is formulated as a bi-level programming problem. Although a large number of algorithms for 

obtaining stackelberg solutions have been developed, it is also known that solving the mathematical 

programming problems for obtaining stackelberg solution is NP-hard [3]. From such difficulties, a new 

solution concept which is easy to compute and reflects structure of bi-level programming problems had 

been expected [4] proposed a solution method, which is different from the concept of stackelberg 

solutions, for bi-level linear programming problems with cooperative relationship between decision 

makers. Sakawa and Nishizaki [5] present interactive fuzzy programming for bi-level linear programming 

problems. In order to overcome the problem in the methods of [4], after eliminating the fuzzy goals for 

decision variables, they formulate the bi-level linear programming problem. 

In their interactive method, after determining the fuzzy goals of the decision makers at all the levels, a 

satisfactory solution is derived efficiently by updating the satisfactory degree of the decision maker at the 

upper level with considerations of overall satisfactory balance among all the levels. By eliminating the fuzzy 

goals for the decision variables to avoid such problems in the method of [4]-[6] develop interactive fuzzy 

programming for bi-level linear programming problems. Moreover, from the viewpoint of experts’ 

imprecise or fuzzy understanding of the nature of parameters in a problem-formulation process, they 

extend it to interactive fuzzy programming for bi-level linear programming problems with fuzzy parameters 

[5]. Interactive fuzzy programming can also be extended so as to manage decentralized bi-level linear 

programming problems by taking in to consideration individual satisfactory balance between the upper 

level DM and each of the lower level DMs as well as overall satisfactory balance between the two levels 

[7]. Moreover, by using some decomposition methods which take advantage of the structural features of 

the decentralized bi-level problems, efficient methods for computing satisfactory solutions are also 

developed [7] and [8].  

Recently, [9]-[11] considered the 𝐿-𝑅 fuzzy numbers and the lexicography method in conjunction with 

crisp linear programming and designed a new model for solving FFLP. The proposed scheme presented 

promising results from the aspects of performance and computing efficiency. Moreover, comparison 

between the new model and two mentioned methods for the studied problem shows a remarkable 

agreement and reveals that the new model is more reliable in the point of view of optimality. Also, an 

author in [12]-[15] has been proposed a new efficient method for FFLP, in order to obtain the fuzzy 
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optimal solution with unrestricted variables and parameters. This proposed method is based on crisp 

nonlinear programming and has a simple structure. 

Furthermore, several authors deal with the modeling and optimization of a bi-level multi-objective 

production planning problem, where some of the coefficients of objective functions and parameters of 

constraints are multi-choice. They has been used a general transformation technique based on a binary 

variable to transform the multi-choices parameters of the problem into their equivalent deterministic 

form [16]-[21]. 

In this study, we discuss a procedure for solving bi-level linear programming problems through linear 

FMP approach. In order to reach the optimal solution of bi-level linear programming problems, using 

fuzzy programming approach, the report contains section three chapters. In section two we describe the 

basic concept of fuzzy set, and linear programming using fuzzy approach. In section three the basic 

concept of bi level linear programming characteristics and general model of mathematical formulation 

of bi -level linear programming problems are presented. In section, four the procedure for solving bi-

level linear programming problems and FMP solution approach are discussed. 

2| Preliminary 

2.1| Fuzzy Set Theory 

Fuzzy set theory has been developed to solve problems where the descriptions of activities and 

observations are imprecise, vague, or uncertain. The term “fuzzy’’ refers to a situation where there are 

no well-defined boundaries of the set of activities or observations to which the descriptions apply. For 

example, one can easily assign a person 180 cm tall to the class of tall men’’. But it would be difficult to 

justify the inclusion or exclusion of a 173 cm tall person to that class, because the term “tall’’ does not 

constitute a well- defined boundary. This notion of fuzziness exists almost everywhere in our daily life, 

such as a ’’class of red flowers,’’ a “class of good shooters,’’ a “class of comfortable speeds for travelling,’’ 

a “number close to 10,’’etc.These classes of objects cannot be well represented by classical set theory. 

In classical set theory, an object is either in a set or not in a set. An object cannot partially belong to a 

set .In fuzzy set theory, we extend the image set of the characteristic function from the binary set 𝐵 =

{0 ,1} which contains only two alternatives, to the unit interval 𝑈 = [0,1] which has an infinite number 

of alternatives. We even give the characteristic function a new name, the membership function, and a 

new symbol  𝜇, instead of  𝜒. The vagueness of language, and its mathematical representation and 

processing, is one of the major areas of study in fuzzy set theory. 

2.2| Definition of Fuzzy and Crisp Sets 

Definition 1. Let 𝑋 be a space of points (objects) called universal or referential set .An ordinary (a crisp) 

subset 𝐴 in 𝑋 is characterized by its characteristic function 𝑋𝐴 as mapping from the elements of 𝑋 to 

the elements of the set {0,1} defined by;  

XA (x) = {
1,   if x ∈ A 
0,   if x ∉ A

. 

Where {0, 1} is called a valuation set. However, in the fuzzy set t, the membership function will have 

not only 0 and 1 but also any number in between. This implies that if the valuation set is allowed to be 

the real interval [0, 1], 𝐴 is called a fuzzy set. 

Definition 2. If   𝑋  is a collection of objects denoted by  𝑥, then a fuzzy set  𝐴 is a set of ordered pairs 

denoted by  𝐴 = {( 𝑥, 𝜇
𝐴
(𝑥)) | 𝑥 ∈ 𝑋}. Where  𝜇

𝐴
(𝑥): 𝑋 → [0,1] is called membership function or degree 

of membership (degree of compatibility or degree of truth). 
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Definition 3.  A fuzzy set 𝐴 in a non empty set 𝑋 is categorized by its membership function 𝜇
𝐴

(𝑥): 𝑋 →

[0,1] and   𝜇
𝐴

(𝑥) is called the degree of membership of element 𝑥 in fuzzy set 𝐴 for each 𝑥 is an element 

of 𝑋 that makes values in the interval [0, 1]. 

Definition 4. Let 𝑋 be a universal set and 𝐴 is a subset of  𝑋. A fuzzy set of 𝐴 in 𝑥 is a set of ordered 

pairs  𝐴 = {( 𝑥, 𝜇
𝐴
(𝑥)) | 𝑥 ∈ 𝑋} where,   𝜇

𝐴
(𝑥) → [0,1] is called the membership function at 𝑥  in 

membership, the value one is used  to represent  complete membership and value zero is used to represent 

intermediate degree of membership. 

Example 1. let 𝑋 = {𝑎 , 𝑏 , 𝑐} and define the fuzzy set 𝐴 as follows:  

μA(a) = 1.0, μA(b) = 0.7, μA(c) = 0.4 , 

A = {(a, 1.0), (b, 0.7), (c, 0.4)}. 

Note. The statement, 𝜇𝐴(𝑏)  = 0.7 is interpreted as saying that the membership grade of ‘𝑏’ in the fuzzy 

set 𝐴 is seven-tenths. i.e. the degree or grade to which 𝑏 belongs to 𝐴 is 0.7. 

Definition 5. A fuzzy set 𝐴 = ∅ if and only if it is identically zero on 𝑋. 

Definition 6. If two fuzzy sets 𝐴 andfuzzy set 𝐵 are equal then 𝐴 = 𝐵, if and only if 𝐴(𝑥)  = 𝐵(𝑥), ∀𝑥 ∈ 𝑋. 

2.3| Fuzzy Linear Programming  

Crisp linear programming is one of the most important operational research techniques. It is a problem of 

maximizing or minimizing a crisp objective function subject to crisp constraints (crisp linear-inequalities 

and/or equations). It has been applied to solve many real world problems but it fails to deal with imprecise 

data, that is, in many practical situations it may not be possible for the decision maker to specify the 

objective and/or the constraint in crisp manner rather he/she may have put them in ‘’fuzzy sense’’. So 

many researchers succeeded in capturing such vague and imprecise information by fuzzy programming 

problem. In this case, the type of the problem he/she put in the fuzziness should be specified, that means, 

there is no general or unique definition of fuzzy linear problems. The fuzziness may appear in a linear 

programming problem in several ways such as the inequality may be fuzzy (p1–FLP), the objective function 

may be fuzzy (P2-FLP) or the parameters c, A, b may be fuzzy (P3-FLP) and so on.  

Definition 7. If an imprecise aspiration level is assigned to the objective function, then this fuzzy objective 

is termed as fuzzy goal. It is characterized by its associated membership function by defining the tolerance 

limits for achievement of its aspired level.  

We consider the general model of a linear programming 

 Where 𝐴𝑖 is an n-vector C is an n-column vector and  𝑥 ∈ ℝ𝑛. 

To a standard linear programming Problem (1) above, taking in to account the imprecision or fuzziness of 

a decision maker’s judgment, Zimmermann considers the following linear programming problem with a 

fuzzy goal (objective function) and fuzzy constraints. 

max   CTx, 
s. t. 
 A ix ≤ bi   (i = 1,2,3,…m), 
x ≥ 0, 

(1) 
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Where the symbol ≲ denotes a relaxed or fuzzy version of the ordinary inequality  < . From the decision 

maker’s preference, the fuzzy goal (1a) and the fuzzy constraints (1b) mean that the objective function 

  𝐶𝑇𝑥 should be “essentially smaller than or equal to” a certain level  𝑍0, and that the values of the 

constraints 𝐴𝑋 should be “essentially smaller than or equal to”  b, respectively. Assuming that the fuzzy 

goal and the fuzzy constraints are equally important, he employed the following unified formulation. 

Bx ≲ b′, 

x ≥ 0. 

Where 𝐵 = [
𝐶
𝐴𝑖
]  and 𝑏′ = [

𝑍0

𝑏𝑖
] . 

Definition 8. Fuzzy decision is the fuzzy set of alternatives resulting from the intersection of the fuzzy 

constraints and fuzzy objective functions. Fuzzy objective functions and fuzzy constraints are 

characterized by their membership functions. 

2.4| Solution Techniques of Solving Some Fuzzy Linear Programming Problems 

The solution techniques for fuzzy linear programming problems follow the following procedure. We 

consider the following linear programming problem with fuzzy goal and fuzzy constraints (the 

coefficients of the constraints are fuzzy numbers). 

Where 𝑎𝑖�̃� and 𝑏�̃� are fuzzy numbers with the following linear membership functions: 

µij(x) =

{ 
  
  
 
  
  
  
 
 

1, if x ≤ aij,

aij + dij − x

dij
, if aij < x < aij + dij,

0, if x ≥ aij + dij.

 

µ
bĩ
(x) =

{ 
  
  
  
  
  
 

1, if x ≤ bi,
bi + pi − x

p
, if bi < x < bi + pi,

0, if x ≥ bi + pi.

 

and 𝑥 ∈ 𝑅, 𝑑𝑖𝑗 > 0 is the maximum tolerance for the corresponding constraint coefficients and 𝑝𝑖 is the 

maximum tolerance for the 𝑖 𝑡ℎ constraint. For defuzzification of the problem, we first fuzzify the 

objective function. This is done by calculating the lower and upper bounds of the optimal values. These 

optimal values 𝑧𝑙 and 𝑧𝑢 can be defined by solving the following standard linear programming problems, 

for which we assume that both of them have finite optimal values. 

 

 

CTx ≲ Z0,                                                                                                                  (1a) 

A ix ≲ bi   (i = 1,2,3,…m),                                                                                      (1b) 

x ≥ 0. 

(2) 
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  Let 𝑧𝑙 = 𝑚𝑖𝑛(𝑧1, 𝑧2) and   𝑧𝑢  = 𝑚𝑎𝑥(𝑧1, 𝑧2) . The objective function takes values between 𝑧𝑙 and 𝑧𝑢 while the 

constraint coefficients take values between 𝑎𝑖𝑗 and 𝑎𝑖𝑗 + 𝑑𝑖𝑗and the right-hand side numbers take values 

between 𝑏𝑖 and 𝑏𝑖 + 𝑝𝑖 .Then, the fuzzy set optimal values, 𝐺, which is a subset of 𝑅𝑛 is defined by: 

µG(x) =

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0,                  if ∑cjxj

n

j=1

≤ zl,

∑ cjxj
n
j=1 − zl

zu − zl
, if zl <∑cjxj

n

j=1

≤ zu.

1, if∑cjxj

n

j=1

≥ zu.

 

The fuzzy set of the 𝑖 𝑡ℎ constraint, 𝐶𝑖 , which is a subset of 𝑅𝑛 is defined by: 

µci(x) =

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0,                  if bi ≤∑aijxj

n

j=1

,

bi − ∑ aijxj
n
j=1

∑ dijxj + pi
n
j=1

, if ∑aijxj

n

j=1

< bi <∑(aijxj + dij)xj

n

j=1

+ pi.

1,                              if  b ≥∑(aijxj + dij)xj

n

j=1

+ pi.

 

Using the above membership functions µ𝑐𝑖(𝑥) and µ𝐺(𝑥)and following Bellmann and Zadeh approach, we 

construct the membership function µ𝐷(𝑥)as follows: µD(x)  =  mini(µG(x), µci(x)). 

Where µ𝐷(𝑥) is the membership function of the fuzzy decision set. The min. section is selected as the 

aggregation operator. Then the optimal decision 𝑥∗ is the solution of x ∗ = arg(max mini{µG(x), µci(x)}. 

Then, Problem (1) is reduced to the following crisp problem by introducing the auxiliary variable 𝜆 which 

indicates the common degree of satisfaction of both the fuzzy constraints and objective function. 

 

 

 

z1 = max   ∑cjxj,

n

j=1

  

s. t. 

∑(aij + dij)xj

n

j=1

 ≤ bi,   1 ≤ i ≤ m) xj ≥ 0, 

and 

z2 = max   ∑cjxj

n

j=1

 , 

s. t. 

∑aijxj

n

j=1

 ≤ bi + pi,   1 ≤ i ≤ m)xj ≥ 0. 

(3) 
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maxλ, 

s. t. 

 μG(x) ≥ λ, 

μci(x) ≥ λ, 

x ≥ 0, 0 ≤ λ ≤ 1, 1 ≤ i ≤ m. 

This problem is equivalent to the following non-convex optimization problem 

maxλ, 

λ(z1 − z2) −∑cjxj

n

j=1

− z1 ≤ 0, 

∑(aij + λdij)

n

j=1

xj + λpi − bi ≤ 0 , 

x ≥ 0, 0 ≤ λ ≤ 1, 1 ≤ i ≤ m . 

Which contains the cross product terms 𝜆𝑥𝑗 that makes non- convex. Therefore, the solution of this 

problem requires the special approach such as fuzzy decisive method adopted for solving general non-

convex optimization problems.  Here solving the above linear programming problem gives us an 

optimum  𝜆∗  ∈ [0,1]. Then the solution of the problem is any 𝑥 ≥  0 satisfying the problem constraint 

with   𝜆 =  𝜆∗ . 

3| Bi-Level Programming 

3.1| Basic Definitions 

3.1.1| Decision making 

Decision making is a process of choosing an action (solution) from a set of possible actions to optimize 

a given objective.  

3.1.2| Decision making under multi objectives 

 In most real situation a decision maker needs to choose an action to optimize more than one objective 

simultaneously. Most of these objectives are usually conflicting. For example, a manufacturer wants to 

increase his profit and at the same time want to produce a product with better quality. Mathematically a 

multi objective optimization with 𝑘 objectives, for a natural number  𝐾 > 1, can be given as: 

maxF(x) = (f1(x), f2(x),… , fk(x)) , 
s. t. 

x ∈ S ⊆ ℝn. 

3.1.3| Hierarchical decision making 

 An optimization problem which has other optimization problems in the constraint set and has a 

decision maker for each objective function controlling part of the variables is called multi-level 

optimization problem. If there are only two nested objective functions then it is called a bi-level 

optimization problem. The decision maker at the first level, with objective function  𝑓
1
, is called the 

leader and the other decision makers are called the followers. A solution is supposed to fulfill all the 
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feasibility conditions and optimize each objectives it is uncommon to find a solution which makes all the 

decision makers happy. Hence to choose an action the preference of the decision makers for all the levels 

or objectives play a big role. 

3.1.4| Bi-level programming (BLP) 

 is a mathematical programming problem that solves decentralized planning problems with two DMs in a 

two level or hierarchical organization. It has been studied extensively since the 1980s. It often represents 

an adequate tool for modeling non-cooperative hierarchical decision process, where one player optimizes 

over a subset of decision variables, while taking in to account the independent reaction of the other player 

to his or course of action. In the real world, we often encounter situations where there are two or more 

decision makers in an organization with a hierarchical structure, and they make decisions in turn or at the 

same time so as to optimize their objective functions. In particular, consider a case where there are two 

decision makers; one of the decision makers first makes a decision, and then the other who knows the 

decision of the opponent makes a decision. Such a situation is formulated as a bi-level programming 

problem. We call the decision maker who first makes a decision the leader, and the other decision maker 

the follower. For bi-level programming problems, the leader first specifies (decides) a decision and then 

the follower determines a decision so as to optimize the objective function of the follower with full 

knowledge of the decision of the leader. According to this rule, the leader also makes a decision so as to 

optimize the objective function of self. This decision making process is extremely practical to such 

decentralized systems as agriculture, government policy, economic systems, finance, warfare, 

transportation, network designs, and is especially for conflict resolution.  

Bi-level programming is particularly appropriate for problems with the following characteristics: 

 Interaction: Interactive decision-making units within a predominantly hierarchical structure.  

  Hierarchy: Execution of decision is sequential, from upper to lower level.  

 Full information: Each DM is fully informed about all prior choices when it is his turn to move.  

 Nonzero sum: The loss for the cost of one level is unequal to the gain for the cost of the other level. External effect 

on a DM’s problem can be reflected in both the objective function and the set of feasible decision space.  

 Each DM controls only a subset of the decision variables in an organization. 

3.2| Mathematical Formulation of a Bi-Level Linear Programming Problem 

(BLPP) 

For the bi-level programming problems, the leader first specifies a decision and then the follower 

determines a decision so as to optimize the objective function of self with full knowledge of the decision 

of the leader. According to this rule, the leader also makes a decision so as to optimize the objective 

function of self. The solution defined as the above mentioned procedure is a stackelberg solution. 

A bi-level LPP for obtaining the stackelberg solution is formulated as: 

 

maxz1(x1, x2) = c1x1 + d1x2, 
x1. 
Where x2  solves 

(4) 

maxz2(x1, x2) = c2x1 + d2x2, 
x2, 
s. t. 
Ax1 + Bx2 ≦ b. 
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Where 𝑐𝑖, 𝑖 = 1,2 are 𝑛1-dimensional row coefficient vector𝑑𝑖, 𝑖 = 1,2, are 𝑛2- dimensional row coefficient 

vector, 𝐴 is an mxn1 coefficient matrix, 𝐵 is a 𝑚𝑥𝑛2 coefficient matrix, 𝑏-is an 𝑚-dimensional column 

constant vector. In the bi-level linear programming problem above𝑧1(𝑥1, 𝑥2), and 𝑧2(𝑥1, 𝑥2)represent the 

objective functions of the leader and the follower, respectively, and 𝑥1 and 𝑥2 represent the decision 

variables of the leader and the follower respectively. Each decision maker knows the objective function 

of self and the constraints. The leader first makes a decision, and then the follower makes a decision so 

as to maximize the objective function with full knowledge of the decision of the leader. Namely, after 

the leader chooses  𝑥1, he solves the following linear programming problem: 

And chooses an optimal solution 𝑥2(𝑥1) to the problem above as a rational response. Assuming that the 

follower chooses the rational response, the leader also makes a decision such that the objective function 

𝑧1(𝑥1, 𝑥2(𝑥1)) is maximized. 

3.3| BLP Problem Description 

The linear bi-level programming problem is similar to standard linear programming, except that the 

constraint region is modified to include a linear objective function constrained to be optimal with respect 

to one set of variables. The linear BLPP characterized by two planners at different hierarchical levels 

each independently controlling only a set of decision variables, and with different conflicting objectives. 

The lower- level executes its policies after and in view of, the decision of the higher level , and the higher 

level optimizes its objective independently which is usually affected by the reactions of the lower level. 

Let the control over all real-valued decision variables in the vector 𝑥 = (𝑥1
1 , 𝑥1

2 , … , 𝑥1
𝑁(1)

 , 𝑥2
1 , 𝑥2

2 , … , 𝑥2
𝑁(2)

) 

be partitioned between two planners ,hereafter known as level-one(the superior or top planner) and 

level-two(the inferior or bottom planner).Assume that the level-one has control over the vector 𝑥 =

(𝑥1
1 , 𝑥1

2 , … , 𝑥1
𝑁(1)

), the first 𝑁(1) components of the vector x, and that the level-two has control over the 

vector 𝑥 = (𝑥2
1 , 𝑥2

2 , … , 𝑥2
𝑁(2)

) the remaining 𝑁(2) components .Further, assume that 

𝑓1, 𝑓2: 𝑅
𝑁(1)𝑥 𝑅𝑁(2)  → 𝑅1 linear. Then, the linear BLPP can be formulated as: 

Where 𝑆 ⊆  𝑅𝑁(1)+𝑁(2) is the feasible choices of (𝑥1, 𝑥2), and is closed and bounded. For any fixed choice 

of   𝑥1 , level-two will choose a value of 𝑥2 to maximize the objective function 𝑓1(𝑥1, 𝑥2). Hence, for 

each feasible value of  𝑥1, level-two will react with a corresponding value of 𝑥2. This induces a functional 

reaction ship between the decisions of level-one and the reactions of level-two. Say, 𝑥2 = 𝑊(𝑥1) .We will 

assume that the reaction function,  𝑊(. ), is completely known by level one. 

max z2(x1, x2) = c2x1 + d2x2, 

x2, 

(5) 

  s. t. 

Bx2 ≤ b − Ax1,                                                  

x2 ≧ 0. 

 

max f1(x1, x2) = c1x1 + d1x2, 
x1. 
Where x2  solves 

(6) 

max f2(x1, x2) = c2x1 + d2x2, 
x2, 
s. t. (x1, x2) ∈ S. 

(7) 
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Definition 9. The set 𝑊𝑓2(𝑆) given by 𝑊𝑓2(𝑆)  = {(𝑥1
∗ , 𝑥2

∗ ) ∈ 𝑆: 𝑓2(𝑥1
∗ , 𝑥2

∗ ) = 𝑚𝑎𝑥 𝑓2(𝑥1
∗ , 𝑥2

∗ ) is the set of 

rational reactions of 𝑓2over  𝑆. Hence level-one is really restricted to choosing a point in the set of rational 

reactions of 𝑓2 over  𝑆. So, if level-one wishes to maximize its objective function, 𝑓1(𝑥1, 𝑥2),by controlling 

only the vector  𝑥1, it must solve the following mathematical programming problem: 

 

 

 

For convenience of notation and terminology, we will refer to 𝑆1 =  𝑊𝑓2(𝑆) as the level-one feasible region 

or in general, the feasible region, and 𝑆1  = 𝑆 as the level two feasible regions.  

The following are the basic concepts of the bi-level linear programming problem of Eq. 3: 

The feasible region of the bi-level linear programming problem: S = {(x1, x2): Ax1 + Bx2 ≦ b}. 

The decision space (feasible set) of the follower after   𝑥1 is specified by the leader: S(x1) =

 {x2  ≧  0:  Bx2  <  b − Ax1, x1  ≧  0}. 

 The decision space of the leader:   𝑆𝑥 =  {𝑥 1 ≧  0 there is an 𝑥2 such that 𝐴𝑥1 + 𝐵𝑥2 ≦ 𝑏, 𝑥 2 ≧  0 } . 

 The set of rational responses of the follower for 𝑥1 specified by the leader 

R(x1) = {
x2 ≧  0: x2 ∈ argmax z1(x1, x2)

x2 ∈ S(x1)
. 

Inducible region: IR = {(x1, x2): (x1, x2)  ∈  S, x2  ∈ R(x1)}. 

 Stackleberg solution: {(x1, x2): (x1, x2)  ∈ argmax z1(x1, x2) , (x1, x2)  ∈ R(x1)}. 

Computational methods for obtaining stackelberg solution to bi-level linear programming problems are 

classified roughly in to three categories. These are 

The vertex enumeration approach [2]. This takes advantage of the property that there exists a 

stackelberg solution in a set of extreme points of the feasible region. The solution search procedure of the 

method starts from the first best point namely an optimal solution to the upper level problem which is the 

first best solution, is computed, and then it is verified whether the first best solution is also an optimal 

solution to the lower level problem. If the first best point is not the stackelberg solution, the procedure 

continues to examine the second best solution to the problem of the upper level, and so forth.  

The Kuhn-Tucker approach. In this approach, the leader’s problem with constraints involving the 

optimality conditions of the follower’s problem is solved.  

The penalty function approach. In this approach, a penalty term is appended to the objective function 

of the leader so as to satisfy the optimality of the follower’s problem. 

Fuzzy approach:-that will be discussed in detail under the next chapter. 

 

 

max f1(x1, x2), 
s. t. 
(x1, x2) ∈ Wf2(S). 

(8) 
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4| Fuzzy Approach to Bi-Level Linear Programming Problems 

4.1| Fuzzy Bi-Level Linear Programming 

As discussed under chapter two, a bi-level linear programming problem is formulated as: 

 

 

 

 

 

 

Where 𝑥𝑖, 𝑖 = 1,2 is an 𝑛𝑖-dimensional decision variable column vector ; 

𝐶𝑖1, 𝑖 = 1,2  is an 𝑛1-dimensional constant column vector;  

𝐶𝑖2, 𝑖 = 1,2 is an 𝑛2-dimensional constant column vector;  

𝑏-is an 𝑚-dimensional constant column vector, and  

𝐴𝑖, 𝑖 = 1,2 is an mxni coefficient matrix.  

For the sake of simplicity, we use the following notations: 

𝑋 = (𝑥1, 𝑥2) ∈ 𝑅
𝑛1+𝑛2, 𝐶𝑖 = (𝐶𝑖1, 𝐶𝑖2), 𝑖 = 1,2 and 𝐴 = [𝐴1, 𝐴2] and Let DM1 denotes the decision maker at 

the upper level and DM2 denotes the decision maker at the lower level. In the bi-level linear 

programming problem (7) above, 𝑓1(𝑥1, 𝑥2) and 𝑓2(𝑥1, 𝑥2)represent the objective functions of DM1 and 

DM2 respectively; and 𝑥1 and 𝑥2 represent the decision variables of DM1 and DM2 respectively. 

Instead of searching through vertices as the 𝑘𝑡ℎ best algorithm, or the transformation approach based 

on Kuhn-Tucker conditions, we here introduce a supervised search procedure (supervised by DM1) 

which will generate (non dominated) satisfactory solution for a bi-level programming problem. In this 

solution search, DM1 specifies(decides) a fuzzy goal and a minimal satisfactory level for his objective 

function and decision vector and evaluates a solution proposed by DM2, and DM2 solves an 

optimization problem, referring to the fuzzy goal and the minimal satisfactory level of DM1. The DM2 

then presents his/her solution to the DM1. If the DM1 agrees to the proposed solution, a solution is 

reached and it is called a satisfactory solution here. If he/she rejects this proposal, then DM1 will need 

to re-evaluate and change former goals and decisions as well as their corresponding leeway or tolerances 

until a satisfactory solution is reached. It is natural that decision makers have fuzzy goals for their 

objective functions and their decision variables when they take fuzziness of human judgments in to 

consideration .For each of the objective functions 𝑓
𝑖
(𝑥) , 𝑖 = 1,2 , assume that the decision makers have 

fuzzy goals such as “the objective function 𝑓𝑖(𝑥) should be substantially less than or equal to some value 

𝑞𝑖 “ and the range of the decision on 𝑥𝑖 , 𝑖 = 1,2 ,should be “ around 𝑥𝑖
∗with its negative and positive –

side tolerances 𝑝𝑖
−and 𝑝𝑖

+,respectively.  

max f1(x1, x2) = c11x1 + c12x2, 

x1. 

Where x2  solves 

(9) 

max f2(x1, x2) = c21x1 + c22x2, 

s. t. 

 A 1x1 +A 2x2 ≤ b, 

(x1, x2) ≥ 0. 
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We obtain optimal solution of each DM1 and DM2 calculated in isolation. If the individual optimal 

solution  𝑥𝑖
0 , 𝑖 =  1.2; are the same then a satisfactory solution of the system has been attained. But this 

rarely happens due to conflicting objective functions of the two DMs. The decision-making process then 

begins at the first level. Thus, the first-level DM provides his preferred ranges for 𝑓
1
and decision vector 

 𝑥1 to the second level DM. This information can be modeled by fuzzy set theory using membership 

functions. 

4.2| Fuzzy Programming Formulation of BLPPs 

To formulate the fuzzy programming model of a BLPP, the objective functions 𝑓𝑖, (𝑖 = 1,2) and the decision 

vectors 𝑥𝑖, (𝑖 = 1,2) would be transformed in to fuzz goals by means of assigning an aspiration level (the 

optimal solutions of both of the DMs calculated in isolation can be taken as the aspiration levels of their 

associated fuzzy goals) to each of them. Then, they are to be characterized by the associated membership 

functions by defining tolerance limits for achievement of the aspired levels of the corresponding fuzzy 

goals. 

4.3| Fuzzy Programming Approach for Bi-Level LPPs 

In the decision making context, each DM is interested in maximizing his or her own objective function, 

the optimal solution of each DM when calculated in isolation would be considered as the best solution and 

the associated objective value can be considered as the aspiration level of the corresponding fuzzy goal 

because both the DMs are interested of maximizing their own objective functions over the same feasible 

region defined by the system of constraints. Let 𝑥𝑖
𝐵 be the best (optimal) solution of the 𝑖𝑡ℎ level DM. It is 

quite natural that objective values which are equal to or larger than 𝑓𝑖
𝐵 =  𝑓𝑖(𝑥𝑖

𝐵 ) = 𝑚𝑎𝑥 𝑓𝑖(𝑥) , 𝑖 = 1,2. , 𝑥 ∈ 𝑆 

should be absolutely satisfactory to the 𝑖𝑡ℎ level DM. If the individual best (optimal) solution 𝑥𝑖
𝐵, 𝑖 = 1,2 

are the same, then a satisfactory optimal solution of the system is reached. However, this rarely happens 

due to the conflicting nature of the objectives. To obtain a satisfactory solution, higher level DM should 

give some tolerance (relaxation) and the relaxation of decision of the higher level DM depends on the 

needs, desires and practical situations in the decision making situation .Then the fuzzy goals take the form 

𝑓𝑖(𝑥) ≲ 𝑓𝑖(𝑥𝑖
𝐵 ), 𝑖 = 1,2, 𝑥𝑖  ≅  𝑥𝑖

𝐵.  

To build membership functions, goals and tolerance should be determined first. However, they could 

hardly be determined without meaningful supporting data. Using the individual best solutions, we find the 

values of all the objective functions at each best solution and construct a payoff matrix 

[ 
  
  
 
 f1(x) f2(x)

x1
0 f1(x1

0) f2(x1
0)

x2
0 f1(x2

0) f2(x2
0)
] 
  
  
 
 

. 

The maximum value of each column (𝑓𝑖(𝑥𝑖
0)) gives upper tolerance limit or aspired level of achievement 

for the ith objective function where 𝑓𝑖
𝑢  =  𝑓𝑖(𝑥𝑖

0) = max 𝑓𝑖(𝑥𝑖
0) , 𝑖 = 1,2. 

The minimum value of each column gives lower tolerance limit or lowest acceptable level of achievement 

for the ith objective function where  𝑓
𝑖

𝐿 = 𝑚𝑖𝑛 𝑓
𝑖
(𝑥𝑖

0), 𝑖 = 1.2. For the maximization type objective function, 

the upper tolerance limit  𝑓
𝑡

𝑢, 𝑡 = 1,2, are kept constant at their respective optimal values calculated in 

isolation but the lower tolerance limit 𝑓𝑖
𝐿 are changed. The idea being that  𝑓

𝑖
(𝑥) →  𝑓

𝑡

𝑢, then the fuzzy 

objective goals take the form  𝑓
𝑖
(𝑥) ≲  𝑓

𝑖
(𝑥𝑖

𝑢), 𝑖 =  1,2. And the fuzzy goal for the control vector 𝑥𝑖 is 

obtained a 𝑥𝑖  ≅  𝑥𝑖
𝑢 . Now, in the decision situation, it is assumed that all DMs that are up to  𝑖𝑡ℎ motivation 

to cooperate each other to make a balance of decision powers, and they agree to give a possible relaxation 

of their individual optimal decision. The   𝑖𝑡ℎ level DM must adjust his/her goal by assuming the lowest 
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acceptable level of achievement 𝑓𝑖
𝐿 based on indefiniteness of the decentralized organization. Thus, all 

values of   𝑓
𝑖
(𝑥) ≥  𝑓

𝑡

𝑢are absolutely acceptable (desired) to objective function 𝑓𝑖(𝑥)  satisfactory to the 

ith level DM. All values o𝑓𝑖(𝑥)f with  𝑓
𝑖
(𝑥) ≤  𝑓

𝑡

𝐿 are absolutely unacceptable (undesired) to the objective 

function 𝑓𝑖(𝑥) for  𝑖 = 1,2. Based on this interval of tolerance, we can establish the following linear 

membership functions for the defined fuzzy goals as Fig.1 below. 

Fig. 1. Membership function of maximization-type objective function. 

 

 

 

By identifying the membership functions µ1(𝑓1(𝑥))and µ2(𝑓2(𝑥))for the objective functions 𝑓1(𝑥) and 

𝑓2(𝑥), and following the principle of the fuzzy decision by Bellman and Zadeh, the original bi-level linear 

programming Problem (9) can be interpreted as the membership function maxmin problem defined by: 

Then the linear membership functions for decision vector 𝑥1 can be formulated as: 

Where 𝑥1
0 is the optimal solution of first level DM; 

𝑒1
−  the negative tolerance value on 𝑥1; 

𝑒1
+  the positive tolerance value on 𝑥1. 

To derive an overall satisfactory solution to the membership function maximization Problem (11), we 

first find the maximizing decision of the fuzzy decision proposed by Bellman and Zadeh [22]. Namely, 

the following problem is solved for obtaining a solution which maximizes the smaller degree of 

satisfaction between those of the two decision makers: 

 

µi(fi(x)) =

{ 
  
  
  
  
  
 1, if fi(x) ≥ fi

u,

fi(x) − fi
L

fi
u ≥ fi

L
, if fi

L ≤ fi(x) ≤ fi
u, i = 1,2     

0, if fi(x) ≤ fi
L.

 (10) 

max min{μi(fi(x)),   i = 1,2}, 

s.t.  

A 1x1 +A 2x2 ≤ b,   x1, x2 ≥ 0. 

(11) 

µx1(f1(x)) =

{ 
  
  
  
 
  
  
  
  
 
 

x1 − (x1
0 − e1

−)

e1
− , if x1

0 − e1
− ≤ x1 ≤ x1

0

(x1
0 + e1

+) − x1
e1
+ , if x1

0 ≤ x1 ≤ (x1
0 + e1

+)   

0, if otherwise.

 (12) 
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By introducing an auxiliary variable 𝜆, this problem can be transformed into the following equivalent 

problem: 

Solving Problem (14), we can obtain a solution which maximizes the smaller satisfactory degree between 

those of both decision makers. It should be noted that if the membership function𝜇𝑖(𝑓𝑖(𝑥)), 𝑖 = 1.2 are 

linear membership functions such as Eq. (10), Problem (14) becomes a linear programming problem. Let 

𝑥∗denotes an optimal solution to Problem (14). Then we define the satisfactory degree of both decision 

makers under the constraints as 

If DM1 is satisfied with the optimal solution  𝑥∗, it follows that the optimal solution 𝑥∗becomes a 

satisfactory solution; however DM1 is not always satisfied with the solution  𝑥∗. It is quite natural to assume 

that DM1 specifies (decides) the minimal satisfactory level 𝛿 ∈ [0,1] for his membership function 

subjectively. Consequently, DM2 optimizes his objective under the new constraints as the following 

problem: 

If an optimal solution to Problem (16) exists, it follows that DM1 obtains a satisfactory solution having a 

satisfactory degree larger than or equal to the minimal satisfactory level specified (decided) by DM1’s own 

self. However, the larger the minimal satisfactory level is assessed, the smaller DM2’s satisfactory degree 

becomes. Consequently, a relative difference between the satisfactory degrees of DM1 and DM2 becomes 

larger than it is feared that overall satisfactory balance between both levels cannot be maintained. To take 

account of overall satisfactory balance between both levels, DM1 needs to compromise (agree) with DM2 

on DM1’ s own minimal satisfactory level. To do so, the following ratio of the satisfactory degree of DM2 

to that of DM1 is defined as: 

 

 

max min{μ1(f1(x)), μ2(f2(x)), μx1(x1)}, 

s.t.  

A 1x1 +A 2x2 ≤ b,   x1, x2 ≥ 0. 

(13) 

max λ, 

s.t. μ1(f1(x)) ≥ λ, 

μ2(f2(x)) ≥ λ, 

μx1(x1) ≥ λ, 

A 1x1 +A 2x2 ≤ b,   x1, x2 ≥ 0. 

(14) 

λ∗ = min{μ1(f1(x
∗)), μ2(f2(x

∗))}. (15) 

max μ2(f2(x)),
 

 

s.t.  

μ1(f1(x)) ≤ δ 

A 1x1 +A 2x2 ≤ b,   x1, x2 ≥ 0. 

(16) 
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This is originally introduced by Lai [6]. 

Let ∆> ∆ 𝐿  denote the lower bound and the upper bound of ∆ specified by DM1. If ∆>

∆𝑈 , 𝑖. 𝑒 𝜇2(𝑓2(𝑥
∗)) > ∆𝑈𝜇1(𝑓1(𝑥

∗)),  then DM1 updates (improves) the minimal satisfactory level 𝛿 by 

increasing 𝛿 . Then DM1 obtains a larger satisfactory degree and DM2 accepts a smaller satisfactory 

degree. Conversely, if  ∆> ∆𝐿, 𝑖. 𝑒 𝜇
2

(𝑓
2
(𝑥∗)) < ∆𝑖𝜇

1
(𝑓

1
(𝑥∗)),  then DM1 updates the minimal 

satisfactory level 𝛿 by decreasing  𝛿, and DM1 accepts a smaller satisfactory degree and DM2 obtains a 

larger satisfactory degree. 

At an iteration  𝑙 , let 𝜇1 (𝑓1(𝑥
𝑙)) , 𝜇2 (𝑓2(𝑥

𝑙)) , 𝜆𝑙  and Δ𝑙 =
𝜇2(𝑓2(𝑥1

𝑙 ))

𝜇1(𝑓1(𝑥
𝑙))

  denote DM1’s and DM2’s 

satisfactory degrees, a satisfactory degree of both levels and the ratio of satisfactory degrees between 

both DMs, respectively, and let a corresponding solution be 𝑙𝑥 at the iteration. The iterated interactive 

process terminates if the following two conditions are satisfied and DM1 concludes the solution as a 

satisfactory solution. 

4.3.1| Termination conditions of the interactive processes for bi-level linear programming 

problems 

DM1’s satisfactory degree is larger than or equal to the minimal satisfactory level 𝛿 specified by DM1, 

i.e. 𝜇1 (𝑓1(𝑥
𝑙)) ≥  𝛿.  

The ratio Δ𝑙of satisfactory degrees lies in the closed interval between the lower and upper bounds 

specified by DM1, i.e. Δ𝑙  ∈  [∆  𝑚𝑖𝑛, ∆𝑚𝑎𝑥].  

Condition (i) is DM1’s required condition for solutions, and Condition (ii) is provided in order to keep 

overall satisfactory balance between both levels. Unless the conditions are satisfied simultaneously, DM1 

needs to update the minimal satisfactory level 𝛿. 

Procedure for updating the minimal satisfactory level 𝛿. 

If Condition (i) is not satisfied, then DM1 decreases the minimal satisfactory level by  𝛿. 

If the ratio Δ𝑙 exceeds its upper bound, then DM1 increases the minimal satisfactory level  𝛿. Conversely, 

if the ratio Δ𝑙is below its lower bound, then DM1 decreases the minimal satisfactory level  𝛿. 

4.4| Algorithm of Interactive Fuzzy Programming for BLPPs 

Step 1. Find the solution of the first level and second level independently with the same feasible set 

given.  

Step 2. Do these solutions coincide?  

          If yes, an optimal solution is reached.  

          If No, go to Step 3.  

∆=
μ2(f2(x

∗))

μ1(f1(x ∗))
. (17) 
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Step 3. Define a fuzzy goal, construct a payoff matrix, and then find upper tolerance limit 𝑓𝑡
𝑢 and lower 

tolerance limit  𝑓
𝑡

𝐿. 

Step 4. Build member ship functions for maximization objective functions µ𝑓𝑖(𝑓𝑖(𝑥)) and decision vector 

𝑥1 using Eqs. (8) and (10), respectively.  

Step 5. set ℓ = 1 and solve the auxiliary Problems (14). If DM1 is satisfied with the optimal solution, the 

solution becomes a satisfactory solution  𝑥∗. Otherwise, ask DM1 to specify (decide) the minimal 

satisfactory level 𝛿 together with the lower and the upper bounds [∆  𝑚𝑖𝑛, ∆  𝑚𝑎𝑥] of the ratio of satisfactory 

degrees Δ𝑙 with the satisfactory degree 𝜆∗of both decision makers and the related information about the 

solution in mind.  

Step 6. Solve Problem (16), in which the satisfactory degree of DM1 is maximized under the condition that 

the satisfactory degree of DM1 is larger than or equal to the minimal satisfactory level   𝛿, and then an 

optimal solution 𝑥𝑙 to Problem (16) is proposed to DM1 together with 𝜆𝑙 , µ1(𝑓1(𝑥
𝑙 )), µ2(𝑓2(𝑥

𝑙 )) and ∆ 𝑙.  

Step 7. If the solution 𝑥𝑙 satisfies the termination conditions and DM1 accepts it, then the procedure stops, 

and the solution 𝑥𝑙 is determined to be a satisfactory solution.  

Step 8. Ask DM1 to revise the minimal satisfactory level 𝛿 in accordance with the procedure for updating 

minimal satisfactory level. Return to Step 7. 

Example 2. Solve (Linear BLPP) 

Solution.  

Step 1. Find the solution of the top-level and lower-level independently with the same feasible set. i.e. 

 

 

 

max f1(x) = 5x1 + 6x2 + 4x3 + 2x4, 

x1, x2. 

Where  x3, x4 solves 

max f2(x) = 8x1 + 9x2 + 2x3 + 4x4, 

x3, x4, 

s. t. 
3x1 + 2x2 + x3 + 3x4  ≤ 40,  

x1 + 2x2 + x3 + 2x4 ≤ 30, 

  2x1 + 4x2 + x3 + 2x4 ≤ 35, 

x1, x2, x3, x4 ≥ 0. 

(18) 
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Then we find the optimal solution 

𝑓1 = 125 at 𝑥1
0 = (5, 0, 25,0); 

𝑓2 = 118.125 at 𝑥2
0 = (11.25, 3.125, 0,0); 

But this is not a satisfactory solution (since  𝑥1
0 ≠ 𝑥2

0). 

Step 2. Define fuzzy goals, construct the payoff matrix and we need to find the upper and lower 

tolerance limit. 

Objective function as: 𝑓1 ≲ 125, 𝑓2 ≲ 118.125. 

Decision variables as: 𝑥1 ≅ 5, 𝑥2 ≅ 0; 

Payoff matrix=[

𝑓
1
(𝑥1

0) 𝑓
2
(𝑥2

0)

𝑥1
0 125 90

𝑥2
0 75 118.125

]. 

Upper tolerance limits are 𝑓1
𝑢 = 125, 𝑓2

𝑢 ≲ 118.125. 

Lower tolerance limits are  𝑓1
𝐿 = 75, 𝑓2

𝐿 ≲ 90. 

Step 3. Build membership functions for: 

Objective functions as 

μf1(f1(x)) =
{ 
  
 
  
  
 
 

1,   if f1(x) ≥ 125
f1(x) − 75

125 − 75
, if 75 ≤ f1(x) ≤ 125

0, if f1(x) ≤ 75

 . 

Decision variable function as 

μf2(f2(x)) =
{ 
  
 
  
  
 
 

1,   if f2(x) ≥ 118.125
f2(x) − 90

118.125 − 90
, if 90 ≤ f2(x) ≤ 119.125.

0, if f2(x) ≤ 90

 

Let the upper level DM specifies (decides) 𝑥1 = 5 with 2.5 (negative) and 2.5 (positive) tolerances and  

𝑥2 = 0 with 0 (negative) and 3 (positive) tolerance values. 

  max f1(x) = 5x1 + 6x2 + 4x3 + 2x4,                          

s. t. 
3x1 + 2x2 + x3 + 3x4  ≤ 40,  

x1 + 2x2 + x3 + 2x4 ≤ 30, 

 2x1 + 4x2 + x3 + 2x4 ≤ 35, 

x1, x2, x3, x4 ≥ 0. 

(19) 
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μx1(x1) =

{ 
  
  
 
  
  
  
 
 
x1 − (5 − 2.5)

2.5
,   if 2.5 ≤  x1 ≤ 5

(5 + 2.5) − x1
2.5

, if 5 ≤ x1 ≤ 7.5

0,                        otherwise

, 

μx2(x2) = {

x2,                                    if x2 ≤ 3
3 − x2
3

,               if 0 ≤ x2 ≤ 3

0,                  otherwise

. 

Step 4. Solve the auxiliary problem 

The result of the first iteration including an optimal solution to the problem is 

𝑥1
1 = 6.41, 𝑥2

1 = 1.95, 𝑥3
1 = 10.52, 𝑥4

1 = 1.42,  and  λ1 = 0.316, f1
1(x) = 88.67, f2

1(x) = 95.55, μ1(f1(x)) = 0.2734. 

Suppose that DM1 is not satisfied with the solution obtained in iteration 1, and then let him specify (decide) 

the minimal satisfactory level at 𝛿 = 0.3 and the bounds of the ratio at the interval [∆𝑚𝑖𝑛, ∆ 𝑚𝑎𝑥]  =

 [0.3, 0.4], taking account of the result of the first iteration. Then, the problem with the minimal satisfactory 

level is written as: 

Applying simplex algorithm, the result of the second iteration including an optimal solution to Problem 

(21) is 

 

 
maxλ, 

   s. t. 

  μf1(f1(x)) ≥ λ,                                         

μf2(f2(x)) ≥ λ, 

μx1(x1) ≥ λ, 

3x1 + 2x2 + x3 + 3x4  ≤ 40,    

x1 + 2x2 + x3 + 2x4 ≤ 30, 

  2x1 + 4x2 + x3 + 2x4 ≤ 35, 

x1, x2, x3, x4 ≥ 0. 

(20) 

 
maxμf2(f2(x)), 

  s. t. 
 μf1(f1(x)) ≥ 0.3,                                          

x ∈ S. 

(21) 
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Therefore, this solution satisfies the termination conditions. 

5| Conclusion 

 The fuzzy mathematically programming approach is simple to implement, interactive and applicable to 

BLPP. The satisfactory solution obtained is realistic. We can take any membership function other than 

linear. The results will hold good, however, the problem will become a non linear programming problem. 

We observe that even though the decision making process is from higher to lower level, the lower level 

becomes the most important. This is because the decision vector under the control of the lower level 

DM is not given any tolerance limits. Hence this decision vector either remains unchanged or closest to 

its valued obtained in isolation. But at higher level, the decision vectors are given some tolerance and 

hence they are free to move within the tolerance limits. The tolerance levels can also be considered as 

variables and if the DMs cooperate then the entire system as a whole can be optimized. We can easily 

apply the same approach to non linear BLPPs. 
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