
  Corresponding Author: dharshinisuresh2002@gmail.com  

                        10.22105/JFEA.2021.281500.1061        

 

E-ISSN: 2717-3453 | P-ISSN: 2783-1442 | 

Abstract 

 

1 | Introduction  

The concept of fuzzy set was introduced by Zadeh [15] in his classic paper in 1965 and has been 

applied to many branches in mathematics. Later Zadeh [14] also introduced the concept of interval 

valued fuzzy set by considering the values of membership functions as the intervals of numbers 

instead of the numbers alone. The notion of rough set theory was proposed by Pawlak [7]. The 

concept of rough set theory is an extension of crisp set theory for the study of intelligent systems 

characterized by inexact, uncertain or insufficient information. Dubois and Prade [3] were introduced 

the concept of rough fuzzy set. This theory was found to be more useful in decision making and 

medical diagnosis problems. A similarity measure is an important tool for determining the degree of 

similarity between two objects. Similarity measures between fuzzy sets is an important content in 

fuzzy mathematics. Yager [13] examined Pythagorean fuzzy set characterized by a membership degree 

and a non-membership degree that satisfies the case in which the square sum of its membership 

degree and non-membership degree is less than or equal to one.  
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Peng and Yang [9] introduced the concept of interval Pythagorean fuzzy sets which is a generalization of 

Pythagorean fuzzy sets and interval valued fuzzy sets. Hussain et al. [2] introduced the concept of rough 

Pythagorean fuzzy sets. The Pythagorean fuzzy set has been investigated from different perspectives, 

including decision-making technologies [8], medical diagnosis [10], and transportation problem [6]. In 

particular, an extension of Pythagorean fuzzy set, named Interval-Valued Pythagorean Fuzzy Sets in 

decision making [8], complex Pythagoren fuzzy set in pattern recognition [12]. 

To facilitate our discussion, the remainder of this paper is organized as follows.  In Section 2 we review 

some fundamental conceptions rough sets, interval valued fuzzy sets, Pythgorean fuzzy sets. In Section 3 

we propose cosine similarity measure of rough interval Pythagorean fuzzy sets and some properties of this 

similarity measure discussed. Sections 4 and 5 deals with jaccard, dice similarity measures. In Section 6 we 

present algorithm for proposed measures. Section 7 deals with numerical example of proposed measures. 

2| Basic Concepts 

In this section we list some basic concepts. 

Definition 1. Let x be a nonempty set. A mapping  �̃�: 𝑥 → 𝐷[0,1]  is called an interval valued fuzzy subset 

of x, where �̃�(𝑥) = [𝛺−(𝑥), 𝛺+(𝑥)], 𝑥 ∈ 𝑋, and 𝛺− and 𝛺+ are the fuzzy subets in X such that 𝛺−(𝑥) ≤ 𝛺+(𝑥) 

𝑥 ∈ 𝑋. 𝐷[0,1] denotes the set of closed subsets of [0,1]. 

Definition 2. [5]. Let 𝜗 be a congruence relation on X.  Le Ʌ t be any nonempty subset of X. The sets 

𝜗(Ʌ) = {𝑥 ∈ 𝑋/[𝑥]𝜗 ⊆ Ʌ}  and 𝜗(Ʌ) = {𝑥 ∈ 𝑋/[𝑥]𝜗 ∩ 𝜗 ≠ ∅} are called the lower and upper approximations of 

Ʌ. Then 𝜗(Ʌ) = (𝜗(Ʌ), 𝜗(Ʌ)) is called rough set in  (𝑋, 𝜗) ⟺ 𝜗(Ʌ) ≠ 𝜗(Ʌ). 

Definition 3. [3]. Let 𝜗 be an congruence relation on X.  Let Ʌ fuzzy subset of 𝑋. The upper and lower 

approximations of Ʌ defined by  𝜗(Ʌ)(𝑥) = ∨
𝑎∈[𝑥]𝜗

Ʌ(𝑎) and   𝜗(Ʌ)(𝑥) = ∧
𝑎∈[𝑥]𝜗

Ʌ(𝑎). 𝜗(Ʌ) = (𝜗(Ʌ), 𝜗(Ʌ)) is called a 

rough fuzzy set of Ʌ with respect to 𝜗 if  𝜗(Ʌ) ≠ 𝜗(Ʌ). 

Definition 4. [4]. Let �̃� be an interval-valued fuzzy subset of X and let 𝜗 be the complete congruence 

relation on X. Let 𝜗(�̃�) and 𝜗(�̃�) be the interval-valued fuzzy subset of X defined by, 𝜗(�̃�)(𝑛) =

∧𝑛∈[𝑦]𝜗 �̃�(𝑛) and  𝜗(�̃�)(𝑛) =∨𝑛∈[𝑦]𝜗
�̃�(𝑛). Then 𝜗(�̃�) = ( 𝜗(�̃�), 𝜗(�̃�)) is called an interval-valued rough 

fuzzy subset of X if  𝜗(�̃�) ≠ 𝜗(�̃�). 

Definition 5. [1]. Let X be a nonempty set then an Intutionistic fuzzy set can be defined as Ʌ𝛺 =

{(𝑥, 𝜇
𝛺

(𝑥), 𝛾
𝛺Ʌ

(𝑥)) /𝑥 ∈ 𝑋} where 𝜇𝛺Ʌ
(𝑥) 𝑎𝑛𝑑 𝛾Ʌ(𝑥) are mapping from X to [0,1] also 0 ≤ 𝜇𝛺Ʌ

(𝑥) ≤ 1,0 ≤

𝛾𝛺ɅɅ
(𝑥) ≤ 1,0 ≤ 𝜇𝛺Ʌ

(𝑥) + 𝛾𝛺Ʌ
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋  and represent the degrees of membership and non-

membership of element 𝑥 ∈ 𝑋 to set X. 

Definition 6. [11]. Let X be a nonempty set then an Pythagorean fuzzy set can be defined as 𝛺 =

{(𝑥, 𝜇𝛺(𝑥), 𝛾𝛺Ʌ
(𝑥)) /𝑥 ∈ 𝑋} where 𝜇𝛺(𝑥) 𝑎𝑛𝑑 𝛾𝛺Ʌ

(𝑥) are mapping from X to [0,1] also 0 ≤ 𝜇𝛺Ʌ
(𝑥) ≤ 1,0 ≤

𝛾𝛺(𝑥) ≤ 1,0 ≤ 𝜇𝛺
2
Ʌ
(𝑥) + 𝛾𝛺

2
Ʌ
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋 , and represent the degrees of membership and non 

membership of element 𝑥 ∈ 𝑋 to set X. 

Definition 7. [7]. Let X be a non-empty set then an Interval Pythagorean fuzzy set can be defined as 

follows �̃� = {(𝑥, 𝜇�̃�(𝑥), 𝛾�̃�(𝑥))/𝑥 ∈ 𝑋} where 𝜇�̃�(𝑥) = [𝜇�̃�
−(𝑥), 𝜇�̃�

+(𝑥)] and  𝛾�̃�(𝑥) = [𝛾�̃�
−(𝑥), 𝛾�̃�

+(𝑥)] are the 

intervals in [0,1] also 0 ≤ (𝜇+
�̃�
(𝑥))2 + (𝛾+

�̃�
(𝑥))2 ≤ 1. 



 

 

306 

S
u

b
h

a
 a

n
d

D
h

a
n

a
la

k
sh

m
i 

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(4
) 

(2
0
2
0
) 

3
0
4
-3

13
 

 

3| Cosine Similarity Measures (CSM) of Rough Interval Pythagorean  

Fuzzy (RIPF) Sets.  

In this section we introduce the notion of CSM of RIPF sets also discuss some properties of RIPF sets. 

Also weighted CSM of RIPF sets are discussed.  

Definition 8. Let X be a nonempty set. Let �̃� = {(𝑛, 𝜇�̃�(𝑛), 𝛾�̃�(𝑛))/𝑛 ∈ 𝑋} be a pythagorean fuzzy set of 

X. Then rough interval Pythagorean fuzzy set is defined as 𝜗(�̃�) = (𝜗(�̃�), 𝜗(�̃�)) where  

𝜗(�̃�) = {〈𝑛, 𝜗(𝜇�̃�), 𝜗(𝛾�̃�)〉, 𝑛 ∈ 𝑋} and 𝜗(�̃�) = {〈𝑛, 𝜗(𝜇�̃�), 𝜗(𝛾�̃�)〉, 𝑛 ∈ 𝑋},  

with the condition that 0 ≤ (𝜗(𝜇�̃�))
2
+ (𝜗(𝛾�̃�))

2
≤ 1, 0 ≤ (𝜗(𝜇�̃�))

2
+ (𝜗(𝛾�̃�))

2
≤ 1. 

Here,  𝜗(𝜇
�̃�
)(𝑛) =∧𝑛∈[𝑦]𝜗 𝜇

�̃�
(𝑦) and  𝜗(𝛾�̃�)(𝑛) =∨𝑛∈[𝑦]𝜗

𝛾�̃�(𝑦) also, 

𝜗(𝜇�̃�)(𝑛) =∨𝑛∈[𝑦]𝜗
𝜇�̃�(𝑦) and  𝜗(𝛾�̃�)(𝑛) =∧𝑛∈[𝑦]𝜗

𝛾�̃�(𝑦). 

Definition 9. Let 𝜗 be an congruence relation on X. Consider two RIPF sets 𝜗(𝛺1̃), 𝜗(𝛺2̃) in 𝑋 =

{𝑥1, 𝑥2 ……𝑥𝑛}.  A CSM between 𝜗(𝛺1̃) and 𝜗(𝛺2̃) is defined as follows: 

 

Where 

 δμϑ(Ω1̃)
(xi) =

(ϑ(μ−(xi))+ϑ(μ+(xi))+ϑ(μ−(xi))+ϑ(μ+(xi)))

4
; 

δγϑ(Ω1̃)
(xi) =

(ϑ(γ−(xi)) + ϑ(γ+(xi)) + ϑ(γ−(xi)) + ϑ(γ+(xi)))

4
; 

δμϑ(Ω2̃)
(xi) =

(ϑ(μ−(xi)) + ϑ(μ+(xi)) + ϑ(μ−(xi)) + ϑ(μ+(xi)))

4
; 

δγϑ(Ω2̃)
(xi) =

(ϑ(γ−(xi)) + ϑ(γ+(xi)) + ϑ(γ−(xi)) + ϑ(γ+(xi)))

4
. 

Proposition 1. A RIPCSM between 𝜗(𝛺1̃) and 𝜗(𝛺2̃) satisfies the following properties: 

0 ≤ 𝐶𝑅𝐼𝑃𝐹 (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1; 

𝐶𝑅𝐼𝑃𝐹 (ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺  ϑ(Ω1̃) = ϑ(Ω2̃); 

𝐶𝑅𝐼𝑃𝐹 (ϑ(Ω1̃), ϑ(Ω2̃)) = 𝐶𝑅𝐼𝑃𝐹 (ϑ(Ω2̃), ϑ(Ω1̃)). 

CRIPF(ϑ(Ω1̃), ϑ(Ω2̃) )

=
1

n
∑

(δμϑ(Ω1̃)(xi)δμϑ(Ω1̃)(xi) + δγϑ(Ω1̃)(xi)δγϑ(Ω2̃)(xi))

√(δμϑ(Ω1̃)(xi))2 + (δγϑ(Ω1̃)(xi))2√(δμϑ(Ω2̃)(xi))2 + (δγϑ(Ω2̃)(xi))2

n

i=1

 . (1) 
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Proof. It is obvious because all positive values of cosine function are within 0 and 1; it is obvious; for any 

two RIPF sets  𝜗(𝛺1̃) and 𝜗(𝛺2̃) , if  𝜗(𝛺1̃) =  𝜗(𝛺2̃) then,  

𝛿𝜇𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝜇𝜗(𝛺2̃)

(𝑥𝑖)  and 𝛿𝛾𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝛾𝜗(𝛺2̃)

(𝑥𝑖). Hence 𝑐𝑜𝑠(0) = 1. Conversely, if  

𝐶𝑅𝐼𝑃𝐹 (𝜗(𝛺1̃), 𝜗(𝛺2̃)) = 1, then 𝛿𝜇𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝜇𝜗(𝛺2̃)

(𝑥𝑖) and 𝛿𝛾𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝛾𝜗(𝛺1̃)

(𝑥𝑖). Hence  𝜗(𝛺1̃) =

 𝜗(𝛺2̃). 

If we consider weight 𝜔𝑖 of each element𝑥𝑖, a weighted RICSM between RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) is 

defined as follows: 

 

𝜔𝑖 ∈ [0,1], 𝑖 = 1,2,3… 𝑛 and ∑ 𝜔𝑖
𝑛
𝑖=1 = 1. If we take 𝜔𝑖 =

1

𝑛
, 𝑖 = 1,2,… . 𝑛 then 

𝐶𝑊𝑅𝐼𝑃𝐹 (𝜗(𝛺1̃), 𝜗(𝛺2̃)) = 𝐶𝑅𝐼𝑃𝐹 (𝜗(𝛺2̃), 𝜗(𝛺1̃)). 

The weighted RICSM between two RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) also satisfies the following properties. 

Proposition 2. 

0 ≤ CWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1; 

CWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺ ϑ(Ω1̃) = ϑ(Ω2̃); 

CWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = CWRIPF (ϑ(Ω2̃), ϑ(Ω1̃)). 

4| Jaccard Similarity Measure (JSM) of Rough Interval Pythagorean 

Fuzzy (RIPF) Set 

In this section we introduce the concept of JSM of RIPF sets. Weighted JSM of RIPF also derived. 

Definition 10. Let 𝜗 be an congruence relation on X. Consider two RIPF sets 𝜗(𝛺1̃), 𝜗(𝛺2̃) in 𝑋 =

{𝑥1, 𝑥2 ……𝑥𝑛}.   A JSM between 𝜗(𝛺1̃)and 𝜗(𝛺2̃) is defined as follows: 

 

CWRIPF(ϑ(Ω1̃), ϑ(Ω2̃) )

=
1

n
∑

(δμϑ(Ω1̃)(xi)δμϑ(Ω1̃)(xi) + δγϑ(Ω1̃)(xi)δγϑ(Ω2̃)(xi))

√(δμϑ(Ω1̃)(xi))2 + (δγϑ(Ω1̃)(xi))2√(δμϑ(Ω2̃)(xi))2 + (δγϑ(Ω2̃)(xi))2

n

i=1

 . (2) 

JIRPF(ϑ(Ω1̃), ϑ(Ω2̃) )

=   
1

n
∑

(δμϑ(Ω1̃)
(xi)δμ ϑ(Ω2̃)

(xi) + δγ ϑ(Ω1̃)
(xi)δγ ϑ(Ω2̃)

(xi))

[(δμ ϑ(Ω1̃)
(xi))2 + (δγ ϑ(Ω1̃)

(xi))

2

+ (δμ ϑ(Ω2̃)
(xi))

2

+ (δγ ϑ(Ω2̃)
(xi))

2

+

δμ ϑ(Ω1̃)
(xi)δμ ϑ(Ω2̃)

(xi) + δγ ϑ(Ω1̃)
(xi)δγ ϑ(Ω2̃)

(xi)]

n

i=1

 , (3) 
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where 

 𝛿𝜇 𝜗(𝛺1̃)
(𝑥𝑖) =

( 𝜗(𝜇−(𝑥𝑖))+ 𝜗(𝜇+(𝑥𝑖))+ 𝜗(𝜇−(𝑥𝑖))+ 𝜗(𝜇+(𝑥𝑖)))

4
, 

𝛿𝛾 𝜗(𝛺1̃)
(𝑥𝑖) =

( 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖))+ 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖))) 

4
 and  

𝛿𝜇 𝜗(𝛺2̃)
(𝑥𝑖) =

( 𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)) +  𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)))

4
, 

𝛿𝛾 𝜗(𝛺2̃)
(𝑥𝑖) =

( 𝜗(𝛾−(𝑥𝑖)) +  𝜗(𝛾+(𝑥𝑖)) +  𝜗(𝛾−(𝑥𝑖)) +  𝜗(𝛾+(𝑥𝑖)))

4
. 

Proposition 3. A RIPJSM between 𝜗(𝛺1̃) and 𝜗(𝛺2̃) satisfies the following properties: 

 0 ≤ JRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1, 

JRIPF(ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺ ϑ(Ω1̃) = ϑ(Ω2̃), 

JRIPF(ϑ(Ω1̃), ϑ(Ω2̃)) = JIRPF(ϑ(Ω2̃), ϑ(Ω1̃)). 

Proof. It is obvious because all positive values of cosine function are within 0 and 1; it is obvious; for 

any two RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃), if 𝜗(𝛺1̃) =  𝜗(𝛺2̃) then, 𝛿𝜇𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝜇𝜗(𝛺2̃)

(𝑥𝑖) and  𝛿𝛾
𝜗(𝛺1̃)

(𝑥𝑖) =

𝛿𝛾
𝜗(𝛺2̃)

(𝑥𝑖). Hence 𝑐𝑜𝑠(0) = 1. Conversely, if  𝐽𝑅𝐼𝑃𝐹(𝜗(𝛺1̃), 𝜗(𝛺2̃)) = 1, then 𝛿𝜇𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝜇𝜗(𝛺2̃)

(𝑥𝑖) and 

𝛿𝛾𝜗(𝛺1̃)
(𝑥𝑖) = 𝛿𝛾𝜗(𝛺2̃)

(𝑥𝑖). Hence  𝜗(𝛺1̃) =  𝜗(𝛺2̃). 

If we consider weight 𝜔𝑖 of each element 𝑥𝑖, a weighted RIPJSM between RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) is 

defined as follows:  

𝜔𝑖 ∈ [0,1], 𝑖 = 1,2,3…𝑛 and ∑ 𝜔𝑖
𝑛
𝑖=1 = 1. If we take 𝜔𝑖 =

1

𝑛
, 𝑖 = 1,2,… . 𝑛 then 𝐽𝑊𝑅𝐼𝑃𝐹 (𝜗(𝛺1̃), 𝜗(𝛺2̃)) =

𝐽𝑅𝐼𝑃𝐹 (𝜗(𝛺2̃), 𝜗(𝛺1̃)). 

The weighted RIPJSM between two RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) also satisfies the following properties. 

Proposition 4. 

0 ≤ JWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1; 

JWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺ ϑ(Ω1̃) = ϑ(Ω2̃); 

JIRPF(ϑ(Ω1̃), ϑ(Ω2̃) )

=
1

n
∑ωi

(δμϑ(Ω1̃)
(xi)δμ ϑ(Ω2̃)

(xi) + δγ ϑ(Ω1̃)
(xi)δγ ϑ(Ω2̃)

(xi))

[(δμ ϑ(Ω1̃)
(xi))2 + (δγ ϑ(Ω1̃)

(xi))

2

+ (δμ ϑ(Ω2̃)
(xi))

2

+ (δγ ϑ(Ω2̃)
(xi))

2

+

δμ ϑ(Ω1̃)
(xi)δμ ϑ(Ω2̃)

(xi) + δγ ϑ(Ω1̃)
(xi)δγ ϑ(Ω2̃)

(xi)]

n

i=1

 . (4) 
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JWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = JWRIPF (ϑ(Ω2̃), ϑ(Ω1̃)). 

5| Dice Similarity Measure (DSM) of Rough Interval Pythagorean 

Fuzzy (RIPF) Set 

This section deals with DSM of RIPF sets. Some properties of this similarity measure are discussed. 

Definition 11. Let  𝜗(𝛺1̃) and 𝜗(𝛺2̃) be two RIPF set in𝑋 = {𝑥1, 𝑥2 ……𝑥𝑛}.  A DSM between 

𝜗(𝛺1̃)and  𝜗(𝛺2̃) is defined as follows: 

Where  

𝛿𝜇 𝜗(𝛺1̃)
(𝑥𝑖) =

( 𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)) +  𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)))

4
, 

𝛿𝛾 𝜗(𝛺1̃)
(𝑥𝑖) =

( 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖))+ 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖)))

4
 and  

𝛿𝜇 𝜗(𝛺2̃)
(𝑥𝑖) =

( 𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)) +  𝜗(𝜇−(𝑥𝑖)) +  𝜗(𝜇+(𝑥𝑖)))

4
, 

𝛿𝛾 𝜗(𝛺2̃)
(𝑥𝑖) =

( 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖))+ 𝜗(𝛾−(𝑥𝑖))+ 𝜗(𝛾+(𝑥𝑖)))

4
. 

Proposition 5. A RIPJSM between 𝜗(𝛺1̃) and 𝜗(𝛺2̃) satisfies the following properties: 

 0 ≤ DRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1; 

DRIPF(ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺ ϑ(Ω1̃) = ϑ(Ω2̃); 

DRIPF(ϑ(Ω1̃), ϑ(Ω2̃)) = DIRPF(ϑ(Ω2̃), ϑ(Ω1̃)). 

 Proof. Proof is similar to Proposition 3. 

If we consider weight 𝜔𝑖 of each element𝑥𝑖, a weighted RIPDSM between RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) is 

defined ∑ 𝜔𝑖
𝑛
𝑖=1 = 1.as follows: 

𝜔𝑖 ∈ [0,1], 𝑖 = 1,2,3… 𝑛 and  If we take 𝜔𝑖 =
1

𝑛
, 𝑖 = 1,2,… . 𝑛 then 𝐷𝑊𝑅𝐼𝑃𝐹 (𝜗(𝛺1̃), 𝜗(𝛺2̃)) =

𝐷𝑅𝐼𝑃𝐹 (𝜗(𝛺2̃), 𝜗(𝛺1̃)).  

DRIPF(ϑ(Ω1̃), ϑ(Ω2̃))

=
1

n
∑

2 (δμϑ(Ω1̃)(xi)δμϑ(Ω2̃)(xi) + δγϑ(Ω1̃)(xi)δγϑ(Ω2̃)(xi))

√(δμϑ(Ω1̃)(xi))2 + (δγϑ(Ω1̃)(xi))2√(δμϑ(Ω2̃)(xi))2 + (δγϑ(Ω2̃)(xi))2

n

i=1

. (5) 

𝐷𝑅𝐼𝑃𝐹(ϑ(Ω1̃), ϑ(Ω2̃)) =

1

𝑛
∑ 𝜔𝑖

2(𝛿𝜇ϑ(Ω1̃)(𝑥𝑖)𝛿𝜇ϑ(Ω2̃)(𝑥𝑖)+𝛿𝛾ϑ(Ω1̃)(𝑥𝑖)𝛿𝛾ϑ(Ω2̃)(𝑥𝑖))

√(𝛿𝜇ϑ(Ω1̃)(𝑥𝑖))2+(𝛿𝛾ϑ(Ω1̃)(𝑥𝑖))2√(𝛿𝜇ϑ(Ω2̃)(𝑥𝑖))2+(𝛿𝛾ϑ(Ω2̃)(𝑥𝑖))2

𝑛
𝑖=1  .         

(6) 
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The weighted RIPDSM between two RIPF sets 𝜗(𝛺1̃) and 𝜗(𝛺2̃) also satisfies the following properties. 

Proposition 6. 

0 ≤ DWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ≤ 1; 

DWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = 1 ⟺ ϑ(Ω1̃) = ϑ(Ω2̃); 

DWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) = DWRIPF (ϑ(Ω2̃), ϑ(Ω1̃)). 

6| Decision Making Based on CSM, JSM and DSM under RIPF 

Environment  

This section deals with RIPSM between RIPF sets to the multi-criteria decision making problem. 

Assume that 𝐾 = {𝐾1, 𝐾2, … . 𝐾𝑚} be the set of attributes and 𝑄 = {𝑄1, 𝑄2, … . 𝑄𝑛} be the set of 

alternatives. The proposed decision making approach is described by the following steps. 

Algorithm 1. (See Fig. 1). 

Step 1. Construct the Decision Matrix with RIPF Number. The decision maker forms a decision matrix 

with respect to n alternatives and m attributes in terms of RIPF numbers.  

Step 2. Determine RIP Mean Operator. 

 〈δμ(xi), δγ(xi)〉 =
( 
  
  
  
  
 
(ϑ(μ−(xi))+ϑ(μ+(xi))+ϑ(μ−(xi))+ϑ(μ+(xi)))

4
,

(ϑ(γ−(xi))+ϑ(γ+(xi))+ϑ(γ−(xi))+ϑ(γ+(xi)))

4

) 
  
  
  
  
 

 

for 𝑖 = 1,2,… . 𝑛. 

 Step 3. Determine the Weights of the Attributes. Assume that the weight of the attributes 𝐾𝑗(j=1,2,…m) 

considered by the decision maker is 𝜔𝑗 (j=1,2,…m) where all 𝜔𝑗 ∈ [0,1], 𝑗 = 1,2,3…𝑚 and ∑ 𝜔𝑗
𝑚
𝑗=1 = 1. 

Step 4. Determine the Benefit Type Attributes and Cost Type Attributes  . Generally, the evaluation 

attribute can be categorized into two types: benefit type attribute and cost type attribute. 

For benefit type attribute: 𝑍∗ = {𝑚𝑎𝑥(𝜇𝑄𝑖
) , 𝑚𝑖𝑛(𝛾𝑄𝑖

)}. 

For cost type attribute: 𝑍∗ = {𝑚𝑖𝑛(𝜇𝑄𝑖
) , 𝑚𝑎𝑥(𝛾𝑄𝑖

)}. 

Step 5. Determine the Weighted RIPSM of the Alternatives. 

CWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) =  ∑ωi

n

i=1

CRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) ; 

JWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) =  ∑ ωi
n
i=1 JRIPF (ϑ(Ω1̃), ϑ(Ω2̃)); 
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DWRIPF (ϑ(Ω1̃), ϑ(Ω2̃)) =  ∑ωi

n

i=1

DRIPF (ϑ(Ω1̃), ϑ(Ω2̃)). 

Step 6. Ranking the Alternatives. The ranking order of all alternatives can be determined based on the 

descending order of similarity measures. 

Step 7. End.  

Fig 1. A flowchart of the proposed decision making. 

 

7| Numerical Example for RIPCSM, RIPJSM and RIPDSM 

 Let us consider a decision maker wants to select the house from 𝑄 = {𝑄1, 𝑄2, 𝑄3} by considering four 

attributes, namely expensive (𝐾1), reasonable price (𝐾2), low price (𝐾3) and the risk factor (𝐾4). By proposed 

approach discussed above, the considered problem solved by the following steps: 

Step 1. The decision maker forms a decision matrix with respect to the three alternatives and four attributes 

in terms of RIP number as follows.                                     

Table 1. Decision matrix. 

 

 

 

Step 2. Determine the 

RIP mean operator. 

𝐊𝟏 𝐊𝟐 𝐊𝟑 𝐊𝟒 
𝐐𝟏 ([.3,.4],[.5,.7])

, 
([.3,.4],[.5,.7]) 

([.5,.6],[.8,.9])
, 

([.5,.6],[.8,.9]) 

([.1,.2],[.7,.8])
, 

([.5,.8],[.4,.6]) 

([.1,.2],[.7,.8])
, 

([.5,.8],[.4,.6]) 
𝐐𝟐 ([.7,.8],[.6,.7])

, 
([.7,.8],[.6,.7]) 

([.7,.8],[.6,.7])
, 

([.8,.9],[.4,.5]) 

([.5,.6],[.4,.5])
, 

([.5,.6],[.4,.5]) 

([.7,.8],[.6,.7])
, 

([.8,.9],[.4,.5]) 
𝐐𝟑 ([.5,.7],[.3,.4])

, 
([.8,.9],[.1,.2]) 

([.5,.7],[.3,.4])
, 

([.8,.9],[.1,.2]) 

([.5,.7],[.3,.4])
, 

([.8,.9],[.1,.2]) 

([.8,.9],[.1,.2])
, 

([.8,.9],[.1,.2]) 
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Table 2. Transformed decision matrix. 

Step 3. The weight vectors considered by 

the decision maker are 0.35, 0.25, 0.25 and 0.15 respectively. 

Step 4. Determine the benefit type attribute and cost type attribute. Here three benefit types 

attributes  𝐾1,𝐾2,𝐾3 and one cost type attribute 𝐾4. 

      Z ∗ = {[0.75,0.25], [. 8, .25], [. 725, .25], [.825, .15]}.  

Step 5. Calculate the weighted RIP similarity measures of the alternatives. Calculated values of 

weighted RIP similarity values are 

𝐶𝑊𝐼𝑅𝑃𝐹(𝑄1, 𝑍
∗) = .7582; 

𝐶𝑊𝐼𝑅𝑃𝐹(𝑄2, 𝑍
∗) = .9336; 

𝐶𝑊𝐼𝑅𝑃𝐹(𝑄3, 𝑍
∗) = .9999; 

𝐽𝑊𝐼𝑅𝑃𝐹(𝑄1, 𝑍
∗) = .6046; 

𝐽𝑊𝐼𝑅𝑃𝐹(𝑄2, 𝑍
∗) = .8538; 

𝐽𝑊𝐼𝑅𝑃𝐹(𝑄3, 𝑍
∗) = .9975; 

𝐷𝑊𝐼𝑅𝑃𝐹(𝑄1, 𝑍
∗) = .7018; 

𝐷𝑊𝐼𝑅𝑃𝐹(𝑄2, 𝑍
∗) = .9208; 

𝐷𝑊𝐼𝑅𝑃𝐹(𝑄3, 𝑍
∗) = .9988. 

Step 6. Ranking the alternatives is prepared based on the descending order of similarity measures. 

Highest value reflects the best alternative. Henc𝑄3e is the best alternative.    

8| Conclusion 

In this paper, we have defined Cosine, Jaccard, Dice similarity measure, Weighted Cosine, Jaccard and 

Dice similarity measures. We have also proved their basic properties. We have developed MADM 

strategies based on the proposed measures respectively. We have presented an example for select a best 

house for live. The thrust of the concept presented in this article will be in pattern recognition, medical 

diagnosis etc. in rough interval Pythagorean fuzzy sets. 
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