Journal of Fuzzy Extension and Applications

www.journal-fea.com

J. Fuzzy. Ext. Appl. Vol. 2, No. 1 (2021) 16-22.

Paper Type: Research Paper

A Study of Maximal and Minimal Ideals of n-Refined Neutrosophic Rings

Mohammad Abobala* ២

Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria; mohammadabobala777@gmail.com.

Citation:

Abobala, M. (2021). A study of maximal and minimal ideals of n-refined neutrosophic rings. *Journal of fuzzy extension and application*, 2 (1), 16-22.

Received: 01	/11/2020	Reviewed 1
Received: 01	/11/2020	Reviewed: 1

9/12/2020 Revised: 24/12/2020

Accept: 08/02/2021

Abstract

If R is a ring, then $R_n(I)$ is called a refined neutrosophic ring. Every AH-subset of $R_n(I)$ has the form $P = \sum_{i=0}^n P_i I_i = \{a_0 + a_1I + \dots + a_nI_n : a_i \in P_i\}$, where P_i are subsets of the classical ring R. The objective of this paper is to determine the necessary and sufficient conditions on P_i which make P be an ideal of $R_n(I)$. Also, this work introduces a full description of the algebraic structure and form for AH-maximal and minimal ideals in $R_n(I)$.

Keywords: n-Refined neutrosophic ring, n-refined AH-ideal, Maximal ideal, Minimal ideal.

1 | Introduction

CCC Licensee Journal of Fuzzy Extension and Applications. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.

org/licenses/by/4.0).

Robert Neutrosophy is a new kind of generalized logic proposed by Smarandache [12]. It becomes a useful tool in many areas of science such as number theory [16] and [20], solving equations [18], [21], and medical studies [11] and [15]. Also, there are many applications of neutrosophic structures in statistics [14], optimization [8], and decision making [7]. On the other hand, neutrosophic algebra began in [4], Smarandache and Kandasamy defined concepts such as neutrosophic groups and neutrosophic rings. These notions were handled widely by Agboola et al. in [6], [10], where homomorphisms and AH-substructures were studied [3], [13], [17].

17

Recently, there is an arising interest by the generalizations of neutrosophic algebraic structures. Authors proposed n-refined neutrosophic groups [9], rings [1], modules [2] and [22], and spaces [5] and [19].

If R is a classical ring, then the corresponding refined neutrosophic ring is defined as follows:

 $R_n(I) = \{a_0 + a_1I + \dots + a_nI_n ; a_i \in R\}.$

Addition and multiplication on $R_n(I)$ are defined as:

$$\sum_{i=0}^{n} x_{i}I_{i} + \sum_{i=0}^{n} y_{i}I_{i} = \sum_{i=0}^{n} (x_{i} + y_{i})I_{i}, \sum_{i=0}^{n} x_{i}I_{i} \times \sum_{i=0}^{n} y_{i}I_{i} = \sum_{i,j=0}^{n} (x_{i} \times y_{j})I_{i}I_{j}.$$

Where \times is the multiplication defined on the ring R and $I_i I_j = I_{\min(i,j)}$.

Every AH-subset of $R_n(I)$ has the form $P = \sum_{i=0}^n P_i I_i = (a_0 + a_1 I + \dots + a_n I_n; a_i \in P_i)$. There is an important question arises here. This question can be asked as follows:

What are the necessary and sufficient conditions on the subsets P_i which make P be an ideal of $R_n(I)$? On the other hand, can we determine the structure of all AH-maximal and minimal ideals in the nrefined neutrosophic ring $R_n(I)$?

Through this paper, we try to answer the previous questions in the case of n-refined neutrosophic rings with unity. All rings through this paper are considered with unity.

2 | Preliminaries

Definition 1. [1]. Let $(R, +, \times)$ be a ring and I_k ; $1 \le k \le n$ be n indeterminacies. We define $R_n(I) = \{a_0 + a_1I + \dots + a_nI_n ; a_i \in R\}$ to be n-refined neutrosophic ring. If n=2 we get a ring which is isomorphic to 2-refined neutrosophic ring $R(I_1, I_2)$.

Addition and multiplication on $R_n(I)$ are defined as:

$$\sum_{i=0}^{n} x_{i}I_{i} + \sum_{i=0}^{n} y_{i}I_{i} = \sum_{i=0}^{n} (x_{i} + y_{i})I_{i}, \sum_{i=0}^{n} x_{i}I_{i} \times \sum_{i=0}^{n} y_{i}I_{i} = \sum_{i,j=0}^{n} (x_{i} \times y_{j})I_{i}I_{j}.$$

Where \times is the multiplication defined on the ring *R*.

It is easy to see that $R_n(I)$ is a ring in the classical concept and contains a proper ring R.

Definition 2. [1]. Let $R_n(I)$ be an n-refined neutrosophic ring, it is said to be commutative if xy = yx for each $x, y \in R_n(I)$, if there is $I \in R_n(I)$ such 1, x = x, 1 = x, then it is called an n-refined neutrosophic ring with unity.

Theorem 1. [1]. Let $R_n(I)$ be an n-refined neutrosophic ring. Then (a) R is commutative if and only if $R_n(I)$ is commutative, (b) R has unity if and only if $R_n(I)$ has unity, and (c) $R_n(I) = \sum_{i=0}^n RI_i = \sum_{i=0}^n x_i I_i : x_i \in R$.

Definition 3. [1]. (a) Let $R_n(I)$ be an n-refined neutrosophic ring and $P = \sum_{i=0}^{n} P_i I_i = \{a_0 + a_1 I + \dots + a_n I_n : a_i \in P_i\}$ where P_i is a subset of R, we define P to be an AH-subring if P_i is a subring of R for all i, AHS-subring is defined by the condition $P_i = P_j$ for all i, j. (b) P is an AH-ideal if P_i is an two sides ideal of R for all i, the AHS-ideal is defined by the condition $P_i = P_j$ for all i, j. (c) The AH-ideal P_i is said to be null if $P_i = R$ or $P_i = \{0\}$ for all i.

Definition 4. [1]. Let $R_n(I)$ be an n-refined neutrosophic ring and $P = \sum_{i=0}^n P_i I_i$ be an AH-ideal, we define AH-factor $R(I)/P = \sum_{i=0}^n (R/P_i)I_i = \sum_{i=0}^n (x_i + P_i)I_i$; $x_i \in R$.

Theorem 2. [1]. Let $R_n(I)$ be an n-refined neutrosophic ring and $P = \sum_{i=0}^n P_i I_i$ be an AH-ideal: $R_n(I)/P$ is a ring with the following two binary operations:

$$\begin{split} & \sum_{i=0}^{n} (x_i + P_i) I_i + \sum_{i=0}^{n} (y_i + P_i) I_i = \sum_{i=0}^{n} (x_i + y_i + P_i) I_i, \\ & \sum_{i=0}^{n} (x_i + P_i) I_i \times \sum_{i=0}^{n} (y_i + P_i) I_i = \sum_{i=0}^{n} (x_i \times y_i + P_i) I_i. \end{split}$$

Definition 5. [1]. (a) Let $R_n(I)$, $T_n(I)$ be two n-refined neutrosophic rings respectively, and $f_R: R \to T$ be a ring homomorphism. We define n-refined neutrosophic AHS-homomorphism as $f: R_n(I) \to T_n(I); f(\sum_{i=0}^n x_i I_i) = \sum_{i=0}^n f_R(x_i) I_i$, (b) f is an n-refined neutrosophic AHS-isomorphism if it is a bijective n-refined neutrosophic AHS-homomorphism, and (c) AH-Ker $f = \sum_{i=0}^n Ker(f_R) I_i = \sum_{i=0}^n x_i I_i$; $x_i \in Ker f_R$.

3 | Main Discussion

Theorem 3. Let $R_n(I) = [a_0 + a_1I + \dots + a_nI_n; a_i \in R]$ be any n-refined neutrosophic ring with unity 1. Let $P = \sum_{i=0}^n P_i I_i = [a_0 + a_1I + \dots + a_nI_n; a_i \in P_i]$ be any AH-subset of $R_n(I)$, where P_i are subsets of R. Then P is an ideal of $R_n(I)$ if and only if (a) P_i are classical ideals of R for all I and (b) $P_0 \le P_k \le P_{k-1}$. For all $0 < k \le n$.

Proof. First of all, we assume that (a), (b) are true. We should prove that *P* is an ideal. Since P_i are classical ideals of *R*, then they are subgroups of (R, +), hence *P* is a subgroup of $(R_n(I), +)$. Let $r = r_0 + r_1I_1 + \cdots + r_nI_n$ be any element of $R_n(I)$, $x = x_0 + x_1I_1 + \cdots + x_nI_n$ be an arbitrary element of *P*, where $x_i \in P_i$. We have For n = 0, the statement $r. x \in P$ is true clearly. We assume that it is true for n = k, we must prove it for k + 1.

$$\begin{aligned} \mathbf{r}.\,\mathbf{x} &= (\mathbf{r}_0 + \mathbf{r}_1 \mathbf{I}_1 + \dots + \mathbf{r}_k \mathbf{I}_k + \mathbf{r}_{k+1} \mathbf{I}_{k+1})(\mathbf{x}_0 + \mathbf{x}_1 \mathbf{I}_1 + \dots + \mathbf{x}_k \mathbf{I}_k + \mathbf{x}_{k+1} \mathbf{I}_{k+1}) = \\ & (\mathbf{r}_0 + \mathbf{r}_1 \mathbf{I}_1 + \dots + \mathbf{r}_k \mathbf{I}_k)(\mathbf{x}_0 + \mathbf{x}_1 \mathbf{I}_1 + \dots + \mathbf{x}_k \mathbf{I}_k) + \mathbf{r}_{k+1} \mathbf{I}_{k+1}(\mathbf{x}_0 + \dots + \mathbf{x}_{k+1} \mathbf{I}_{k+1}) + (\mathbf{r}_0 + \dots + \mathbf{r}_k \mathbf{I}_k)\mathbf{x}_{k+1} \mathbf{I}_{k+1}. \end{aligned}$$

We remark

$$(r_0 + r_1I_1 + \dots + r_kI_k)(x_0 + x_1I_1 + \dots + x_kI_k) \in P_0 + P_1I_1 + \dots + P_kI_k$$
 (by induction hypothesis).

On the other hand, we have

$$\mathbf{r}_{k+1}\mathbf{I}_{k+1}(\mathbf{x}_0 + \dots + \mathbf{x}_{k+1}\mathbf{I}_{k+1}) = (\mathbf{r}_{k+1}\mathbf{x}_0 + \mathbf{r}_{k+1}\mathbf{x}_{k+1})\mathbf{I}_{k+1} + \mathbf{r}_{k+1}\mathbf{x}_1\mathbf{I}_1 + \dots + \mathbf{r}_{k+1}\mathbf{x}_k\mathbf{I}_k$$

19

Since all P_i are ideals and $P_0 \le P_{k+1}$, we have $r_{k+1}x_i \in P_i$ and $r_{k+1}x_0 + r_{k+1}x_{k+1} \in P_{k+1}$, hence $r_{k+1}I_{k+1}(x_0 + \dots + x_{k+1}I_{k+1}) \in P$. Also, $(r_0 + \dots + r_kI_k)x_{k+1}I_{k+1} = r_0x_{k+1}I_{k+1} + r_1x_{k+1}I_1 + \dots + r_kx_{k+1}I_k$. Under the assumption of theorem, we have $r_0x_{k+1} \in P_{k+1}$ and $r_ix_{k+1} \in P_{k+1} \le P_i$.

For all $1 \le i \le k$. Thus *P* is an ideal.

For the converse, we assume that *P* is an ideal of $R_n(I)$. We should prove (a) and (b).

It is easy to check that if $P = P_0 + \dots + P_n I_n$ is a subgroup of $(R_n(I), +)$, then every P_i is a subgroup of (R, +). Now we show that (b) is true.

For every $1 \le i \le n$, we have an element I_i , that is because R is a ring with unity, hence. Let x_0 be any element of p_0 , we have $x_0 \in P$, and $x_0I_i \in P$.

Thus $x_0 \in P_i$, which means that $P_0 \le P_i$ for all $1 \le i \le n$.

Also, for every $x_i \in P_i$, we have $x_i I_i \in P$, thus $x_i I_i I_{i-1} = x_i I_{i-1} \in P$, so that $x_i \in P_{i-1}$, which means that $P_i \leq P_{i-1}$ and (b) holds.

Example 1. Let *Z* be the ring of integers, $Z_3(I) = \{a + bI_1 + cI_2 + dI_3; a, b, c, d \in Z\}$ be the corresponding 3-refined neutrosophic ring, we have:

 $P = <16> + <2>I_1 + <4>I_2 + <8>I_3 = \{16x + 2yI_1 + 4zI_2 + 8tI_3; x, y, z, t \in Z\}$ is an ideal of Z₃(I), that is because, <16> \le <8> \le <4> \le <2>.

Now, we are able to describe all AH-maximal and minimal ideals in $R_n(I)$.

Theorem 4. Let $R_n(I) = a_0 + a_1I + \dots + a_nI_n$; $a_i \in R$ be any n-refined neutrosophic ring with unity 1.

Let $P = \sum_{i=0}^{n} P_i I_i = [a_0 + a_1 I + \dots + a_n I_n; a_i \in P_i]$ be any ideal of $R_n(I)$. Then (a) non trivial AH-maximal ideals in $R_n(I)$ have the form $P_0 + RI_1 + \dots + RI_n$, where P_0 is maximal in R and (b) non trivial AH-minimal ideals in $R_n(I)$ have the form P_1I_1 , where P_1 is minimal in R.

Proof. (a) assume that *P* is an AH-maximal ideal on the refined neutrosophic ring $R_n(I)$, hence for every ideal $M = (M_0 + M_1I_1 + \dots + M_nI_n)$ with property $P \le M \le R_n(I)$, we have M = P or $M = R_n(I)$. This implies that $M_i = R$ or $M_i = P_i$, which means that P_0 is maximal in *R*. On the other hand, we have $P_0 \le P_k \le P_{k-1}$. For all $0 < k \le n$, thus $P_i \in \{P_0, R\}$ for all $1 \le i \le n$. Now suppose that there is at least *j* such that $P_j = P_0$, we get that $P_0 + \dots + P_jI_j + \dots RI_n \le P_0 + RI_1 + \dots + RI_j + \dots + RI_n$, hence *P* is not maximal. This means that $P_0 + RI_1 + \dots + RI_n$, where P_0 is maximal in *R* is the unique form of AH-maximal ideals.

For the converse, we suppose that P_0 is maximal in R and $P_i = R$. For all $1 \le i \le n$. Consider $M = (M_0 + M_1I_1 + \dots + M_nI_n)$ as an arbitrary ideal of $R_n(I)$ with AH-structure. If $P \le M \le R_n(I)$, then $P_i \le M_i \le R$ and, this means that $P_0 = M_0$ or $M_0 = R$, that is because P_0 is maximal.

According to Theorem 3, we have $M_0 \leq M_i \leq M_{i-1}$. Now if $M_0 = R$, we get $M_i = R$, thus $M=R_n(I)$.

(b) It is clear that if P_1 is minimal in R, then P_1I_1 is minimal in $R_n(I)$. For the converse, we assume that $P = P_0 + P_1I_1 + \cdots + P_nI_n$ is minimal in $R_n(I)$, consider an arbitrary ideal with AH-structure $M = (M_0 + M_1I_1 + \cdots + M_nI_n)$ of $R_n(I)$ with the property $M \le P$, we have: $M = \{0\}$ or M = P which means that $M_1 = P_1$ or $M_1 = \{0\}$. Hence P_1 is minimal.

According to *Theorem 3*, we have $M_0 \le M_k \le M_{k-1}$ for all *k*. Now, suppose that there is at least $j \ne 1$ such that $P_j \ne \{0\}$, we get $P_j I_j \le P_0 + P_1 I_1 + \cdots + P_n I_n$. Thus *P* is not minimal, which is a contradiction with respect to assumption. Hence any non trivial minimal ideal has the form $P_1 I_1$, where P_1 is minimal in *R*.

Example 2. Let R=Z be the ring of integers, $Z_n(I) = \{a_0 + a_1I_1 + \dots + a_nI_n; a_i \in Z\}$ be the corresponding n-refined neutrosophic ring, we have

(a) the ideal $P = \langle 2 \rangle + ZI_1 + \cdots + ZI_n$ is AH-maximal, that is because $\langle 2 \rangle$ is maximal in R and (b) there is no AH-minimal ideals in $Z_n(I)$, that is because R has no minimal ideals.

Example 3. Let $R = Z_{12}$ be the ring of integers modulo 12, $Z_{12_n}(I)$ be the corresponding n-refined neutrosophic ring, we have

(a) the ideal $P = <6 > I_1 = \{0, 6I_1\}$ is AH-minimal, that is because <6> is minimal in R.

(b) the ideal $Q = \langle 2 \rangle + Z_{12}I_1 + \cdots + Z_{12}I_n$ is maximal, that is because $\langle 2 \rangle$ is maximal in *R*.

Now, we show that *Theorem 4* is not available if the ring R has no unity, we construct the following example.

Example 4. Consider $2Z_2(I) = \{(2a + 2bI_1 + 2cI_2); a, b, c \in Z\}$ the 2-refined neutrosophic ring of even integers, let $P = (2Z + 4ZI_1 + 4ZI_2) = \{(2a + 4bI_1 + 4cI_2); a, b, c \in Z\}$ be an AH-subset of it. First of all, we show that *P* is an ideal of $2Z_2(I)$. It is easy to see that (P, +) is a subgroup. Let $x = (2m + 4nI_1 + 4tI_2)$ be any element of $P, r = (2a + 2bI_1 + 2cI_2)$ be any element of $2Z_2(I)$, we have $rx = (4am, +[8an + 4bm + 8bn + 8bt + 8cn] + I_2[8at + 8ct + 4cm]) \in P$. Thus *P* is an ideal and the inclusion's condition is not available, that is because 2Z is not contained in 4Z.

4 Conclusion

In this article, we have found a necessary and sufficient condition for any subset to be an ideal of any n-refined neutrosophic ring with unity. On the other hand, we have characterized the form of maximal and minimal ideals in this class of neutrosophic rings. As a future research direction, we aim to study Köthe's Conjecture on n-refined neutrosophic rings about the structure of nil ideals and the maximality/minimality conditions if *R* has no unity.

4.1 | Open Problems

According to our work, we find two interesting open problems.

Describe the algebraic structure of the group of units of any n-refined neutrosophic ring.

What are the conditions of AH-maximal and minimal ideals if R has no unity?.

References

- [1] Smarandache, F., & Abobala, M. (2020). n-Refined neutrosophic rings. *International journal of neutrosophic science*, *5*, 83-90.
- [2] Sankari, H., & Abobala, M. (2020). n-refined neutrosophic modules. *Neutrosophic sets and systems*, 36, 1-11.
- [3] Sankari, H., & Abobala, M. (2020). AH-Homomorphisms in neutrosophic rings and refined neutrosophic rings. *Neutrosophic sets and systems*, 38.
- [4] Kandasamy, W. V., & Smarandache, F. (2006). Some neutrosophic algebraic structures and neutrosophic nalgebraic structures. Infinite Study.
- [5] Smarandache F., and Abobala, M. (2020). n-refined neutrosophic vector spaces. *International journal of neutrosophic science*, 7(1), 47-54.
- [6] Abobala, M., Hatip, A., & Alhamido, R. (2019). A contribution to neutrosophic groups. *International journal of neutrosophic science*, 0(2), 67-76.
- [7] Abdel-Basset, M., Gamal, A., Son, L. H., & Smarandache, F. (2020). A bipolar neutrosophic multi criteria decision making framework for professional selection. *Applied sciences*, 10(4), 1202. https://doi.org/10.3390/app10041202
- [8] Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., & Smarandache, F. (2020). Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In *Optimization* theory based on neutrosophic and plithogenic sets (pp. 1-19). Academic Press.
- [9] Abobala, M. (2019). n-refined neutrosophic groups I. International journal of neutrosophic science, 0(1), 27-34.
- [10] Agboola, A. A. A., Akwu, A. D., & Oyebo, Y. T. (2012). Neutrosophic groups and subgroups. *International J. Math. Combin*, 3, 1-9. http://mathcombin.com/upload/file/20150127/1422320633982016018.pdf#page=6 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.3352&rep=rep1&type=pdf
- [11] Abdel-Basset, M., Manogaran, G., Gamal, A., & Chang, V. (2019). A novel intelligent medical decision support model based on soft computing and IoT. *IEEE internet of things journal*, 7(5), 4160-4170.
- [12] Smarandache, F. (2013). n-Valued refined neutrosophic logic and its applications to physics. *Progress in physics*, 4, 143-146.
- [13] Abobala, M., & Lattakia, S. (2020). Classical homomorphisms between n-refined neutrosophic rings. *International journal of neutrosophic science*, 7, 74-78.
- [14] Alhabib, R., & Salama, A. A. (2020). the neutrosophic time series-study its models (linear-logarithmic) and test the coefficients significance of its linear model. *Neutrosophic sets and systems*, 33, 105-115.
- [15] Abdel-Basset, M., Mohamed, M., Elhoseny, M., Chiclana, F., & Zaied, A. E. N. H. (2019). Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. *Artificial intelligence in medicine*, 101, 101735. https://doi.org/10.1016/j.artmed.2019.101735
- [16] Sankari, H., & Abobala, M. (2020). Neutrosophic linear diophantine equations with two variables (Vol. 38). Infinite Study.
- [17] Abobala, M. (2020). Ah-subspaces in neutrosophic vector spaces. *International journal of neutrosophic science*, *6*, 80-86.
- [18] Edalatpanah, S. A. (2020). Systems of neutrosophic linear equations. *Neutrosophic sets and systems*, 33(1), 92-104.

- [19] Abobala, M. (2020). A study of ah-substructures in n-refined neutrosophic vector spaces. *International journal of neutrosophic science*, *9*, 74-85.
- [20] Abobala, M. (2021). Foundations of neutrosophic number theory. *Neutrosophic sets and systems*, 39(1), 10.
- [21] Abobala, M. (2020). On some neutrosophic algebraic equations. Journal of new theory, (33), 26-32.
- [22] Abobala, M. (2021). Semi homomorphisms and algebraic relations between strong refined neutrosophic modules and strong neutrosophic modules. *Neutrosophic sets and systems*, 39(1), 9. https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1748&context=nss_journal

