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Abstract 

 

1 | Introduction  

Robert Neutrosophy is a new kind of generalized logic proposed by Smarandache [12]. It 

becomes a useful tool in many areas of science such as number theory [16] and [20], solving 

equations [18], [21], and medical studies [11] and [15]. Also, there are many applications of 

neutrosophic structures in statistics [14], optimization [8], and decision making [7]. On the other 

hand, neutrosophic algebra began in [4], Smarandache and Kandasamy defined concepts such as 

neutrosophic groups and neutrosophic rings. These notions were handled widely by Agboola et 

al. in [6], [10], where homomorphisms and AH-substructures were studied [3], [13], [17]. 
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If R is a ring, then Rn(I)  is called a refined neutrosophic ring. Every AH-subset of Rn(I) has the form P = ∑ PiIi
n
i=0  = 

{ a0 + a1I + ⋯ + anIn: ai ∈ Pi}, where Pi  are subsets of the classical ring R. The objective of this paper is to determine 
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Recently, there is an arising interest by the generalizations of neutrosophic algebraic structures. 

Authors proposed n-refined neutrosophic groups [9], rings [1], modules [2] and [22], and spaces [5] 

and [19]. 

If R is a classical ring, then the corresponding refined neutrosophic ring is defined as follows: 

Rn(I)={𝑎0 + 𝑎1𝐼 + ⋯ + 𝑎𝑛𝐼𝑛 ;  𝑎𝑖 ∈ 𝑅}. 

Addition and multiplication on 𝑅𝑛(I) are defined as: 

∑ xiIi + ∑ yiIi = ∑ (xi + yi)Ii ,
n
i=0

∑ xiIi × ∑ yiIi = ∑ (xi × yj)IiI j
n
i,j=0

n
i=0

n
i=0

n
i=0

n
i=0 .  

Where × is the multiplication defined on the ring R and 𝐼𝑖𝐼𝑗 = 𝐼min (𝑖,𝑗) . 

Every AH-subset of 𝑅𝑛(I) has the form P = ∑ 𝑃𝑖𝐼𝑖
𝑛
𝑖=0  = { 𝑎0 + 𝑎1𝐼 + ⋯ + 𝑎𝑛𝐼𝑛: 𝑎𝑖 ∈ 𝑃𝑖}. There is an 

important question arises here. This question can be asked as follows: 

What are the necessary and sufficient conditions on the subsets 𝑃𝑖 which make P be an ideal of 𝑅𝑛(I)? 

On the other hand, can we determine the structure of all AH-maximal and minimal ideals in the n-

refined neutrosophic ring 𝑅𝑛(I)? 

Through this paper, we try to answer the previous questions in the case of n-refined neutrosophic 

rings with unity. All rings through this paper are considered with unity. 

2| Preliminaries 

Definition 1. [1].  Let (R,+,×) be a ring and 𝐼𝑘; 1 ≤ 𝑘 ≤ 𝑛 be n indeterminacies. We define 𝑅𝑛(I)={𝑎0 +

𝑎1𝐼 + ⋯ + 𝑎𝑛𝐼𝑛 ;  𝑎𝑖 ∈ 𝑅} to be n-refined neutrosophic ring. If n=2 we get a ring which is isomorphic to 

2-refined neutrosophic ring 𝑅(𝐼1, 𝐼2). 

Addition and multiplication on 𝑅𝑛(I) are defined as: 

∑ xiIi + ∑ yiIi = ∑ (xi + yi)Ii ,
n
i=0

∑ xiIi × ∑ yiIi = ∑ (xi × yj)IiI j
n
i,j=0

n
i=0

n
i=0

n
i=0

n
i=0 .  

Where × is the multiplication defined on the ring R. 

It is easy to see that 𝑅𝑛(I) is a ring in the classical concept and contains a proper ring R. 

Definition 2. [1]. Let 𝑅𝑛(I) be an n-refined neutrosophic ring, it is said to be commutative if 𝑥𝑦 = 𝑦𝑥 

for each x , y ∈ 𝑅𝑛(I), if there is 1∈ 𝑅𝑛(I) such 1. 𝑥 =  𝑥. 1 = 𝑥, then it is called an n-refined neutrosophic 

ring with unity. 

Theorem 1. [1]. Let 𝑅𝑛(I) be an n-refined neutrosophic ring. Then (a) R is commutative if and only if 

𝑅𝑛(I) is commutative, (b) R has unity if and only if 𝑅𝑛(I) has unity, and (c) 𝑅𝑛(I) = ∑ 𝑅𝐼𝑖
𝑛
𝑖=0  = 

{∑ 𝑥𝑖𝐼𝑖 ∶ 𝑥𝑖
𝑛
𝑖=0 ∈ 𝑅}. 

 

 

 



 

 

18 

A
b

o
b

a
la

 |
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 2

(1
) 

(2
0
2
1)

 1
6
-2

2
 

 

Definition 3. [1]. (a) Let 𝑅𝑛(I) be an n-refined neutrosophic ring and P = ∑ 𝑃𝑖𝐼𝑖
𝑛
𝑖=0  = { 𝑎0 + 𝑎1𝐼 + ⋯ +

𝑎𝑛𝐼𝑛: 𝑎𝑖 ∈ 𝑃𝑖} where 𝑃𝑖 is a subset of R, we define P to be an AH-subring if 𝑃𝑖 is a subring of R for all 

𝑖, AHS-subring is defined by the condition 𝑃𝑖 = 𝑃𝑗 for all 𝑖 , 𝑗. (b) P is an AH-ideal if 𝑃𝑖 is an two sides 

ideal of R for all 𝑖, the AHS-ideal is defined by the condition 𝑃𝑖 = 𝑃𝑗 for all 𝑖 , 𝑗. (c) The AH-ideal P 

is said to be null if 𝑃𝑖 = 𝑅 𝑜𝑟 𝑃𝑖 = {0} for all i. 

Definition 4. [1]. Let 𝑅𝑛(I) be an n-refined neutrosophic ring and P = ∑ 𝑃𝑖𝐼𝑖
𝑛
𝑖=0  be an AH-ideal, we 

define AH-factor R(I)/P = ∑ (𝑅 𝑃𝑖⁄ )𝐼𝑖
𝑛
𝑖=0 = ∑ (𝑥𝑖 + 𝑃𝑖)𝐼𝑖

𝑛
𝑖=0 ; 𝑥𝑖 ∈ 𝑅. 

Theorem 2. [1]. Let 𝑅𝑛(I) be an n-refined neutrosophic ring and P = ∑ 𝑃𝑖𝐼𝑖
𝑛
𝑖=0  be an AH-ideal: 𝑅𝑛(I)/P 

is a ring  with the following two binary operations: 

∑ (xi + Pi)Ii
n
i=0 + ∑ (yi + Pi)Ii

n
i=0 =  ∑ (xi + yi + Pi)Ii

n
i=0 , 

 ∑ (xi + Pi)Ii
n
i=0 × ∑ (yi + Pi)Ii

n
i=0 =  ∑ (xi × yi + Pi)Ii

n
i=0 . 

Definition 5. [1]. (a) Let 𝑅𝑛(I), 𝑇𝑛(I) be two n-refined neutrosophic rings respectively, and 𝑓𝑅: 𝑅 → 𝑇 

be a ring homomorphism. We define n-refined neutrosophic AHS-homomorphism as  𝑓: 𝑅𝑛(I)→

𝑇𝑛(I); 𝑓(∑ 𝑥𝑖𝐼𝑖
𝑛
𝑖=0 ) = ∑ 𝑓𝑅(𝑥𝑖)𝐼𝑖

𝑛
𝑖=0 , (b) 𝑓 is an n-refined neutrosophic AHS-isomorphism if it is a bijective 

n-refined neutrosophic AHS-homomorphism, and (c) AH-Ker f = ∑ 𝐾𝑒𝑟(𝑓𝑅)𝐼𝑖
𝑛
𝑖=0 = {∑ 𝑥𝑖𝐼𝑖

𝑛
𝑖=0 ;  𝑥𝑖 ∈

𝐾𝑒𝑟 𝑓𝑅}. 

3| Main Discussion 

Theorem 3. Let 𝑅𝑛(I)={𝑎0 + 𝑎1𝐼 + ⋯ + 𝑎𝑛𝐼𝑛 ;  𝑎𝑖 ∈ 𝑅} be any n-refined neutrosophic ring with unity 1. 

Let P = ∑ 𝑃𝑖𝐼𝑖
𝑛
𝑖=0  = { 𝑎0 + 𝑎1𝐼 + ⋯ + 𝑎𝑛𝐼𝑛: 𝑎𝑖 ∈ 𝑃𝑖} be any AH-subset of 𝑅𝑛(I), where 𝑃𝑖  are subsets of R. 

Then P is an ideal of 𝑅𝑛(I) if and only if (a) 𝑃𝑖  are classical ideals of R for all I and (b) 𝑃0 ≤ 𝑃𝑘 ≤ 𝑃𝑘−1. 

For all 0 < 𝑘 ≤ 𝑛. 

Proof. First of all, we assume that (a), (b) are true. We should prove that P is an ideal. Since 𝑃𝑖  are 

classical ideals of R, then they are subgroups of (R,+), hence P is a subgroup of (𝑅𝑛(I),+). Let 𝑟 = 𝑟0 +

𝑟1𝐼1 + ⋯ + 𝑟𝑛𝐼𝑛 be any element of 𝑅𝑛(I), 𝑥 = 𝑥0 + 𝑥1𝐼1 + ⋯ + 𝑥𝑛𝐼𝑛 be an arbitrary element of P, 

where 𝑥𝑖 ∈ 𝑃𝑖  . We have For 𝑛 = 0, the statement 𝑟. 𝑥 ∈ 𝑃 is true clearly. We assume that it is true for 

𝑛 = 𝑘, we must prove it for 𝑘 + 1. 

r. x = (r0 + r1I1 + ⋯ + rkIk + rk+1Ik+1)(x0 + x1I1 + ⋯ + xkIk + xk+1Ik+1) =  

(r0 + r1I1 + ⋯ + rkIk)(x0 + x1I1 + ⋯ xkIk) + rk+1Ik+1(x0 + ⋯ + xk+1Ik+1) + (r0 +

⋯ rkIk)xk+1Ik+1.  

We remark 

 (r0 + r1I1 + ⋯ + rkIk)(x0 + x1I1 + ⋯ xkIk) ∈ P0 + P1I1 + ⋯ + PkIk (by induction 

hypothesis). 

On the other hand, we have 

 rk+1Ik+1(x0 + ⋯ + xk+1Ik+1) = (rk+1x0 + rk+1xk+1)Ik+1 + rk+1x1I1 + ⋯ + rk+1xkIk. 
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Since all 𝑃𝑖 are ideals and 𝑃0 ≤ 𝑃𝑘+1, we have 𝑟𝑘+1𝑥𝑖 ∈ 𝑃𝑖 𝑎𝑛𝑑 𝑟𝑘+1𝑥0 + 𝑟𝑘+1𝑥𝑘+1 ∈ 𝑃𝑘+1, hence  

𝑟𝑘+1𝐼𝑘+1(𝑥0 + ⋯ + 𝑥𝑘+1𝐼𝑘+1) ∈ 𝑃. Also, (𝑟0 + ⋯ 𝑟𝑘𝐼𝑘)𝑥𝑘+1𝐼𝑘+1 = 𝑟0𝑥𝑘+1𝐼𝑘+1 + 𝑟1𝑥𝑘+1𝐼1 + ⋯ + 𝑟𝑘𝑥𝑘+1𝐼𝑘. Under the 

assumption of theorem, we have 𝑟0𝑥𝑘+1 ∈ 𝑃𝑘+1 and 𝑟𝑖𝑥𝑘+1 ∈ 𝑃𝑘+1 ≤ 𝑃𝑖. 

For all 1 ≤ 𝑖 ≤ 𝑘 . Thus P is an ideal. 

For the converse, we assume that P is an ideal of 𝑅𝑛(𝐼) . We should prove (a) and (b). 

It is easy to check that if 𝑃 = 𝑃0 + ⋯ + 𝑃𝑛𝐼𝑛  is a subgroup of (𝑅𝑛(𝐼), +), then every 𝑃𝑖 is a subgroup of 

(R,+). Now we show that (b) is true. 

For every 1 ≤ 𝑖 ≤ 𝑛, we have an element 𝐼𝑖, that is because R is a ring with unity, hence. Let 𝑥0 be any 

element of 𝑝0 , we have 𝑥0 ∈ 𝑃, and 𝑥0𝐼𝑖 ∈ 𝑃.  

Thus 𝑥0 ∈ 𝑃𝑖, which means that 𝑃0 ≤ 𝑃𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 . 

Also, for every 𝑥𝑖 ∈ 𝑃𝑖, we have 𝑥𝑖𝐼𝑖 ∈ 𝑃, thus 𝑥𝑖𝐼𝑖𝐼𝑖−1 = 𝑥𝑖𝐼𝑖−1 ∈ 𝑃, so that 𝑥𝑖 ∈ 𝑃𝑖−1 , which means that 

𝑃𝑖 ≤ 𝑃𝑖−1  and (b) holds.  

Example 1. Let Z be the ring of integers, 𝑍3(𝐼) = {𝑎 + 𝑏𝐼1 + 𝑐𝐼2 + 𝑑𝐼3; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍} be the corresponding 

3-refined neutrosophic ring, we have: 

P =< 16 > +< 2 > I1+< 4 > I2+< 8 > I3 = {16x + 2yI1 + 4zI2 + 8tI3; x, y, z, t ∈ Z}  

is an ideal of Z3(I), that is because, < 16 >≤< 8 >≤< 4 >≤< 2 >. 

Now, we are able to describe all AH-maximal and minimal ideals in 𝑅𝑛(𝐼) .  

Theorem 4. Let 𝑅𝑛(I)={𝑎0 + 𝑎1𝐼 + ⋯ + 𝑎𝑛𝐼𝑛 ;  𝑎𝑖 ∈ 𝑅} be any n-refined neutrosophic ring with unity 1. 

Let P = ∑ 𝑃𝑖𝐼𝑖
𝑛
𝑖=0  = { 𝑎0 + 𝑎1𝐼 + ⋯ + 𝑎𝑛𝐼𝑛: 𝑎𝑖 ∈ 𝑃𝑖} be any ideal of 𝑅𝑛(I). Then (a) non trivial AH-maximal 

ideals in 𝑅𝑛(I) have the form 𝑃0 + 𝑅𝐼1 + ⋯ + 𝑅𝐼𝑛 , where 𝑃0 is maximal in R and (b) non trivial AH-

minimal ideals in 𝑅𝑛(I) have the form 𝑃1𝐼1, where 𝑃1 is minimal in R. 

Proof. (a) assume that P is an AH-maximal ideal on the refined neutrosophic ring 𝑅𝑛(I), hence for 

every ideal 𝑀=(𝑀0 + 𝑀1𝐼1 + ⋯ + 𝑀𝑛𝐼𝑛) with property 𝑃 ≤ 𝑀 ≤ 𝑅𝑛(I), we have M=P or M=𝑅𝑛(I). This 

implies that   𝑀𝑖 = 𝑅  or 𝑀𝑖 = 𝑃𝑖  , which means that 𝑃0 is maximal in R. On the other hand, we have 

𝑃0 ≤ 𝑃𝑘 ≤ 𝑃𝑘−1. For all 0 < 𝑘 ≤ 𝑛 , thus 𝑃𝑖 ∈ {𝑃0, 𝑅} 𝑓𝑜𝑟 all 1 ≤ 𝑖 ≤ 𝑛 . Now suppose that there is at least j 

such that 𝑃𝑗 = 𝑃0, we get that 𝑃0 + ⋯ + 𝑃𝑗𝐼𝑗 + ⋯ 𝑅𝐼𝑛 ≤ 𝑃0 + 𝑅𝐼1 + ⋯ + 𝑅𝐼𝑗+. . +𝑅𝐼𝑛 , hence P is not 

maximal. This means that 𝑃0 + 𝑅𝐼1 + ⋯ + 𝑅𝐼𝑛 , where 𝑃0 is maximal in R is the unique form of AH-

maximal ideals. 

For the converse, we suppose that 𝑃0 is maximal in 𝑅 and 𝑃𝑖 = 𝑅. For all 1 ≤ 𝑖 ≤ 𝑛. Consider 𝑀=(𝑀0 +

𝑀1𝐼1 + ⋯ + 𝑀𝑛𝐼𝑛) as an arbitrary ideal of 𝑅𝑛(I) with AH-structure. If 𝑃 ≤ 𝑀 ≤ 𝑅𝑛(I), then 𝑃𝑖 ≤ 𝑀𝑖 ≤ 𝑅   

and, this means that  𝑃0 = 𝑀0 𝑜𝑟 𝑀0 = 𝑅 , that is because 𝑃0 is maximal. 

According to Theorem 3, we have  𝑀0 ≤ 𝑀𝑖 ≤ 𝑀𝑖−1. Now if 𝑀0 = 𝑅 , we get 𝑀𝑖 = 𝑅 , thus M=𝑅𝑛(I). 
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If 𝑀0 = 𝑃0 , we get 𝑀 = 𝑃. This implies that P is maximal. 

(b) It is clear that if 𝑃1 is minimal in 𝑅, then 𝑃1𝐼1 is minimal in 𝑅𝑛(𝐼) . For the converse, we assume 

that P= 𝑃0 + 𝑃1𝐼1 + ⋯ + 𝑃𝑛𝐼𝑛 is minimal in 𝑅𝑛(𝐼), consider an arbitrary ideal with AH-structure M= 

(𝑀0 + 𝑀1𝐼1 + ⋯ + 𝑀𝑛𝐼𝑛) of 𝑅𝑛(𝐼) with the property 𝑀 ≤ 𝑃, we have: 𝑀 = {0} 𝑜𝑟 𝑀 = 𝑃 which means 

that 𝑀1 = 𝑃1 𝑜𝑟 𝑀1 = {0}. Hence  𝑃1 is minimal. 

According to Theorem 3, we have 𝑀0 ≤ 𝑀𝑘 ≤ 𝑀𝑘−1 for all k. Now, suppose that there is at least j≠ 1 

such that 𝑃𝑗 ≠ {0}, we get 𝑃𝑗𝐼𝑗 ≤ 𝑃0 + 𝑃1𝐼1 + ⋯ + 𝑃𝑛𝐼𝑛 . Thus P is not minimal, which is a contradiction 

with respect to assumption. Hence any non trivial minimal ideal has the form 𝑃1𝐼1, where 𝑃1 is 

minimal in R. 

Example 2. Let R=Z be the ring of integers, 𝑍𝑛(𝐼) = {𝑎0 + 𝑎1𝐼1 + ⋯ + 𝑎𝑛𝐼𝑛;  𝑎𝑖 ∈ 𝑍} be the 

corresponding n-refined neutrosophic ring, we have 

(a) the ideal 𝑃 =< 2 > +𝑍𝐼1 + ⋯ + 𝑍𝐼𝑛 is AH-maximal, that is because <2> is maximal in R and (b) 

there is no AH-minimal ideals in 𝑍𝑛(𝐼), that is because R has no minimal ideals. 

Example 3. Let R= 𝑍12 be the ring of integers modulo 12, 𝑍12𝑛
(𝐼) be the corresponding n-refined 

neutrosophic ring, we have 

(a) the ideal 𝑃 =< 6 > 𝐼1 = {0,6𝐼1} is AH-minimal, that is because <6> is minimal in R. 

(b) the ideal 𝑄 =< 2 > +𝑍12𝐼1 + ⋯ + 𝑍12𝐼𝑛 is maximal, that is because <2> is maximal in R. 

Now, we show that Theorem 4 is not available if the ring R has no unity, we construct the following 

example. 

Example 4. Consider 2𝑍2(𝐼) = {(2𝑎 + 2𝑏𝐼1 + 2𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑍} the 2-refined neutrosophic ring of even 

integers, let 𝑃 = (2𝑍 + 4𝑍𝐼1 + 4𝑍𝐼2) = {(2𝑎 + 4𝑏𝐼1 + 4𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑍} be an AH-subset of it. First of all, 

we show that P is an ideal of 2𝑍2(𝐼). It is easy to see that (P,+) is a subgroup. Let 𝑥 = (2𝑚 + 4𝑛𝐼1 + 4𝑡𝐼2) 

be any element of P, 𝑟 = (2𝑎 + 2𝑏𝐼1 + 2𝑐𝐼2) be any element of 2𝑍2(𝐼), we have 𝑟𝑥 = (4𝑎𝑚, +[8𝑎𝑛 + 4𝑏𝑚 +

8𝑏𝑛 + 8𝑏𝑡 + 8𝑐𝑛] + 𝐼2[8𝑎𝑡 + 8𝑐𝑡 + 4𝑐𝑚]) ∈ 𝑃. Thus P is an ideal and the inclusion's condition is not 

available, that is because 2Z is not contained in 4Z. 

4| Conclusion 

In this article, we have found a necessary and sufficient condition for any subset to be an ideal of 

any n-refined neutrosophic ring with unity. On the other hand, we have characterized the form of 

maximal and minimal ideals in this class of neutrosophic rings. As a future research direction, we 

aim to study Köthe's Conjecture on n-refined neutrosophic rings about the structure of nil ideals 

and the maximality/minimality conditions if R has no unity. 
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4.1|Open Problems 

According to our work, we find two interesting open problems. 

Describe the algebraic structure of the group of units of any n-refined neutrosophic ring. 

What are the conditions of AH-maximal and minimal ideals if R has no unity?. 
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