Journal of Fuzzy Extension and Applications

Paper Type: Research Paper

A Study of Maximal and Minimal Ideals of \mathbf{n}-Refined Neutrosophic Rings

Mohammad Abobala* (iD
Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria; mohammadabobala777@gmail.com.

Citation:

Abstract

Abobala, M. (2021). A study of maximal and minimal ideals of n-refined neutrosophic rings. Journal of fuzzy extension and application, 2 (1), 16-22.

Abstract

If R is a ring, then $R_{n}(I)$ is called a refined neutrosophic ring. Every AH-subset of $R_{n}(I)$ has the form $P=\sum_{i=0}^{n} P_{i} I_{i}=$ $\left\{a_{0}+a_{1} I+\cdots+a_{n} I_{n}: a_{i} \in P_{i}\right\}$, where P_{i} are subsets of the classical ring R. The objective of this paper is to determine the necessary and sufficient conditions on P_{i} which make P be an ideal of $R_{n}(I)$. Also, this work introduces a full description of the algebraic structure and form for AH-maximal and minimal ideals in $R_{n}(I)$.

Keywords: n -Refined neutrosophic ring, n-refined AH-ideal, Maximal ideal, Minimal ideal.

1 | Introduction

 Applications. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license(http://creativecommons. org/licenses/by/4.0).

Robert Neutrosophy is a new kind of generalized logic proposed by Smarandache [12]. It becomes a useful tool in many areas of science such as number theory [16] and [20], solving equations [18], [21], and medical studies [11] and [15]. Also, there are many applications of neutrosophic structures in statistics [14], optimization [8], and decision making [7]. On the other hand, neutrosophic algebra began in [4], Smarandache and Kandasamy defined concepts such as neutrosophic groups and neutrosophic rings. These notions were handled widely by Agboola et al. in [6], [10], where homomorphisms and AH-substructures were studied [3], [13], [17].

Recently, there is an arising interest by the generalizations of neutrosophic algebraic structures. Authors proposed n-refined neutrosophic groups [9], rings [1], modules [2] and [22], and spaces [5] and [19].

If R is a classical ring, then the corresponding refined neutrosophic ring is defined as follows:
$\mathrm{R}_{\mathrm{n}}(I)=\left\{a_{0}+a_{1} I+\cdots+a_{n} I_{n} ; a_{i} \in R\right\}$.
Addition and multiplication on $R_{n}(I)$ are defined as:

$$
\sum_{\mathrm{i}=0}^{\mathrm{n}} x_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}+\sum_{\mathrm{i}=0}^{\mathrm{n}} y_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}=\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}}\right) \mathrm{I}_{\mathrm{i}}, \sum_{\mathrm{i}=0}^{\mathrm{n}} x_{\mathrm{i}} \mathrm{I}_{\mathrm{i}} \times \sum_{\mathrm{i}=0}^{\mathrm{n}} y_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}=\sum_{\mathrm{i}, \mathrm{j}=0}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}} \times \mathrm{y}_{\mathrm{j}}\right) \mathrm{I}_{\mathrm{i}} \mathrm{I}_{\mathrm{j}} .
$$

Where \times is the multiplication defined on the ring R and $I_{i} I_{j}=I_{\min (i, j)}$.

Every AH-subset of $R_{n}(I)$ has the form $P=\sum_{i=0}^{n} P_{i} I_{i}=\left\{a_{0}+a_{1} I+\cdots+a_{n} I_{n}: a_{i} \in P_{i}\right\}$. There is an important question arises here. This question can be asked as follows:

What are the necessary and sufficient conditions on the subsets P_{i} which make P be an ideal of $R_{n}(I)$: On the other hand, can we determine the structure of all AH-maximal and minimal ideals in the n refined neutrosophic ring $R_{n}(I)$?

Through this paper, we try to answer the previous questions in the case of n-refined neutrosophic rings with unity. All rings through this paper are considered with unity.

2| Preliminaries

Definition 1. [1]. Let $(R,+, \times)$ be a ring and $I_{k} ; 1 \leq k \leq n$ be n indeterminacies. We define $R_{n}(I)=\left\{a_{0}+\right.$ $a_{1} I+\cdots+a_{n} I_{n} ; a_{i} \in R /$ to be n -refined neutrosophic ring. If $n=2$ we get a ring which is isomorphic to 2 -refined neutrosophic ring $R\left(I_{1}, I_{2}\right)$.

Addition and multiplication on $R_{n}(I)$ are defined as:
$\sum_{i=0}^{n} x_{i} I_{i}+\sum_{i=0}^{n} y_{i} I_{i}=\sum_{i=0}^{n}\left(x_{i}+y_{i}\right) I_{i}, \sum_{i=0}^{n} x_{i} I_{i} \times \sum_{i=0}^{n} y_{i} I_{i}=\sum_{i, j=0}^{n}\left(x_{i} \times y_{j}\right) I_{i} I_{j}$.
Where \times is the multiplication defined on the ring R.

It is easy to see that $R_{n}(I)$ is a ring in the classical concept and contains a proper ring R.
Definition 2. [1]. Let $R_{n}(I)$ be an n-refined neutrosophic ring, it is said to be commutative if $x y=y x$ for each $x, y \in R_{n}(I)$, if there is $1 \in R_{n}(I)$ such $1 . x=x .1=x$, then it is called an n -refined neutrosophic ring with unity.

Theorem 1. [1]. Let $R_{n}(I)$ be an n-refined neutrosophic ring. Then (a) R is commutative if and only if $R_{n}(I)$ is commutative, (b) R has unity if and only if $R_{n}(I)$ has unity, and (c) $R_{n}(I)=\sum_{i=0}^{n} R I_{i}=$ $\left.\sum_{i=0}^{n} x_{i} I_{i}: x_{i} \in R\right\}$.

Definition 3. [1]. (a) Let $R_{n}(I)$ be an n-refined neutrosophic ring and $P=\sum_{i=0}^{n} P_{i} I_{i}=\left\{a_{0}+a_{1} I+\cdots+\right.$ $a_{n} I_{n}: a_{i} \in P_{i} /$ where P_{i} is a subset of R, we define P to be an AH-subring if P_{i} is a subring of R for all i, AHS-subring is defined by the condition $P_{i}=P_{j}$ for all i, j. (b) P is an AH-ideal if P_{i} is an two sides ideal of R for all i, the AHS-ideal is defined by the condition $P_{i}=P_{j}$ for all i, j. (c) The AH-ideal P is said to be null if $P_{i}=R$ or $P_{i}=\{0\}$ for all i.

Definition 4. [1]. Let $R_{n}(I)$ be an n-refined neutrosophic ring and $P=\sum_{i=0}^{n} P_{i} I_{i}$ be an AH-ideal, we define AH-factor $R(I) / P=\sum_{i=0}^{n}\left(R / P_{i}\right) I_{i}=\sum_{i=0}^{n}\left(x_{i}+P_{i}\right) I_{i} ; x_{i} \in R$.

Theorem 2. [1]. Let $R_{n}(I)$ be an n-refined neutrosophic ring and $P=\sum_{i=0}^{n} P_{i} I_{i}$ be an AH-ideal: $R_{n}(I) / P$ is a ring with the following two binary operations:

$$
\begin{aligned}
& \sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\right) \mathrm{I}_{\mathrm{i}}+\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\right) \mathrm{I}_{\mathrm{i}}=\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\right) \mathrm{I}_{\mathrm{i}} \\
& \sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\right) \mathrm{I}_{\mathrm{i}} \times \sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\right) \mathrm{I}_{\mathrm{i}}=\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}} \times \mathrm{y}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\right) \mathrm{I}_{\mathrm{i}}
\end{aligned}
$$

Definition 5. [1]. (a) Let $R_{n}(I), T_{n}(I)$ be two n-refined neutrosophic rings respectively, and $f_{R}: R \rightarrow T$ be a ring homomorphism. We define n-refined neutrosophic AHS-homomorphism as $f: R_{n}(I) \rightarrow$ $T_{n}(I) ; f\left(\sum_{i=0}^{n} x_{i} I_{i}\right)=\sum_{i=0}^{n} f_{R}\left(x_{i}\right) I_{i}$, (b) f is an n-refined neutrosophic AHS-isomorphism if it is a bijective n-refined neutrosophic AHS-homomorphism, and (c) AH-Ker $f=\sum_{i=0}^{n} \operatorname{Ker}\left(f_{\mathrm{R}}\right) I_{i}=\ell \sum_{i=0}^{n} x_{i} I_{i} ; x_{i} \in$ $\left.\operatorname{Ker} f_{R}\right\}$.

3| Main Discussion

Theorem 3. Let $R_{n}(I)=\left\{a_{0}+a_{1} I+\cdots+a_{n} I_{n} ; a_{i} \in R\right\}$ be any n-refined neutrosophic ring with unity 1 . Let $P=\sum_{i=0}^{n} P_{i} I_{i}=\left\{a_{0}+a_{1} I+\cdots+a_{n} I_{n}: a_{i} \in P_{i}\right\}$ be any AH-subset of $R_{n}(I)$, where P_{i} are subsets of R. Then P is an ideal of $R_{n}(I)$ if and only if (a) P_{i} are classical ideals of R for all I and (b) $P_{0} \leq P_{k} \leq P_{k-1}$. For all $0<k \leq n$.

Proof. First of all, we assume that (a), (b) are true. We should prove that P is an ideal. Since P_{i} are classical ideals of R, then they are subgroups of $(R,+)$, hence P is a subgroup of $\left(R_{n}(I),+\right)$. Let $r=r_{0}+$ $r_{1} I_{1}+\cdots+r_{n} I_{n}$ be any element of $R_{n}(I), x=x_{0}+x_{1} I_{1}+\cdots+x_{n} I_{n}$ be an arbitrary element of P, where $x_{i} \in P_{i}$. We have For $n=0$, the statement $r . x \in P$ is true clearly. We assume that it is true for $n=k$, we must prove it for $k+1$.

$$
\begin{aligned}
& \text { r. } x=\left(r_{0}+r_{1} I_{1}+\cdots+r_{k} I_{k}+r_{k+1} I_{k+1}\right)\left(x_{0}+x_{1} I_{1}+\cdots+x_{k} I_{k}+x_{k+1} I_{k+1}\right)= \\
& \left(r_{0}+r_{1} I_{1}+\cdots+r_{k} I_{k}\right)\left(x_{0}+x_{1} I_{1}+\cdots x_{k} I_{k}\right)+r_{k+1} I_{k+1}\left(x_{0}+\cdots+x_{k+1} I_{k+1}\right)+\left(r_{0}+\right. \\
& \left.\cdots r_{k} I_{k}\right) x_{k+1} I_{k+1} .
\end{aligned}
$$

We remark

$$
\begin{aligned}
& \left(\mathrm{r}_{0}+\mathrm{r}_{1} \mathrm{I}_{1}+\cdots+\mathrm{r}_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}\right)\left(\mathrm{x}_{0}+\mathrm{x}_{1} \mathrm{I}_{1}+\cdots \mathrm{x}_{\mathrm{k}} \mathrm{I}_{\mathrm{k}}\right) \in \mathrm{P}_{0}+\mathrm{P}_{1} \mathrm{I}_{1}+\cdots+\mathrm{P}_{\mathrm{k}} \mathrm{I}_{\mathrm{k}} \text { (by induction } \\
& \text { hypothesis). }
\end{aligned}
$$

On the other hand, we have

$$
r_{k+1} I_{k+1}\left(x_{0}+\cdots+x_{k+1} I_{k+1}\right)=\left(r_{k+1} x_{0}+r_{k+1} x_{k+1}\right) I_{k+1}+r_{k+1} x_{1} I_{1}+\cdots+r_{k+1} x_{k} I_{k}
$$

Since all P_{i} are ideals and $P_{0} \leq P_{k+1}$, we have $r_{k+1} x_{i} \in P_{i}$ and $r_{k+1} x_{0}+r_{k+1} x_{k+1} \in P_{k+1}$, hence $r_{k+1} I_{k+1}\left(x_{0}+\cdots+x_{k+1} I_{k+1}\right) \in P$. Also, $\left(r_{0}+\cdots r_{k} I_{k}\right) x_{k+1} I_{k+1}=r_{0} x_{k+1} I_{k+1}+r_{1} x_{k+1} I_{1}+\cdots+r_{k} x_{k+1} I_{k}$. Under the assumption of theorem, we have $r_{0} x_{k+1} \in P_{k+1}$ and $r_{i} x_{k+1} \in P_{k+1} \leq P_{i}$.

For all $1 \leq i \leq k$. Thus P is an ideal.

For the converse, we assume that P is an ideal of $R_{n}(I)$. We should prove (a) and (b),
It is easy to check that if $P=P_{0}+\cdots+P_{n} I_{n}$ is a subgroup of $\left(R_{n}(I),+\right)$, then every P_{i} is a subgroup of $(R,+)$. Now we show that (b) is true.

For every $1 \leq i \leq n$, we have an element I_{i}, that is because R is a ring with unity, hence. Let x_{0} be any element of p_{0}, we have $x_{0} \in P$, and $x_{0} I_{i} \in P$.

Thus $x_{0} \in P_{i}$, which means that $P_{0} \leq P_{i}$ for all $1 \leq i \leq n$.
Also, for every $x_{i} \in P_{i}$, we have $x_{i} I_{i} \in P$, thus $x_{i} I_{i} I_{i-1}=x_{i} I_{i-1} \in P$, so that $x_{i} \in P_{i-1}$, which means that $P_{i} \leq P_{i-1}$ and (b) holds.

Example 1. Let Z be the ring of integers, $Z_{3}(I)=\left\{a+b I_{1}+c I_{2}+d I_{3} ; a, b, c, d \in Z\right\}$ be the corresponding 3-refined neutrosophic ring, we have:
$\mathrm{P}=<16>+<2>\mathrm{I}_{1}+<4>\mathrm{I}_{2}+<8>\mathrm{I}_{3}=\left\{16 \mathrm{x}+2 \mathrm{yI}_{1}+4 \mathrm{zI}_{2}+8 \mathrm{tI}_{3} ; \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t} \in \mathrm{Z}\right\}$
is an ideal of $Z_{3}(\mathrm{I})$, that is because, $\langle 16\rangle \leq\langle 8\rangle \leq\langle 4\rangle \leq\langle 2\rangle$.

Now, we are able to describe all AH-maximal and minimal ideals in $R_{n}(I)$.

Theorem 4. Let $R_{n}(I)=\left\{a_{0}+a_{1} I+\cdots+a_{n} I_{n} ; a_{i} \in R /\right.$ be any n-refined neutrosophic ring with unity 1 .
Let $P=\sum_{i=0}^{n} P_{i} I_{i}=\left\{a_{0}+a_{1} I+\cdots+a_{n} I_{n}: a_{i} \in P_{i}\right\}$ be any ideal of $R_{n}(I)$. Then (a) non trivial AH-maximal ideals in $R_{n}(I)$ have the form $P_{0}+R I_{1}+\cdots+R I_{n}$, where P_{0} is maximal in R and (b) non trivial AHminimal ideals in $R_{n}(I)$ have the form $P_{1} I_{1}$, where P_{1} is minimal in R.

Proof. (a) assume that P is an AH-maximal ideal on the refined neutrosophic ring $R_{n}(I)$, hence for every ideal $M=\left(M_{0}+M_{1} I_{1}+\cdots+M_{n} I_{n}\right)$ with property $P \leq M \leq R_{n}(I)$, we have $M=P$ or $M=R_{n}(I)$. This implies that $M_{i}=R$ or $M_{i}=P_{i}$, which means that P_{0} is maximal in R. On the other hand, we have $P_{0} \leq P_{k} \leq P_{k-1}$. For all $0<k \leq n$, thus $P_{i} \in\left\{P_{0}, R\right\}$ for all $1 \leq i \leq n$. Now suppose that there is at least j such that $P_{j}=P_{0}$, we get that $P_{0}+\cdots+P_{j} I_{j}+\cdots R I_{n} \leq P_{0}+R I_{1}+\cdots+R I_{j}+. .+R I_{n}$, hence P is not maximal. This means that $P_{0}+R I_{1}+\cdots+R I_{n}$, where P_{0} is maximal in R is the unique form of AHmaximal ideals.

For the converse, we suppose that P_{0} is maximal in R and $P_{i}=R$. For all $1 \leq i \leq n$. Consider $M=\left(M_{0}+\right.$ $\left.M_{1} I_{1}+\cdots+M_{n} I_{n}\right)$ as an arbitrary ideal of $R_{n}(I)$ with AH-structure. If $P \leq M \leq R_{n}(I)$, then $P_{i} \leq M_{i} \leq R$ and, this means that $P_{0}=M_{0}$ or $M_{0}=R$, that is because P_{0} is maximal.

According to Theorem 3, we have $M_{0} \leq M_{i} \leq M_{i-1}$. Now if $M_{0}=R$, we get $M_{i}=R$, thus $M=R_{n}(I)$.

If $M_{0}=P_{0}$, we get $M=P$. This implies that P is maximal.
(b) It is clear that if P_{1} is minimal in R, then $P_{1} I_{1}$ is minimal in $R_{n}(I)$. For the converse, we assume that $P=P_{0}+P_{1} I_{1}+\cdots+P_{n} I_{n}$ is minimal in $R_{n}(I)$, consider an arbitrary ideal with AH-structure $M=$ $\left(M_{0}+M_{1} I_{1}+\cdots+M_{n} I_{n}\right)$ of $R_{n}(I)$ with the property $M \leq P$, we have: $M=\{0\}$ or $M=P$ which means that $M_{1}=P_{1}$ or $M_{1}=\{0\}$. Hence P_{1} is minimal.

According to Theorem 3, we have $M_{0} \leq M_{k} \leq M_{k-1}$ for all k. Now, suppose that there is at least $j \neq 1$ such that $P_{j} \neq\{0\}$, we get $P_{j} I_{j} \leq P_{0}+P_{1} I_{1}+\cdots+P_{n} I_{n}$. Thus P is not minimal, which is a contradiction with respect to assumption. Hence any non trivial minimal ideal has the form $P_{1} I_{1}$, where P_{1} is minimal in R.

Example 2. Let $R=Z$ be the ring of integers, $Z_{n}(I)=\left\{a_{0}+a_{1} I_{1}+\cdots+a_{n} I_{n} ; a_{i} \in Z\right\}$ be the corresponding n-refined neutrosophic ring, we have
(a) the ideal $P=<2>+Z I_{1}+\cdots+Z I_{n}$ is AH-maximal, that is because $<2>$ is maximal in R and (b) there is no AH-minimal ideals in $Z_{n}(I)$, that is because R has no minimal ideals.

Example 3. Let $R=\mathrm{Z}_{12}$ be the ring of integers modulo $12, \mathrm{Z}_{12_{n}}(I)$ be the corresponding n -refined neutrosophic ring, we have
(a) the ideal $P=<6>I_{1}=\left\{0,6 I_{1}\right\}$ is AH-minimal, that is because $<6>$ is minimal in R.
(b) the ideal $Q=<2>+Z_{12} I_{1}+\cdots+Z_{12} I_{n}$ is maximal, that is because $<2>$ is maximal in R.

Now, we show that Theorem 4 is not available if the ring R has no unity, we construct the following example.

Example 4. Consider $2 Z_{2}(I)=\left\{\left(2 a+2 b I_{1}+2 c I_{2}\right) ; a, b, c \in Z\right\}$ the 2-refined neutrosophic ring of even integers, let $P=\left(2 Z+4 Z I_{1}+4 Z I_{2}\right)=\left\{\left(2 a+4 b I_{1}+4 c I_{2}\right) ; a, b, c \in Z\right\}$ be an AH-subset of it. First of all, we show that P is an ideal of $2 Z_{2}(I)$. It is easy to see that $(P,+)$ is a subgroup. Let $x=\left(2 m+4 n I_{1}+4 t I_{2}\right)$ be any element of $P, r=\left(2 a+2 b I_{1}+2 c I_{2}\right)$ be any element of $2 Z_{2}(I)$, we have $r x=(4 a m,+[8 a n+4 b m+$ $\left.8 b n+8 b t+8 c n]+I_{2}[8 a t+8 c t+4 c m]\right) \in P$. Thus P is an ideal and the inclusion's condition is not available, that is because $2 Z$ is not contained in $4 Z$.

4| Conclusion

In this article, we have found a necessary and sufficient condition for any subset to be an ideal of any n-refined neutrosophic ring with unity. On the other hand, we have characterized the form of maximal and minimal ideals in this class of neutrosophic rings. As a future research direction, we aim to study Köthe's Conjecture on n-refined neutrosophic rings about the structure of nil ideals and the maximality/minimality conditions if R has no unity.

4.1|Open Problems

According to our work, we find two interesting open problems.
Describe the algebraic structure of the group of units of any n-refined neutrosophic ring.
What are the conditions of AH-maximal and minimal ideals if R has no unity?

References

[1] Smarandache, F., \& Abobala, M. (2020). n-Refined neutrosophic rings. International journal of neutrosophic science, 5, 83-90.
[2] Sankari, H., \& Abobala, M. (2020). n-refined neutrosophic modules. Neutrosophic sets and systems, 36, 111.
[3] Sankari, H., \& Abobala, M. (2020). AH-Homomorphisms in neutrosophic rings and refined neutrosophic rings. Neutrosophic sets and systems, 38.
[4] Kandasamy, W. V., \& Smarandache, F. (2006). Some neutrosophic algebraic structures and neutrosophic nalgebraic structures. Infinite Study.
[5] Smarandache F., and Abobala, M. (2020). n-refined neutrosophic vector spaces. International journal of neutrosophic science, 7(1), 47-54.
[6] Abobala, M., Hatip, A., \& Alhamido, R. (2019). A contribution to neutrosophic groups. International journal of neutrosophic science, 0(2), 67-76.
[7] Abdel-Basset, M., Gamal, A., Son, L. H., \& Smarandache, F. (2020). A bipolar neutrosophic multi criteria decision making framework for professional selection. Applied sciences, 10(4), 1202. https://doi.org/10.3390/app10041202
[8] Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., \& Smarandache, F. (2020). Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization theory based on neutrosophic and plithogenic sets (pp. 1-19). Academic Press.
[9] Abobala, M. (2019). n-refined neutrosophic groups I. International journal of neutrosophic science, 0(1), 2734.
[10] Agboola, A. A. A., Akwu, A. D., \& Oyebo, Y. T. (2012). Neutrosophic groups and subgroups. International .J .Math. Combin, 3, 1-9. http://mathcombin.com/upload/file/20150127/1422320633982016018.pdf\#page=6 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.3352\&rep=rep1\&type=pdf
[11] Abdel-Basset, M., Manogaran, G., Gamal, A., \& Chang, V. (2019). A novel intelligent medical decision support model based on soft computing and IoT. IEEE internet of things journal, 7(5), 4160-4170.
[12] Smarandache, F. (2013). n-Valued refined neutrosophic logic and its applications to physics. Progress in physics, 4, 143-146.
[13] Abobala, M., \& Lattakia, S. (2020). Classical homomorphisms between n-refined neutrosophic rings. International journal of neutrosophic science, 7, 74-78.
[14] Alhabib, R., \& Salama, A. A. (2020). the neutrosophic time series-study its models (linear-logarithmic) and test the coefficients significance of its linear model. Neutrosophic sets and systems, 33, 105-115.
[15] Abdel-Basset, M., Mohamed, M., Elhoseny, M., Chiclana, F., \& Zaied, A. E. N. H. (2019). Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artificial intelligence in medicine, 101, 101735. https://doi.org/10.1016/j.artmed.2019.101735
[16] Sankari, H., \& Abobala, M. (2020). Neutrosophic linear diophantine equations with two variables (Vol. 38). Infinite Study.
[17] Abobala, M. (2020). Ah-subspaces in neutrosophic vector spaces. International journal of neutrosophic science, 6, 80-86.
[18] Edalatpanah, S. A. (2020). Systems of neutrosophic linear equations. Neutrosophic sets and systems, 33(1), 92-104.
[19] Abobala, M. (2020). A study of ah-substructures in n-refined neutrosophic vector spaces. International journal of neutrosophic science, 9, 74-85.
[20] Abobala, M. (2021). Foundations of neutrosophic number theory. Neutrosophic sets and systems, 39(1), 10.
[21] Abobala, M. (2020). On some neutrosophic algebraic equations. Journal of new theory, (33), 26-32.
[22] Abobala, M. (2021). Semi homomorphisms and algebraic relations between strong refined neutrosophic modules and strong neutrosophic modules. Neutrosophic sets and systems, 39(1), 9. https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1748\&context=nss_journal

