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Abstract 

 

1 | Introduction 

Non-linear problems, especially problems that are more relevant to everyday life activities cannot 

be solved with conventional models as they are not well suited. The increase in popularity of the 

fuzzy logic systems in problem solving can be attributed to its ability to incorporate human 

reasoning in its algorithm. The notion of Fuzzy Sets (FSs) was introduced in [1] as a method of 

representing uncertainty and vagueness in a way that elements are not limited to binary 

Membership Functions (MFs) of 0 or 1 but rather is a continuum in 0 and 1. A Type-1 Fuzzy 

System (T1FLS) is a rule based system which can be viewed as a process that maps crisp inputs 

to outputs by using the theory of fuzzy sets [2].  
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T1FLSs have the ability to process information using linguistic variables and make decision with 

imprecise, vague, ambiguous and uncertain data. The beauty of T1FLSs is its’ ability to represent 

nonlinear input/output relationships by using IF/THEN statements, called rules [3]. T1FLS consists 

of four components: fuzzifier, fuzzy rules, inference engine, and defuzzifier [4]. T1FLSs have 

achieved great success in handling many different real-world problems such as classification, 

regression, control, decision making, prediction, and so on [5-11]. However, due to the complexity 

and uncertainty in many real-world problems, T1FLs cannot adequately cope with or minimize the 

effects of the uncertainties posed by the complex nature of many real-world problems. These 

uncertainties can be as a result of uncertainty in inputs, uncertainty in outputs, uncertainty that is 

related to the linguistic differences, uncertainty caused by the change of conditions in the operation 

and uncertainty associated with the noisy data when training the fuzzy logic system [12]. 

In order to address this problem, [13] has recognized this potential limitation and introduced a higher 

type of fuzzy sets which is the concept of Type-2 Fuzzy Logic System (T2FLS) from Type-2 Fuzzy 

Set (T2FS). T2FLS is an extension of T1FLS with additional design degrees of freedom where the 

MFs are themselves fuzzy with the actual membership grade of an element assumed to lie within a 

closed interval of 0 and 1. However, T2FLS suffers computational complexity and to resolve this 

problem, Interval Type-2 Fuzzy Logic System (IT2FLS) is used which is a simplified version of 

T2FLS with reduced computational intensity making it quite practicable. Recently, T2FLSs and 

IT2FLSs have been successfully applied to handle a great deal of uncertainties in prediction problems 

and the results are very encouraging [14-15]. Consequently, IT2FLSs have dominated the research 

field and T2FLS are widely applied in various are due to their simpler structure and reduced 

computational cost [16]-[23]. 

In this study, remote vital signs monitoring and prediction of shock level in cardiac patients using an 

IT2FLS based on Mamdani fuzzy inference is presented. Our motivation is to apply IT2FS to reduce 

prediction error in the task of modeling uncertainties in health data. Mamdani Fuzzy Inference 

System (FIS) is employed as the background algorithm. Also, the study investigates the prediction of 

problems using conventional T1FLS for comparison purpose. The rest of the paper is structured as 

follows: Section 2 involves the preliminaries and reviews of the concepts on TIFS and IT2IFS. In 

Section 3, the design of IT2FLS for remote vital signs monitoring and prediction of shock level in 

cardiac patients is carried out. Our model results and discussion are presented in Section 4 and 

Section 5 involves conclusion of study. 

2| An Overview of Type-1 and Interval Type-2 Fuzzy Sets  

In this section, basic concepts of TIFS and IT2IFS are reviewed to deliver the fundamental 

knowledge required for comprehension of the work. 

2.1| Type-1 Fuzzy Sets 

According to [24], a classical fuzzy set otherwise called a T1FS, denoted by A, is characterized by a 

Type-1 Membership Function(T1MF), 𝜇𝐴(𝑥) where 𝑥 ∈ 𝑋, and 𝑋 is the domain of definition of the 

variable as seen in Eq. (1). 

 

A = {{(x,μA(x)}|∀x ∈ X} (1)
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Where 𝜇𝐴 is called aType-1 membership function of T1FS, 𝐴 and maps each element of A to a 

membership value called membership grade between 0 and 1. Eqs. (2) and (3) represent the T1FS, 𝐴 in 

its discrete and continuous forms respectively. 

Where 𝑥1, 𝑥2, 𝑥𝑛 are members of fuzzy set A and µ𝐴(𝑥1), µ𝐴(𝑥2), µ𝐴(𝑥𝑛) are their respective membership 

grades. 

2.2|Type-1 Fuzzy Logic Systems (T1FLS) 

The T1FLS also known as T1FIS is both, intuitive and numerical. The inference engine combines 

rules and gives a mapping from input type-1 fuzzy sets to output type-1 fuzzy sets. A fuzzy rule is a 

conditional statement in the form of IF-THEN where it contains two parts, the IF part called the 

antecedent part and the THEN part called the consequent part. Every T1FIS is associated with a set 

of rules obtained either from numerical data, or from problem domain experts with meaningful 

linguistic interpretations. In literature, we have two rules methods: Mamdani fuzzy rules [25] and [26] 

and Tagaki Sugeno Kang (TSK) [27] rules respectively. In Mamdani rule, the rule consequents are 

fuzzy sets while in TSK, the rule consequents are crisp functions of the inputs and can be illustrated 

in the form as follows: 

Where, y is a T1FS, and a, b, c are crisp coefficients. 

The membership grades in the fuzzy input sets are combined with those in the fuzzy output sets using 

the composition method and the outcome is combined with rules in an antecedent/consequent 

format, and then aggregated according to approximate reasoning theory. The structure of a T1FIS is 

shown in Fig. 1 and consists of four basic components namely: the fuzzifier, the fuzzy rule-base, the 

inference engine, and the defuzzifier. 

Fig. 1. Structure of a type 1 fuzzy logic system [18]. 

 

A =   µA(x1)/ x1 + µA(x2)/ x2 +⋯+ µA(xn)/ xn, (2) 

A = ∫ µA(x)/x
 

X
. (3) 

Mamdani: RkIF xi is A i
kand,., and xn is A n

k  then yk is Bi
k. (4) 

TSK: RkIF xi is A i
k  and,., and xn is A n

k   then yk = a ∗ x1 + b ∗ x2 + c. (5) 
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The fuzzifier maps the crisp input into a T1FS sets by evaluating the crisp inputs based on the 

antecedent part of the rules and assigns each crisp input a degree of membership in its input fuzzy 

set. The fuzzy rule-base is a collection of IF–THEN statements called rules in the form represented 

in Eqs. (4) and (5). The inference engine combines the type-1 fuzzy input set and the rules to produce 

a type-1 fuzzy output and the defuzzifier maps the type-1 fuzzy output set, T1FSs that is produced 

by the inference engine into crisp values. The centroid of area defuzzification method based on [24] 

is applied to compute the crisp number as seen in Eq. (6). 

Where, ∑ 𝑌́𝑘𝑍𝑘
𝑛
𝑖=1  is the membership value in the membership function and 𝑌́𝑘is the centre of 

membership function which is the running point in a discrete universe. The expression can be 

interpreted as the weighted average of the elements in the support set [28]. 

2.3|Interval Type-2 Fuzzy Set (IT2FS) 

An IT2FS is a simplified version of T2FS (1) introduced in [13] as an extension of T1FSand is 

characterized by a Type-2 Membership Function (T2MF), 𝜇Ã(𝑥, 𝑢) and 0 ≤ 𝜇Ã(𝑥,𝑢) ≤ 1 as represented 

in Eq. (7) [12]. For an IT2FS, for which X and U are discrete, the domain of Ã is equal to the union 

of all of its embedded T1 FSs as seen in Eq. (8). 

Where 𝑥 ∈ 𝑋 and 𝑢 ∈J ⊆  [0, 1x]; x is the primary variable with a domain X and u∈U is the secondary 

variable with domain 𝐽𝑥 at each x∈X. Jx is the primary membership of x and the secondary grades of 

all equal 1 [15, 18]. Hence, a type-2 membership grade can be any subset in [0, 1] [12]. Uncertainty 

about Ã is conveyed by the union of all the primary memberships, which is called the Footprint Of 

Uncertainty (FOU) of A as shown in Eq. (9) and Fig. 2, respectively. 

 

Fig. 2. Interval type-2 fuzzy set [29]. 

 

Crisp Output,  Z =  ∑ ÝkZk
n
i = 

∑ Ýk𝐙𝐤
𝐧
𝐢=𝟏

∑ Ý𝐤
𝐧
𝐢=𝟏

= 
∑ Zk
𝐧
𝐢=𝟏

∑ 𝐘𝐤
𝐧
𝐢=𝟏

. (6)

Ã = {((x,u), μÃ(x, u))|∀  x ∈ X, ∀  u ∈Jx ⊆  [0, 1], (7) 

Ã = ∑ [∑ [1/u]u∈Jx ]n
i=1 /xi . (8) 

μÃ(x, u) = 1, FOU (Ã) = ⋃  Jx
  ∀x∈X

= {(x, u): u ∈ Jx ⊆  [0, 1]}. (9) 



45 

 

In
te

rv
a
l 

ty
p

e
-2

 f
u

zz
y 

lo
g

ic
 s

ys
te

m
 f

o
r 

re
m

o
te

 v
it

a
l 
si

g
n

s 
m

o
n

it
o

ri
n

g
 a

n
d

 s
h

o
c
k

 l
e
ve

l 
p

re
d

ic
ti

o
n

 

 
The Upper Membership Function (UMF) and Lower Membership Function (LMF) of Ãcomprises 

two type-1 MFs that bound the FOU. The UMF is associated with the upper bound of FOU (Ã) and 

is denoted by 𝜇
Ã
(𝑥),∀x∈X, and the LMF is associated with the lower bound of FOU (Ã) and is denoted 

𝜇Ã(x), ∀x∈X, that is: 

From Eq. (3),  

The LMF of Ã are twice T1MFs bound the FOU in Eqs.(9) and (10) and 𝐽𝑥  is an interval set. The set 

theory operations of union, intersection and complement are applied to compute IT2FSs. For an 

IT2FS, for which X and U are discrete, the domain of Ã is equal to the union of all of its embedded 

T1 FSs, so that Ã can be expressed as; 

3|Interval Type-2 Fuzzy Logic System (IT2FLS) 

Fig. 3 shows a structure of an IT2FLS which is a version of T2FL. IT2FLS is a FLS that uses at least 

one IT2FS in mapping from crisp inputs to crisp outputs. IT2FLS is employed to reduce the 

computational burden of T2FLS while preserving the advantages of T2FLS. T1FLS cannot adequately 

handle the effect of uncertainties posed by the complex nature of real-world data because it uses T1FS 

which is characterized by membership functions that are certain. To address this problem, IT2FL is 

introduced as an extension of T1FL to provide additional design degrees of freedom with membership 

functions that are themselves fuzzy. IT2FL can be very useful when used in situations where lots of 

uncertainties are presented and have the potential to provide better performance than T1FLS. An 

IT2FIS is characterized by five components: a fuzzifier, a rule-base, an inference-engine, type-reducer 

and defuzzifier - that are inter-connected. Also, an IT2FIS is characterized by IF–THEN rules, in this 

case, the antecedent and consequents parts are Type-2 fuzzy sets [12]. 

Fig. 3. The structure of a type -2 fuzzy logic system [30]. 

μ
Ã
(x) ≡  FOU (Ã)    ∀x ∈ X, (10) 

μÃ(x) ≡  FOU (Ã)  ∀x ∈ X, (11) 

Jx = {(x, u): u ∈ [μÃ(x), μÃ(x)]}. (12) 

Ã = FOU (Ã) = ⋃ [μÃ(x) ,
∀x∈X

μ
Ã
(x)]. (13)

Ã = 1/FOU (Ã) = 1/⋃[
x∈X

μÃ(x), μÃ(x)]. (14)
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Where 𝑥𝑖 , i = 1, 2…, n are the antecedents, 𝑦 is the consequent of the kth rule of IT2FLS. The 𝐴̃𝑖’s are 

the MFs 𝜇
𝐴̃𝑖
𝑘(𝑥𝑖) of antecedent part of the ith input 𝑥𝑖 , The 𝐵𝑖 is the MFs 𝜇 𝐵̃𝑖𝑘

(𝑦)  of the consequent 

part of the output 𝑦𝑗. The firing strength is evaluated from the input and antecedent operations to 

produce an IT1 set [31]. 

Where  𝐹𝑖(𝑥′) is the antecedent of rule i and µF1
i(xˈ) is the degree of membership of x in F.𝜇

𝑓 𝑖̃
(x) and 

𝜇𝑓 𝑖̃(x) are upper and lower MFs of 𝜇𝑓 𝑖̃, i = 1 to m respectively. The inference engine combines the 

fired rules to produce a mapping from input to output in IT2FSs. The output fuzzy set, 𝜇 𝐸̃𝑗𝑙
(𝑦𝑗), is 

evaluated by combining the fired output consequent sets through the union of the kth rule fired 

output consequent sets. An exact iterative method of type-reduction is performed to compute the 

centroid of an IT2FS which is a T1FS. The type-reduced set gives an interval of uncertainty for the 

output of an IT2FLS: the more uncertainties in IT2FLS, the more uncertainties about its MFs and 

the larger the type-reduced set, and vice-versa. IT2FS are characterized by their left- and right-end 

points required to compute the centroid of an IT2FS [12], [32] and a detailed definition oftype-

reduction Eq. (17) can be found in [15] and [30], [31] respectively. In this paper, we adopt Karnik 

and Mendel (KM), Algorithms [32] to calculate the exact end-points in Eqs.(18) and (19), respectively 

we obtain the defuzzified crisp output for each output k using Eq. (20). 

 

The 

performance criteria in Eqs. (21) and (22) are defined and applied to measure our experimental 

results: Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). 

 

 

 

Mamdani: RkIF xi is Ã i
k  and, … , and xn is Ã n

k   then yk is B̃i
k. (15)

F i(x ′) = [f ′(x ′), f ′(x ′)] ≡ [f ′, f′ (16)

YTR(x
′) = [yl(x

′), yr(x
′)] ≡ [yl, yr]

= ∫ … ∫ ∫ . . ∫ 1/
∑ f iy iN

i=1

∑ f iN
i=1

 

fN∈[fN,f
N
]

 

f1∈[f1,f
1
]

 

y1∈[yl
N,yr

N]

 

y1∈[yl
1,yr

1]

. (17) 

yr = 
∑ fr

iyr
iN

i=1

∑ fr
iN

i=1

 . (18) 

𝑦𝑙 = 
∑ 𝑓𝑙

𝑖𝑦𝑙
𝑖𝑁

𝑖=1

∑ 𝑓𝑙
𝑖𝑁

𝑖=1

 . (19) 

Yk(X) =  
ylk+yrk

2
 . (20) 

MSE =
1

N
∑(y x − y)2,

N

i=1

(21) 

RMSE = √
1

N
∑(yx − y)2
N

i=1

. (22) 
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Where 𝑦𝑥 is desired output, y is the computed output and N is the number of data items, respectively. 

4|Model Experiment  

The model experiment was carried out in two (2) major stages namely:  clinical data collection and 

design of interval type-2 fuzzy logic model for prediction problems in patients. Data of cardiovascular 

patients were collected. The data were pre-processed and stored in a database. The interval type-2 

fuzzy logic model was designed. Inputs to the model were systolic blood pressure, diastolic blood 

pressure, temperature, heart rate and respiratory rate while cardiac shock level served as the desired 

output. The model employed, triangular membership function, Mamdani inference strategy, Karnik-

Mendel reduction method and centroid deffuzification process for cardiac shock prediction in 

patients. 

4.1| Clinical Data Collection 

Clinical data were collected for cardiovascular patients at the Federal Medical Centre Yenagoa, Bayelsa, 

Nigeria and University of Uyo Teaching Hospital, Akwa Ibom State, Nigeria, respectively for the 

period of 2016-2018. To represent ethical concerns, a written permission was processed and duly 

approved before data collection commenced. Expert knowledge on cardiovascular disease and disease 

diagnosis was captured with 50 questionnaire and interview from the head of cardiology unit in the 

department of medicine in both Federal Medical Centre, Yenagoa, Bayelsa State, Nigeria and 

University of Uyo Teaching Hospital, Akwa Ibom State, Nigeria, respectively. A total of 1000 patients 

sample data were obtained from the University of Uyo Teaching Hospital, and in the Federal Medical 

Centre Yenagoa, Bayelsa, Nigeria. The sample dataset for the first 35 patients extracted from Federal 

Medical Centre Yenagoa are presented in the Table 1. 

4.2| Interval Type-2 Fuzzy Logic Model for Prediction Problems in Patients 

The data collected in Section 4.1 were stored in a database and served as input to the interval type-2 

fuzzy logic controller. In the fuzzy controller system, the data were fuzzified using fuzzy linguistic 

variable and membership triangular membership function. Inference was made based on fuzzy rules 

which produced interval type 2 fuzzy set. Karnik-Mendel method was employed to reduce the type 2 

fuzzy set to type 1 fuzzy set. The fuzzy output was obtained through centroid defuziffication process. 

Notification message module was incorporated in the system. This would enable alerts and vital 

information to be sent to doctors-on-call, caregivers, ambulance agency and designated family 

members for necessary action based on detection threshold from the cardiac shock prediction results. 

Interval Type-2 Fuzzy logic frameworks for prediction problems in cardiac patient is presented in Fig. 

4. 

 



 

 

48 

U
m

o
h

 e
t 

a
l.

 |
J.

 F
u

zz
y.

 E
x

t.
 A

p
p

l.
 2

(1
) 

(2
02

1)
 4

1-
6
8

 

 

 

Fig. 4. Interval type-2 fuzzy logic framework for prediction problems in cardiac patient. 

Table 1. Sample data extraction from Federal Medical Centre Yenagoa, Bayelsa

 

 

Age Sex BPDiastolic BPSystolic Temp oC Weight (kg) Respiratory 
Rate(cm) 

Pulse 
Rate(b/m) 

70 F 120 90 36.9 82 20 80 
53 F 140 100 36.7 90 22 68 
60 M 170 100 36.1 77.4 24 120 
45 M 100 70 35.2 80 22 70 
57 M 105 70 36.9 79 18 122 
63 F 170 90 36.2 77.4 20 80 
37 M 125 80 36.4 62.5 20 80 
41 F 120 70 35.2 55 20 86 
56 M 130 90 36.8 92 20 80 
60 F 150 110 36.9 77.4 20 86 
57 M 98 60 36.6 91 20 76 
56 M 120 80 36.2 79 22 73 
44 M 140 90 36.9 55 20 80 
52 M 120 90 36.7 48 20 90 
57 F 150 120 39 50 22 80 
54 M 120 80 36.8 80 24 78 
48 M 112 60 36.7 50 24 62 
49 F 110 80 36.3 41.4 20 60 
64 F 140 80 36.7 94.1 16 78 
58 F 120 70 36.7 80 20 82 
50 F 130 80 36.4 49.8 20 68 
59 M 130 100 36.1 53 22 90 
66 F 150 90 36.4 93 21 78 
43 M 130 80 36.5 50.6 23 64 
69 M 160 90 36.7 96.5 20 80 
59 M 130 90 36.4 51.2 19 68 
44 M 120 80 36.7 68 17 59 
42 M 140 80 36.7 71 20 72 
61 F 145 100 36.8 58 22 85 
40 M 90 70 35.1 62 24 69 
71 M 120 70 36.3 50 20 70 
59 F 120 80 36.4 70 22 90 
51 M 120 80 37.4 60 21 80 
65 F 130 80 36.3 68.8 20 68 
53 M 190 110 36.1 59.5 24 78 
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In this paper, derived input parameters are defined as temperature, heart rate, blood pressure and 

respiratory rate, the membership functions and the associated linguistic variables, the universe of 

discourse and fuzzy linguistic variable are well defined. Table 2 presents the input variables and the 

universe of discourse. 

Table 2. The input variables and the universe of discourse. 

 

 

 

 

Triangular Membership Function (TMF) method in Eq. (23) was used to evaluate each input and 

output Membership Functions (MFs) as follows: 

Where, a, b, c represent the x coordinates of the three vertices of 𝜇𝐴(𝑥)in a fuzzy set A. a , c  is the 

lower boundary  and  Upper boundary where membership degree is zero respectively, b  is the centre 

where membership degree is 1 . x is the coordinate of three vertices (taking by assumption). The 

IT2FL UMF and LMF are derived from general model in Eqs.(24) and (25) and evaluated for all the 

input variables respectively. The Membership function values for shock prediction are shown in Table 

3. 

Where y is left end point of both UMF and LMF and r is right end point of both UMF and LMF and 

q is the peak point. 

 

 

 

Input Variables and their Universe of Discourse 

Heart 
Rate 

Respiratory 
Rate 

Body 
Temperature 
 

Blood Pressure Prediction 

Systolic Diastolic 

[0, 200] [0, 60] [0 ,41.5] [0, 200] [0, 150] [0 , 1] 

 =

{
 
 

 
 

0    if x ≤  a
x−a

b−a
  if a ≤ x ≤ b

c−x

c−b
   if b ≤ x ≤ c

0    if x ≥  a

(
μ̅(x)

IT2FL UMF
)    =

{
 
 

 
 

0, x ≤ y1
x − y1
q1−y1

, if y1 ≤ x ≤ q1  

     1,        if q1  ≤ x ≤ r2                  
r2 −  x

r2 − q2
, if q2  ≤ x ≤  r2

.

(
μ(x)

IT2FL LMF
)   =

{
 
 
 
 

 
 
 
 

0, x ≤ y2
x − y2
q2−y2

, if y2 ≤ x ≤ 
r1(q2−y2)+y2(r1−q1)

(q2−y2)+(r1−q1)

r2 −  x

r2 − q2
, if x >

r1(q2−y2)+y2(r1−q1)

(q2−y2)+(r1−q1)
<x<r1                  

0,        if x ≥ r2                  

.
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 Respiratory rate UMF and LMF (low) 

 

 

 

 

  

Respiratory Rate UMF and LMF Normal (NM) 

 

  

For Respiratory Rate UMF and LMF High (H) 

  

 

 

 

 

or Heart Rate UMF and LMF low (L) 

  

 

 

 

𝜇𝑅𝑅(𝑁)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 10.13
𝑥 − 10.13

𝑞2−10.13
, 𝑖𝑓 10.13 ≤ 𝑥 ≤  

26.8(𝑞2−10.13)+10.13(26.8−𝑞1
)

(𝑞2−10.13)+(26.8−𝑞1
)

29.6 −  𝑥

29.6 − 𝑞2
, 𝑖𝑓 𝑥 >

26.8(𝑞2−10.13)+10.13(26.8−𝑞1
)<𝑥<26.8

(𝑞2−10.13)+(26.8−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 29.6

 

𝜇
𝑅𝑅
(𝑁)(𝑥)

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0,     ≤ 7.61    
𝑥 − 7.61

𝑞1−7.61
, 𝑖𝑓 7.61 ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2               
29.6 −  𝑥

29.6 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤  29.6     

0, 𝑖𝑓 𝑥 > 29.6

 

μRR(H)(x)

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, x ≤ 26.1
x − 26.1

q2−26.1
, if 26.1 ≤ x ≤  

54.8(q2−26.1)+26.1(54.8−q1
)

(q2−26.1)+(26.8−q1
)

59.8 −  x

59.8 − q2
, if x >

54.8(q2−26.1)+26.1(54.8−q1
)<x<54.8

(q2−26.1)+(54.8−q1
)

0,        if x ≥ 59.8

 

𝜇
𝑅𝑅
(𝐻)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 22.8                  
𝑥 − 22.8   

𝑞1−22.8   
, 𝑖𝑓 22.8  ≤ 𝑥 ≤ 𝑞1             

1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                
59.8 −  𝑥

59.8 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤  59.8              

0, 𝑖𝑓 𝑥 > 59.8

 

𝜇
𝑅𝑅
(𝑙𝑜𝑤)(𝑥)  

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 0.0863                    

𝑥 − 0.0863

𝑞1−0.0863
, 𝑖𝑓 0.0863 ≤ 𝑥 ≤ 𝑞1             

 1,         𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                     
13.4 −  𝑥

13.4 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤  13.4                          

0,       𝑖𝑓 𝑥 > 13.4         

 

𝜇𝑅𝑅(𝑙𝑜𝑤)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 1.69
𝑥 − 𝑦2
𝑞2−𝑦2

, 𝑖𝑓 1.69 ≤ 𝑥 ≤ 
12.01(𝑞2−1.69)+1.69(12.01−𝑞1

)

(𝑞2−1.69)+(12.01−𝑞1
)

13.4 −  𝑥

13.4 − 𝑞2
, 𝑖𝑓 𝑥 >

12.01(𝑞2−1.69)+1.69(12.01−𝑞1
)<𝑥<12.01

(𝑞2−1.69)+(12.01−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 13.4

 

𝜇
𝐻𝑅
(𝐿)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ −0.208                  

𝑥 − (−0.208)   

𝑞1−(−0.208)   
, 𝑖𝑓 − 0.208  ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
60 −  𝑥

60 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 60                          

0, 𝑖𝑓 𝑥 > 60

𝜇𝐻𝑅(𝐿)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 4.48
𝑥 − 4.48

𝑞2−4.48
, 𝑖𝑓 4.48 ≤ 𝑥 ≤  

56.2(𝑞2−4.48)+4.48(56.2−𝑞1
)

(𝑞2−4.48)+(56.2−𝑞1
)

60 −  𝑥

60 − 𝑞2
, 𝑖𝑓 𝑥 >

56.2(𝑞2−4.48)+4.48(56.2−𝑞1
)<𝑥56.2

(𝑞2−4.48)+(56.2−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 60
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or Heart Rate UMF and LMF Normal (N) 

 

 

 

or Heart Rate UMF and LMF High (H) 

 

 

 

 

For Body Temperature UMF and LMF (low) 

 

 

 

For Body Temperature UMF and LMF (Normal) 

 

 

𝜇
𝐻𝑅
(𝑁)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 49.5                  

𝑥 − 49.5   

𝑞1−49.5   
, 𝑖𝑓 49.5  ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
123 −  𝑥

123 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 123                         

0, 𝑖𝑓 𝑥 > 123

 

𝜇𝐻𝑅(𝑁)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 53.03
𝑥 − 53.03

𝑞2−53.03
, 𝑖𝑓 4.48 ≤ 𝑥 ≤  

56.2(𝑞2−53.03)+53.03(56.2−𝑞1
)

(𝑞2−53.03)+(56.2−𝑞1
)

123 −  𝑥

123 − 𝑞2
, 𝑖𝑓 𝑥 >

119(𝑞2−53.03)+53.03(119−𝑞1
)<𝑥119

(𝑞2−53.03)+(119−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 123

 

𝜇
𝐻𝑅
(𝐻)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 107              

𝑥 − 107   

𝑞1−107   
, 𝑖𝑓 107  ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
198 −  𝑥

198 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 198                         

0, 𝑖𝑓 𝑥 > 198

 

𝜇𝐻𝑅(𝐻)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 111
𝑥 − 111

𝑞2−111
, 𝑖𝑓 111 ≤ 𝑥 ≤  

191(𝑞2−111)+111(191−𝑞1
)

(𝑞2−111)+(191−𝑞1
)

198 −  𝑥

198 − 𝑞2
, 𝑖𝑓 𝑥 >

191(𝑞2−111)+111(191−𝑞1
)<𝑥191

(𝑞2−111)+(191−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 198

 

𝜇
𝑇𝑒𝑚𝑝

(𝑙𝑜𝑤)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 0.145              

𝑥 − 0.145   

𝑞1−0.145   
, 𝑖𝑓 0.145  ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
22.5 −  𝑥

22.5 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 22.5                         

0, 𝑖𝑓 𝑥 > 22.5

 

𝜇𝑇𝑒𝑚𝑝(𝑙𝑜𝑤)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 1.85
𝑥 − 1.85

𝑞2−1.85
, 𝑖𝑓 1.85 ≤ 𝑥 ≤  

20.3(𝑞2−1.85)+1.85(20.3−𝑞1
)

(𝑞2−1.85)+(20.3−𝑞1
)

22.5 −  𝑥

22.5 − 𝑞2
, 𝑖𝑓 𝑥 >

20.3(𝑞2−1.85)+1.85(20.3−𝑞1
)<𝑥20.3

(𝑞2−1.85)+(20.3−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 22.5

 

𝜇
𝑇𝑒𝑚𝑝

(𝑛𝑜𝑟𝑚𝑎𝑙)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 9.59              

𝑥 − 9.59   

𝑞1−9.59   
, 𝑖𝑓 9.59  ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
30.02 −  𝑥

30.02 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 30.02                         

0, 𝑖𝑓 𝑥 > 30.02

 

𝜇𝑇𝑒𝑚𝑝(𝑛𝑜𝑟𝑚𝑎𝑙)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 11.48
𝑥 − 11.48

𝑞2−11.48
, 𝑖𝑓 11.48 ≤ 𝑥 ≤ 

28.3(𝑞2−11.48)+11.48(28.3−𝑞1
)

(𝑞2−11.48)+(28.3−𝑞1
)

30.02 −  𝑥

30.02 − 𝑞2
, 𝑖𝑓 𝑥 >

28.3(𝑞2−11.48)+11.48(28.3−𝑞1
)<𝑥28.3

(𝑞2−11.48)+(28.3−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 30.02

 



 

 

52 

U
m

o
h

 e
t 

a
l.

 |
J.

 F
u

zz
y.

 E
x

t.
 A

p
p

l.
 2

(1
) 

(2
02

1)
 4

1-
6
8

 

 

For Body Temperature UMF and LMF (High) 

 

 

 

 

For Body Temperature UMF and LMF very high 

 

 

 

  

 

For Systolic Blood Pressure UMF and LMF for Low 

 

 

 

 

 

For Systolic Blood Pressure UMF and LMF (Normal) 

 

 

 

 

 

 

 

 

𝜇
𝑇𝑒𝑚𝑝

(ℎ𝑖𝑔ℎ)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 25.1              

𝑥 − 25.1   

𝑞1−25.1   
, 𝑖𝑓 25.1  ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
37.7 −  𝑥

37.7 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 37.7                         

0, 𝑖𝑓 𝑥 > 37.7

 

𝜇𝑇𝑒𝑚𝑝(ℎ𝑖𝑔ℎ)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 26.0
𝑥 − 26.0

𝑞2−26.0
, 𝑖𝑓 26.0 ≤ 𝑥 ≤  

36.3(𝑞2−26.0)+26.0(36.3−𝑞1
)

(𝑞2−26.0)+(36.3−𝑞1
)

37.7 −  𝑥

37.7 − 𝑞2
, 𝑖𝑓 𝑥 >

36.3(𝑞2−26.0)+26.0(36.3−𝑞1
)<𝑥36.3

(𝑞2−26.0)+(36.3−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 37.7

μ
Temp

( veryhigh)(x)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, x ≤ 30.5              

x − 30.5  

q1−30.5   
, if 30.5  ≤ x ≤ q1             

     1,        if q1  ≤ x ≤ q2                                                             
41.4 −  x

41.4 − q2
, if q2  ≤ x ≤ 41.4                         

0, if x > 41.4

 

𝜇𝑇𝑒𝑚𝑝(𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 31.9
𝑥 − 31.9

𝑞2−31.9
, 𝑖𝑓 31.9 ≤ 𝑥 ≤  

40(𝑞2−31.9)+31.9(40−𝑞1
)

(𝑞2−31.9)+(40−𝑞1
)

41.4 −  𝑥

41.4 − 𝑞2
, 𝑖𝑓 𝑥 >

40(𝑞2−31.9)+31.9(40−𝑞1
)<𝑥<40

(𝑞2−31.9)+(40−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 41.4

 

𝜇
𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃

( 𝑙𝑜𝑤)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 2.34              

𝑥 − 2.34  

𝑞1−2.34   
, 𝑖𝑓 2.34   ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
90.03 −  𝑥

90.03 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 90.03                         

0, 𝑖𝑓 𝑥 > 90.03

𝜇𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃(𝑙𝑜𝑤)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 11.2
𝑥 − 11.2

𝑞2−11.2
, 𝑖𝑓 11.2 ≤ 𝑥 ≤  

84(𝑞2−11.2)+11.2(84−𝑞1
)

(𝑞2−11.2)+(84−𝑞1
)

90.03 −  𝑥

90.03 − 𝑞2
, 𝑖𝑓 𝑥 >

84(𝑞2−11.2)+11.2(84−𝑞1
)<𝑥<84

(𝑞2−11.2)+(84−𝑞1
)

0,                  𝑖𝑓 𝑥 ≥ 90.03

 

𝜇
𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃

( 𝑛𝑜𝑟𝑚𝑎𝑙)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 74.42           

𝑥 − 74.42  

𝑞1−74.42    
, 𝑖𝑓74.42    ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
139 −  𝑥

139 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 139                        

0,         𝑖𝑓 𝑥 > 139           

 

𝜇𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃(𝑛𝑜𝑟𝑚𝑎𝑙)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 78.76
𝑥 − 78.76

𝑞2−78.76
, 𝑖𝑓 78.76 ≤ 𝑥 ≤ 

135(𝑞2−78.76)+78.76(135−𝑞1
)

(𝑞2−78.76)+(135−𝑞1
)

139 −  𝑥

139 − 𝑞2
, 𝑖𝑓 𝑥 >

135(𝑞2−78.76)+78.76(135−𝑞1
)<𝑥<135

(𝑞2−78.76)+(135−𝑞1
)

0,                             𝑖𝑓 𝑥 ≥ 139
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or Systolic Blood Pressure UMF and LMF (High) 

 

 

 

 

 

 

 

For Systolic Blood Pressure UMF and LMF Severe 

 

 

 

 

 

For Diastolic Blood Pressure UMF and LMF Low 

 

 

 

 

 

 

 

𝜇
𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃

( ℎ𝑖𝑔ℎ)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 151            

𝑥 − 151  

𝑞1−151  
, 𝑖𝑓151  ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
159.7 −  𝑥

159.7 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 159.7                         

0, 𝑖𝑓 𝑥 > 159.7

 

𝜇𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃(ℎ𝑖𝑔ℎ)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 128
𝑥 − 128

𝑞2−128
, 𝑖𝑓 128 ≤ 𝑥 ≤  

154(𝑞2−128)+128(154−𝑞1
)

(𝑞2−128)+(154−𝑞1
)

159.7 −  𝑥

159.7 − 𝑞2
, 𝑖𝑓 𝑥 >

154(𝑞2−128)+128(154−𝑞1
)<𝑥<154

(𝑞2−128)+(154−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 159.7

 

 

𝜇
𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃

( 𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 151            

𝑥 − 151  

𝑞1−151 
, 𝑖𝑓 151 ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
179.9 −  𝑥

179.9 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 179.9                        

0, 𝑖𝑓 𝑥 > 179.9

 

𝜇𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃(𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 155
𝑥 − 155

𝑞2−155
, 𝑖𝑓 155 ≤ 𝑥 ≤  

177(𝑞2−155)+155(177−𝑞1
)

(𝑞2−155)+(177−𝑞1
)

179.9 −  𝑥

179.9 − 𝑞2
, 𝑖𝑓 𝑥 >

177(𝑞2−155)+155(177−𝑞1
)<𝑥<177

(𝑞2−155)+(177−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 179.9

 

𝜇
𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃

( 𝑠𝑒𝑣𝑒𝑟𝑒)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 171           

𝑥 − 171  

𝑞1−171 
, 𝑖𝑓 171  ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
198 −  𝑥

198 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 198                        

0, 𝑖𝑓 𝑥 > 198

 

𝜇𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃(𝑣𝑒𝑟𝑦ℎ𝑖𝑔ℎ)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 174
𝑥 − 174

𝑞2−174
, 𝑖𝑓174 ≤ 𝑥 ≤  

194(𝑞2−174)+174(194−𝑞1
)

(𝑞2−174)+(194−𝑞1
)

198 −  𝑥

198 − 𝑞2
, 𝑖𝑓 𝑥 >

194(𝑞2−174)+174(194−𝑞1
)<𝑥<194

(𝑞2−174)+(194−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 198

 

𝜇
𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃

( 𝑙𝑜𝑤)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 1.778           

𝑥 − 1.778 

𝑞1−1.778  
, 𝑖𝑓 1.778 ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
67.53 −  𝑥

67.53 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 67.53                       

0, 𝑖𝑓 𝑥 > 67.53

 

𝜇𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃(𝑙𝑜𝑤)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 6.45
𝑥 − 6.45

𝑞2−6.45
, 𝑖𝑓6.45 ≤ 𝑥 ≤  

63.84(𝑞2−6.45)+6.45(63.84−𝑞1
)

(𝑞2−6.45)+(63.84−𝑞1
)

67.53 −  𝑥

67.53 − 𝑞2
, 𝑖𝑓 𝑥 >

63.84(𝑞2−6.45)+6.45(63.84−𝑞1
)<𝑥<63.84

(𝑞2−6.45)+(63.84−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 67,53
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For Diastolic Blood Pressure UMF and LMF Normal 

 

 

 

For Diastolic Blood Pressure UMF and LMF High 

 

 

 

For Diastolic Blood Pressure UMF and LMF Very High 

 

 

 

 

 

For Diastolic Blood Pressure UMF and LMF Severe 

 

 

 

 

𝜇
𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃

(𝑁𝑜𝑟𝑚𝑎𝑙)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 54.29           

𝑥 − 54.29 

𝑞1−54.29  
, 𝑖𝑓 54.29 ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
102.8 −  𝑥

102.8 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 102.8                       

0, 𝑖𝑓 𝑥 > 102.8

 

𝜇𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃(𝑁𝑜𝑟𝑚𝑎𝑙)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 57.3
𝑥 − 57.3

𝑞2−57.3
, 𝑖𝑓57.3 ≤ 𝑥 ≤  

98.5(𝑞2−57.3)+57.3(98.5−𝑞1
)

(𝑞2−57.3)+(98.5−𝑞1
)

102.8 −  𝑥

102.8 − 𝑞2
, 𝑖𝑓 𝑥 >

98.5(𝑞2−57.3)+57.3(98.5−𝑞1
)<𝑥<98.5

(𝑞2−57.3)+(98.5−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 102.8

 

𝜇
𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃

(𝐻𝑖𝑔ℎ)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 90.6           

𝑥 − 90.6  

𝑞1−90.6   
, 𝑖𝑓 90.6  ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
117 −  𝑥

117 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 117                       

0, 𝑖𝑓 𝑥 > 117

 

𝜇𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃(𝐻𝑖𝑔ℎ)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 92.3
𝑥 − 92.3

𝑞2−92.3
, 𝑖𝑓92.3 ≤ 𝑥 ≤ 

115(𝑞2−92.3)+92.3(115−𝑞1
)

(𝑞2−92.3)+(115−𝑞1
)

117 −  𝑥

117 − 𝑞2
, 𝑖𝑓 𝑥 >

115(𝑞2−92.3)+92.3(115−𝑞1
)<𝑥<115

(𝑞2−92.3)+(115−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 117

 

𝜇
𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃

(𝑉𝑒𝑟𝑦𝐻𝑖𝑔ℎ)(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 111.3           

𝑥 − 111.3   

𝑞1−111.3    
, 𝑖𝑓 111.3   ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
134.9 −  𝑥

134.9 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 134.9                       

0, 𝑖𝑓 𝑥 > 134

 

𝜇𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃(𝑉𝑒𝑟𝑦𝐻𝑖𝑔ℎ)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 112.4
𝑥 − 112.4

𝑞2−112.4
, 𝑖𝑓112.4 ≤ 𝑥 ≤  

134(𝑞2−112.4)+112.4(134−𝑞1
)

(𝑞2−112.4)+(134−𝑞1
)

134.9 −  𝑥

134.9 − 𝑞2
, 𝑖𝑓 𝑥 >

134(𝑞2−112.4)+112.4(134−𝑞1
)<𝑥<134

(𝑞2−112.4)+(134−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 134.9

 

𝜇
𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃

𝑆𝑒𝑣𝑒𝑟𝑒(𝑥)    

=

{ 
  
  
  
  
  
  
  
  
  
  
  
 0, 𝑥 ≤ 128.2          

𝑥 − 128.2   

𝑞1−128 .2  
, 𝑖𝑓 128.2   ≤ 𝑥 ≤ 𝑞1             

     1,        𝑖𝑓 𝑞1  ≤ 𝑥 ≤ 𝑞2                                                             
148.5 −  𝑥

148.5 − 𝑞2
, 𝑖𝑓 𝑞2  ≤ 𝑥 ≤ 148.5                       

0, 𝑖𝑓 𝑥 > 148.5

 

𝜇𝐷𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐𝐵𝑃(𝑆𝑒𝑣𝑒𝑟𝑒)(𝑥)   

=

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

0, 𝑥 ≤ 131
𝑥 − 131

𝑞2−131
, 𝑖𝑓131 ≤ 𝑥 ≤ 

146(𝑞2−131)+131(146−𝑞1
)

(𝑞2−131)+(146−𝑞1
)

148.5 −  𝑥

148.5 − 𝑞2
, 𝑖𝑓 𝑥 >

146(𝑞2−131)+131(146−𝑞1
)<𝑥<146

(𝑞2−131)+(146−𝑞1
)

0,        𝑖𝑓 𝑥 ≥ 148.5
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Table 3. Membership function values for Shock Prediction. 

 

 

 

In this paper, 900 fuzzy rules are defined based on (4) and part of the rules are presented in Fig. 5 

while sample rule is given as; 

If HeartRate is low and Respiratory Rate is normal and Temp is very high and Blood Pressure is high 

THEN Prediction is high. 

 

Fig. 5. Rule base for cardiac patient shock level prediction. 

Given the crisp input vector v = [55, 25, 7, 135], their degree of memberships is calculated from the 

respective triangular membership functions as shown in Table 3. Table 4 presents the firing rules based 

on the set input values. Rule evaluation of the firing rules 20, 21, 165, 51, 100, 101, 35 and 36 against 

the fuzzy set in Table 3 yields the result in Table 5. The Karnik Mendel Type reduction model is applied 

by selecting the leftmost (L) and rightmost (R) switch points. In our study, the switch point is selected 

at L=5 and R = 2 and then we compute for the values of 𝑦𝑙 and 𝑦𝑟 using Eqs. (24) and (25), respectively. 

The defuzzification is carried out using Eq. (26). 

 

 

Linguistic Term Upper Membership Function Lower Membership Function 

Low 0,0.1733,0.3 0.0282,0.173,0.271 
Normal 0.2,0.3532,0.5 0.234,0.3558,0.464 
High 0.4,0.5833,0.8 0.43,0.584,0.7666 
Very High 0.6,0.806,1 0.632,0.806,0.9718 
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Table 3. Fuzzified value (fuzzy set). 

 

 

 

 

 

 

Table 4. The firing rules. 

 

The defuzzification is carried out using 

 

 

 

 

 

Lingusitic Variable 

HeartRate 

[μ
1
, μ1] 

(55) 

Respiratory 

Rate[μ
2
, μ2] 

(25) 

Body Temp. 

[μ
3
, μ3] 

(7) 

Systolic Blood 
Pressure 

[μ
4
, μ4] 

(135) 

Diastolic Blood 
Pressure 

[μ
4
, μ4] 

(102) 
UL[1.644,0.053] UN[2.067,0.197] UL[0.649,0.569] UH[0.360,1.579] UH[0.950,0.9065] 

UN[0.154,0.062] UH[0.129,0.170]  UVH[0.659,0.455]  

Rule 
No. 

Firing Interval Consequent 

R20 
f
1
, f 1 , ] = [1.644*2.067*0.649*0.360, 

0.053*0.197*0.569*1.579]  = [0.360, 0.053] 

[y
1
, y 1 ] = L[0.149, 1.525] 

R21 
f
2
, f 2 , ] =  [1.644*2.067*0.649*0.659, 

0.053*0.197*0.589*0.455]  = [0.649,0.053] 

[y
2
, y 2 ] =M[0.3497, 0.6598] 

R165 
[f
3
, f 3 , ]= [0.129*2.067*0.649*0.360, 

0.170*0.197*0.569*1.579] = [0.129,0.170] 

[y
3
, y 3 ]= L[0.105, 0.631] 

R51 
[f
4
, f 4 , ]=[0.1544*2.067*0.649*0.659, 

0.062*0.197*0.569*0.455]=[0.154,0.062] 

[y
4
, y 4 ]=L[0.15, 0.1525] 

R100 
[f
5
, f 5 ]=[1.644*0.129*0.649*0.360, 

0.053*0.170*0.569*1.579]=[0.129,0.053] 

[y
5
, y 5 ]=H[0.60, 0.598] 

R101 
[f
6
, f 6 ] =[1.644*0.129*0.649*0.659’ 

0.053*0.170*0.569*0.455]=[0.129,0.053] 

[y
6
, y 6 ]= VH[0.80, 0.798] 

R35 
[f
7
, f 7 , ]=[2.067*0.129*0.649*0.360, 

0.197*0.170*0.569*1.579]=[0.129,0.170] 

[y
7
, y 7 ]=L[0.148,0.1525] 

R36 
[f
8
, f 8 , ]=[2.067*0.129*0.649*0.659, 

0.197*0.170*0.569*0.455]=[0.129,0.170] 
 

[y
8
, y 8 ]=H[0.5302, 0.5975] 

yl = L∈[1,N−1]
min

∑ f̅ny n + L
n=1 ∑ f ny nN

n=L+1

∑ f̅ n + ∑ f nN
n=L+1

L
n=1

. (26) 

yr = R∈[1,N−1]
max

∑ f ny̅ n + R
n=1 ∑ f̅ny̅ nN

n=R+1

∑ f n + ∑ f̅nN
n=R+1

R
n=1

. (27) 
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The

5| Results and Discussion 

In this paper, experimental results for prediction problem as applied to predicting shock level in 

cardiac patients using interval type-2 fuzzy logic system have been presented. The effectiveness and 

generalization capability of IT2FLS have been tested using 1000 datasets obtained from University of 

Uyo Teaching Hospital and Federal Medical Centre, Yenagoa all in Nigeria. Table 1 shows part of the 

details of the cardiac patient’s health datasets. Five cardiac health variables namely: systolic blood 

pressure, diastolic blood pressure, temperature, heart rate and respiratory rate served as the input while 

cardiac shock level served as the desired output. Triangular membership function was employed for 

fuzzification of the input. Fuzzy inference was derived using Mamdani inference process. Investigation 

of the performance of IT2FLS and that of its type-1 counterpart were carried out. Statistical evaluation 

was carried out using performance metrics of Mean Absolute Difference (MAD), Mean Absolute 

Percentage Error (MAPE), Mean Square Error (MSE) and Root Mean Squared Error (RMSE), 

respectively. Fig. 6 shows the plots of transformed cardiac patients’ health dataset for (a) blood 

pressure diastolic, (b) blood pressure systolic, (c) temperature, (d) respiratory rate, and (e) heart rate, 

respectively. 

(a) 

yl =  
f̅ 1y 1 + f̅ 2y 2 + f̅ 3y 3 + f̅ 4y 4 + f̅ 5y 5 + f 6y 6 + f 7y 7 + f 8y 8

f̅ 1 + f̅ 2 + f̅ 3 + f̅ 4 + f̅ 5 + f 6 + f 7 + f 8
. (28) 

yr = 
f 1y

1
+ f 2y

2
+ f̅ 3y

3
+ f̅ 4y

4
+ f̅ 5y

5
+ f̅ 6y

6
+ f̅ 7y

7
+ f̅ 8y

8

f 1 + f 2 + f̅ 3 + f̅ 4 + f̅ 5 + f̅ 6 + f̅ 7 + f̅ 8
. (29) 

yl = 

0.360 ∗ 1.525 +  0.649 ∗ 0.6598 +  0.129 ∗ 0.631 +  0.154 ∗ 0.1525
+ 0.129 ∗ 0.598 + 0.053 ∗ 0.798 + 0.170 ∗ 0.1525 + 0.170 ∗ 0.5975 
0.360 + 0.649 + 0.129 + 0.154 + 0.129 + 0.053 + 0.170 + 0.170

=   1.9997. 

yr = 

0.053 ∗ 0.149 +  0.053 ∗ 0.3497 +  0.129 ∗ 0.105 +  0.154 ∗ 0.15
+ 0.129 ∗ 0.60 + 0.129 ∗ 0.80 +  0.129 ∗ 0.148 +  0.129 ∗ 0.5302
0.053 + 0.053 + 0.129 + 0.154 + 0.129 + 0.129 +  0.129 + 0.129  

=   0.36593. 
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(b) 

(c) 
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 (d)

(e) 

Fig. 6. Plots of the transformed cardiac patients’ health dataset for (a) blood pressure diastolic, (b) blood 

pressure systolic, (c) temperature, (d) respiratory rate, (e) heart rate. 
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5.1| Interval Type-2 Fuzzy Logic Results for Remote Vital Signs Monitoring and 

Shocks Level Prediction 

With the fuzzy rule-base of Fig. 4 and both the input and output membership functions plots are 

depicted in Fig. 7(a-e), respectively. Applying the IT2FLC to the proposed problem, we obtain the 

system’s response. Fig. 8 gives the prediction results for IT2FLS. Fig. 9 presents the system’s response 

of the IT2FLS for the actual and predicted shock level. 

(a) 

(b) 
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(c) 

 

 (d) 
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(e) 

d))  

Fig. 7. Inputs and output membership functions plot for (a) bp-diastolic (b) bp-systolic (c) 

temperature (d) respiratory rate (e) heart rate and (f) shock level prediction. 
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Fig. 8. The prediction results for (a) IT2FLS. 

 

 

Fig. 9. System’s response of the IT2FLS for the actual and predicted shock level. 

 

5.2| Type-1 Fuzzy Logic Results for Remote Vital Signs Monitoring and Shocks 

Level Prediction 

Fig. 10 gives the prediction results for T1FLS while Fig. 11 presents the system’s response of the 

T1FLS for the actual and predicted shock level. Fig. 12 shows the plots of the system’s response for 

the actual shock level and predicted shock level for T2FLS and T1FLS. 
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Fig. 10. The prediction results for T1FLS. 

 

Fig. 11. System’s response of T1FLS for the actual and predicted shock level. 

 

5.3| Performance Evaluation 

Fig. 12 and Table 5 give the results of the performance of IT2FLS with that of T1FLS where, shock 

level-actual is the actual shock level, Shock Level-Predicted-IT2FLS is the predicted shock level by 

IT2FLS and Shock Level-Predicted-T1FLS is the predicted shock level by T1FLS, respectively. 

Statistical analysis for comparison is also made between IFLS and IT2FLS. Two experiments are 

conducted in order to explore these analyses. In each case, the performance metrics are the MSE 

and the RMSE. Figs. 13-15 show the plots of the two models using their test MSEs and RMSEs. Figs. 

13 (a) and (b) give the prediction errors for IT2FLS and T1FLS, while the prediction accuracy of 

IT2FLS and T1FLS are shown in Figs.14 (a) and (b). Figs. 15 (a) and (b) gives the error models against 

error values for IT2FLS and T1FLS, respectively. Table 6 compares the performance of IT2FLS with 

that of T1FLS with respect to MSE and RMSE. The results of the statistical comparison of the model 

performance are presented in Table 6. 
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Fig. 12. Plots of the system’s response of actual shock level and predicted shock level for IT2FLS and 

T1FLS. 

From Fig. 12 it is observed that with the use of IT2FLS, the model is able to model uncertainty 

adequately in predicting shock level of a cardiac patient and in many applications better than the 

T1FLS.  Also, with MFs that are intervals, the IT2FLS is able to model uncertainty in predicting shock 

level of a cardiac patient in many applications better than T1FLS which MFs are not represented as 

intervals values. 

6| Conclusion 

This paper investigated the predictive capability of Interval Type-2 Fuzzy Logic System (IT2FLS) 

based on Mamdani fuzzy inference and applied to in monitoring and predicting shock level in cardiac 

patients.  Implementation of conventional Type-1 Fuzzy Logic System (T1FLS) was carried out for 

the purpose of comparison. By the use of IT2FLS, we have been able to predict different shock levels 

for cardiac patients. Specifically, the following conclusions are made:  

 The IT2FLS copes with more information and handle more uncertainties in health data. 

 The IT2FLS performs significantly well compared to TIFLS with model errors of 0.0005 against 0.079. 

 The IT2FLSs with interval MF can reduce the effects of uncertainties in most health applications.  

In the future, we intend to explore Tagaki Sugeno Kang (TSK) fuzzy inference to conduct more 

experiments using the same data sets. Also, we intend to optimize our system using flower pollination 

algorithm for performance improvement. More so, we will apply other fuzzy modeling functions such 

as triangular and trapezoidal functions, respectively. 
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Table 5. Results of shock level actual and predicted for T2FLS and T1FLS. 

 

6.1| Ethical Issues 

Ethical issues came to play in this research as the research involved gathering data from 

cardiovascular patients’ records. However, the research was not involved in the direct collection of 

the data, but a review of patients’ files and medical histories after due permission was granted by the 

responsible authorities. Hence, we discuss the ethical issues under two areas: 

 

S/No. Shock Level- 
Actual 

Shock Level-Predicted 
IT2FLS 

Shock Level-Predicted 
T1FLS 

1. 0.430209738 0.430534538 0.443508938 
2. 0.661076429 0.661401229 0.674375629 

3. 0.600932789 0.601582389 0.614556789 

4. 0.382681769 0.383006569 0.391656169 

5. 0.492674633 0.492999433 0.501649033 

6. 0.284818273 0.285467873 0.289792673 

7. 0.381977912 0.382627512 0.408576312 

8. 0.578692885 0.579342485 0.583667285 

9. 0.463544732 0.463869532 0.481168732 

10. 0.456734044 0.457383644 0.483332444 

11. 0.604593743 0.605243343 0.613892943 

12. 0.464519101 0.464843901 0.473493501 

13. 0.192299351 0.192948951 0.210248151 

14. 0.369657904 0.370307504 0.374632304 

15. 0.28822936 0.28887896 0.30185336 

16. 0.650264118 0.650588918 0.672212918 

17. 0.734445205 0.734770005 0.760718805 

18. 0.186542266 0.187191866 0.204491066 

19. 0.564212161 0.564861761 0.573511361 

20. 0.518631549 0.518956349 0.544905149 

21. 0.408237197 0.408561997 0.421536397 

22. 0.659320718 0.659645518 0.672619918 

23. 0.400810079 0.401134879 0.422758879 

24. 0.403371577 0.404021177 0.408345977 

25. 0.410957191 0.411606791 0.437555591 

26. 0.408079746 0.408729346 0.426028546 

27. 0.332620921 0.333270521 0.359219321 

28. 0.350599807 0.351249407 0.368548607 

29. 0.46014474 0.46079434 0.46944394 

30. 0.296303978 0.296628778 0.309603178 

31. 0.492720862 0.493045662 0.506020062 

32. 0.40598575 0.40631055 0.43225935 
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 Consent form. The consent form through written permission was obtained from the health authority before embarking 

on the research. A sample of the authorization clearance is used by the ethical committee of Federal Medical Centre, 

Yenagoa and University Teaching Hospital, Uyo 

 Data protection. Data protection is ensured by not revealing patients’ personal details such as Name, Address, 

Occupation and many others. Hence, data gathered excluded this information. 

Table 6. Comparison of T1FLS and IT2FLS in shock level prediction. 
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