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Abstract 

1 | Introduction 

It is well recognized that intelligent decision support systems and technologies have been playing 

an important role in improving almost every aspect of human society. Intensive study over the 

past several years has resulted in significant progress in both the theory and applications of 

optimization and decision sciences. 

Optimization and decision-making problems are traditionally handled by either the deterministic 

or the probabilistic approach. When working with complex systems in parallel with classical 

approaches of their modelling, the most important matter is to assume fuzziness ([3], [6], [13], 

[15]-[32], [35]-[43], [49]-[62] and others). All this is connected to the complexity of study of 

complex and vague processes and events in nature and society, which are caused by lack or 
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shortage of objective information and when expert data are essential for construction of credible decisions. 

With the growth of complexity of information our ability to make credible decisions from possible 

alternatives with complex states of nature reduces to some level, below which some dual characteristics 

such as precision and certainty become mutually conflicting ([3], [11], [20]-[22], [36]-[38], [41], [49], [51], 

[54], [55] and others). When working on real, complex decision systems using an exact or some stochastic 

quantitative analysis is often less convenient, concluding that the use of fuzzy methods is necessary, 

because systems approach for development of information structure of investigated decision system [20], 

[36], [37] with combined fuzzy-stochastic uncertainty enables us to construct convenient intelligent 

decision support instruments. Obviously, the source for obtaining combined objective + fuzzy + stochastic 

samplings is the populations of fuzzy-characteristics of expert’s knowledge ([22], [36], [38], [42], [51] and 

others). Our research is concerned with quantitative-information analysis of the complex uncertainty and 

its use for modelling of more precise decisions with minimal decision risks from the point of view of 

systems research. The main objects of our attention are 1) the analysis of Information Structures of expert’s 

knowledge, its uncertainty measure and imprecision variable and 2) the construction of instruments of 

aggregation operators, which condense both characteristics of incomplete information - an uncertainty 

measure and an imprecision variable in the scalar ranking values of possible alternatives in the decision-

making system. The first problem is considered in this paper. The second problem will be presented in the 

Parts II and III of this work. 

Making decisions under uncertainty is a pervasive task faced by many Decision-Making Persons (DMP), 

experts, investigators or others. The main difficulty is that a selection must be made between alternatives 

in which the choice of alternative doesn’t necessarily lead to well determined payoffs (experts’ valuations, 

utilities and so on) to be received as a result of selecting an alternative. In this case DMP is faced with the 

problem of comparing multifaceted objects whose complexity often exceeds his/her ability to compare of 

uncertain alternatives. One approach to addressing this problem is to use valuation functions (or 

aggregation operators). These valuation functions convert the multifaceted uncertain outcome associated 

with an alternative into a single (scalar) value. This value provides a characterization of the DMP or expert 

perception of the worth the possible uncertain alternative being evaluated. The problems of Decision 

Making Under Uncertainty (DMUU) [51] were discussed and investigated by many well-known authors 

([1]-[6], [9], [10], [13], [15]-[18], [23]-[60], [62] and others). In this work our focus is directed on the 

construction of new generalizations of the aggregation Ordered Weighted Averaging (OWA) operator in 

the fuzzy-probabilistic uncertainty environment. 

In Section 2 some preliminary concepts are presented on the OWA operator; on the arithmetic of the 

triangular fuzzy numbers; on some extensions of the OWA operator – POWA and FPOWA operators in 

the probabilistic uncertainty (developed by Merigo [26] and [27]) and their information measures (see 

Section 3). In Section 4 a new conceptual Information Structure (IS) of a General Decision-Making System 

(GDMS) with fuzzy-probabilistic uncertainty is defined. This IS classifying some aggregation operators 

and new generalizations of the OWA operator defined in the parts II and III of this work. 

2|On the OWA Operator and Its Some Fuzzy-Probabilistic 

Generalizations 

In this type of problem, the DMP has a collection  1 2 nD {d ,d , ...,d }  of possible uncertain alternatives from 

which he must select one or some ranking of decisions by some expert’s preference relation values. 

Associated with this problem is a variable of characteristics, activities, symptoms and so on, which acts on 

the decision procedure. This variable is normally called the state of nature, which affects the payoff, utilities, 

valuations and others to the DMP’s preferences or subjective activities. This variable is assumed to take its 

values (states of nature) from some set { , , ..., } 1 2 mS s s s . As a result, the DMP knows that if he selects di 

and the state of nature assumes the value sj then his payoff (valuation, utility and so on) is aij. The objective 

of the decision is to select the “best” alternative, get the biggest payoff (valuation, utility and so on). But 

in DMUU [51] the selection procedure becomes more difficult. In this case each alternative can be seen as 
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corresponding to a row vector of possible payoffs. To make a choice the DMP must compare these 

vectors, a problem which generally doesn’t lead to a compelling solution. Assume di and dk are two 

alternatives such that for all  ij kjj , j 1,2, ...,m  a a (Table 1). In this case there is no reason to select dk. 

In this situation we shall say di dominates
k i kd ( d d )f . Furthermore, if there exists one alternative that 

dominates all the alternatives then it will be optimal solution and as a result, we call this the Pareto 

optimal. Faced with the general difficulty of comparing vector payoffs we must provide some means of 

comparing these vectors. Our focus in this work is on the construction of valuation function 

(aggregation operator) F that can take a collection of m values and convert it into a single value,  

m 1F : R R .  

Once we apply this function to each of the alternatives, we select the alternative with the largest scalar 

value. The construction of F involves considerations of two aspects. The first being the satisfaction of 

some rational, objective properties naturally required of any function used to convert (aggregate) a vector 

of payoffs (valuations, utilities and so on) into an equivalent scalar value. The second aspect being the 

inclusion of characteristics particular to the DMP’s subjective properties or preferences, dependences 

with respect to risks and other main external factors. 

Table 1. Decision matrix. 

 

 

 

 

 

First, we shall consider the objective properties required of the valuation function (aggregation operator) 

F [51].  

1) The first property is the satisfaction of Pareto optimality. To insure this, we require that if for 

j=1,2,…,m, then 

An aggregation operator satisfying this condition is said to be monotonic. 

2) A second condition is that the value of an alternative should be bounded by its best payoffs 

(valuations, utilities) and worst possible one.  i 1, 2, ...,n.  

This condition is said to be bounded. 

3) Remark: if ij ia a for all j , then from Eq. (2) 

min
 

ij ij
j 1,m j 1,m
min{a } max{a }and i1 i2 m iF(a ,a ,...,a ) a .  

 

S

D
 1s  

2s  … 
Ks  … 

ms  

1d  
11a  

12a  … 
1ka  … 

1ma  

2d  
21a  

22a  … 
2ka  … 

2ma  

… … … … … … … 

3d  
i1a  

i2a  … 
ika  … 

ima  

… … … … … …  

nd  
n1a  

n2a  … 
nka  … 

nma  

i1 i2 im k1 k2 kmF(a ,a ,...,a ) F(a ,a ,...,a ).  (1) 

ij i1 i 2 im ijmin{a } F(a ,a ,..., a ) max{a } 
ij i1 i2 im ij

j 1,m j 1,m
min{a } F(a ,a ,....,a ) max{a }
 

   (2) 
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This condition is said to be idempotent. 

4) The final objective condition is that the indexing of the states of nature shouldn’t affect the answer: 

 

where permutatio n(.)  is some permutation of the set 
i1 i 2 im{a ,a , ...,a } . An aggregation function satisfying this 

is said to be symmetric (or commutative). 

Finally, we have required that our aggregation function satisfy four conditions: monotonicity, boundedness, 

idempotency and symmetricity. Such functions are called mean or averaging operators [51]. 

In determining which of the many possible aggregation operators to select as our valuation function, we 

need some guidance from the DMP. The choice of a valuation function, from among the aggregation 

operators is essentially a “subjective” act reflecting the preferences of the DMP for one vector of payoffs 

over another. What is needed are tools and procedure to enable a DMP to reflect their subjective 

preferences into valuations. There are important problems in expert knowledge engineering for which we 

often use such intelligent technologies as neural networks, machine learning, fuzzy logic control systems, 

knowledge representations and others.  

These problems may be solved by introducing information measures of aggregation operators ([1], [2], [4], 

[12], [13], [15], [16], [26]-[33], [35], [38], [40]-[42], [45]-[60], [62] and others). In this paper we will present 

new extensions of information measures of operators constructed bellow. 

As an example, we present some mean aggregation operators. Assume we have an m -tuple of values

1 2 m{a ,a , ...,a } .  

Then 1 2 m i
i 1m

F( a ,a , ..., a ) min{a }


  is one mean aggregation operator. The use of the operator Min corresponds 

to a pessimistic attitude, one in which the DMP assumes the worst thing will happen. Another example of 

a mean aggregation operator is 1 2 m iF( a ,a , ...,a ) Max{a }.  

Here we have very optimistic valuations. Another example is the simple average: 
m

1 2 m i

i 1

1
Mean( a ,a , ..., a ) a .

m 

    

In [58] Yager introduced a class of mean operators called OWA operator. 

 Definition 1. [57]. An OWA operator of dimension m is mapping m 1OWA : R R that has an associated 

weighting vector W of dimension m with 
jw [ 0;1] and 

m

j

j 1

w 1,


  such that  

where bj is the jth largest of the i{a },  i=1,2,...,m.  

Note that different properties could be studied such as the distinction between descending and ascending 

orders, different measures for characterizing the weighting vector and different families of the OWA 

operator ([1], [4], [26]-[33], [45], [47]-[52], [56], [57], [59], [60], [62] and others). 

The OWA operator and its modifications are among the most known mean aggregation operators to the 

construction of DMUU valuation functions. These aggregations are generalizations of known instrument 

i1 i2 im i1 i2 imF(a ,a ,...,a ) F(Permutation(a ,a ,...,a )),  (3) 




m

1 m j j

j 1

OWA(a ,..., a ) w b ,          (4) 
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as Choquet Integral ([5], [7], [23], [38], [41], [51], [53], [54], [57] and others), Sugeno integral ([14], [17], 

[24], [25], [36], [42], [44] and others) or induced mean functions ([2], [12], [60], [62] and others). 

The Fuzzy Numbers (FN) have been studied by many authors ([11] and [19] and others). It can represent 

in a more complete way as an imprecision variable of the incomplete information because it can consider 

the maximum and minimum and the possibility that the interval values may occur. 

Definition 2. [19]. 1a( t ) : R [ 0;1]%  is called the FN which can be considered as a generalization of 

the interval number: 

where 1

1 2 2 3a a' a'' a R .        

In the following, we are going to review the triangular FN (TFN) [20] arithmetic operation as follows 

(in Eq. (5) 2 2a' a'' ). Let a%  and b% be two TFNs, where 1 2 3a ( a ,a ,a )%  and 1 2 3b ( b ,b ,b )% . Then  

The set of all TFNs is denoted by ψ and positive TFNs ( ia 0 ) by ψ . 

Note that other operations and ranking methods could be studied ([19] and others). 

Now we consider some extensions of the OWA operator, mainly developed by [26], [27], and [29], 

because our future investigations concern with extensions of Merigo’s aggregation operators constructed 

on the basis of the OWA operator. 

Definition 3. [29]. Let ψ  be the set of TFNs. A fuzzy OWA operator - FOWA of dimension m is a 

mapping MFOWA : ψ ψ  that has an associated weighting vector w of dimension m with 
jw [ 0,1]  , 

m

j

j 1

w 1


  and 

 

 

 

 

 

2 2

1
1 2

2 1

3
2 3

3 2

1 if t a , a

t a
if t a , a

a a
a t

a t
if t a , a

a a

0 otherwise

  


 
  

 
 

 



%  (5) 

1:  %
1 1 2 2 3 3a b (a b ,  a b ,  a b ).    %     

2:   %
1 3 2 2 3 1a b (a b ,  a b ,  a b ).    %  1 3 2 2 3 1a b a b , a b , a b    %% . 

3:  1 2 3a k (ka ,  ka ,  ka ),  k>0. %
   

4:   %
i

k k k k

1 2 3a (a ,a ,a ),  k>0, a 0.  

5:  %
1 1 2 2 3 3 i 1a.b (a b ,  a b ,a b ),  a 0,  b 0.  %

      
 

6:  %
1

i

3 2 1

1 1 1
b { , , },  b 0.

b b b



 

                     

 

     7:  % % %1 3 1 3
2 2 2 2

a a b b
a b if a b  and if a b  than a b if  otherwise a b.

2 2

 
     % % %

2 2a b if a b %%  and 2 2if a b then a b  %% 1 3 1 3a a b b
if otherwise a b

2 2

 
  %% . 

(6) 
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where jb%  is the jth largest of the m

i i 1{a } 
% , and 

ia ψ,  i=1,2,...,m.  

The FOWA operator is an extension of the OWA operator that uses imprecision information in the 

arguments represented in the form of TFNs. The reason for using this aggregation operator is that 

sometimes the available information presented by the DMP and formalized in payoffs (valuations, utilities 

and others) can’t be assessed with exact numbers and it is necessary to use other techniques such as TFNs. 

So, in this aggregation incomplete information is presented by imprecision variable of expert’s reflections 

and formalized in TFNs. Sometimes the available information presented by the DMP (or expert) also has 

an uncertain character, which is presented by the probability distribution on the states of nature 

consequents on the payoffs of the DMP. 

The fuzzy-probability aggregations based on the OWA operator was constructed by Merigo and others. 

One of the variants we present here: 

where 
jb  is the jth largest of the 

i{a },  i=1,2,...,m; ; each argument 
ia has an associated probability 

ip  with 

m

i

i 1

p 1


 , 
i0 p 1  , j j jP βw (1 β ) p



    with β [ 0,1]  and 
jp  is the probability 

ip  ordered according 

to 
jb ,  that is according  to the jth largest of the 

ia . 

Note that if β 0 , we get the usual probabilistic mean aggregation (mathematical expectation - 
pE  with 

respect to probability distribution m

i i 1{ p } 
 ), and if β 1 , we get the OWA operator. Equivalent 

representation of Eq. (8) may be defined as: 

We often use probabilistic information in the decision-making systems and consequently in their 

aggregation operators. Many fuzzy-probabilistic aggregations have been researched in OWA and other 

operators ([5], [17], [18], [26]-[32], [35]-[42], [49]-[53], [59], [60], [62] and others). In the following we 

present one of them defined in [27]: 

Definition 4. [27]. Let ψ  be the set of TFNs. A fuzzy-probabilistic OWA operator - FPOWA of 

dimension m  is a mapping mFPOWA : ψ ψ  that associated a weighting vector w of dimension m  such 

that jw [ 0,1] ,



m

j
j 1

w 1 , according to the following formula: 

where jb%  is the  jth largest of the m

i i 1{a } 
 are TFNs and each one has an associated probability iip P( a a ) % %

, with 
m

j

j 1

p 1


 , 
j0 p 1  , j j jp βw (1 β ) p '



   , β [ 0,1]  and 
jp ' is the probability ordered according to 

j jjb ( p' P( a b )) % % %  that is according to the  jth largest of the m
i i 1{a } 

% .  




m

1 2 m jj

j 1

FOWA(a ,a ,...a ) w b .% % % %      (7) 

    
m

1 2 m j j

j 1

POWA(a ,a ,..., a ) p b .




  (8) 

   





 

   

 





n

1 2 m j j

j 1

m

i i 1 2 m

i 1

P 1 2 m

POWA(a ,a ,...a ) β w b

(1 β) p a β.OWA(a ,a ,..., a )

(1 β).E (a ,a ,..., a ).

  
(9) 

    


 %% % %
n

1 2 m j j
j 1

ˆFPOWA(a , a ,..., a ) p b .  (10) 
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Analogously to Eq. (9) we present the equivalent form of the FPOWA operator as a weighted sum of 

the OWA operator and the mathematical expectation -
pE : 

In [27] the Semi-boundary condition of the aggregation operator (11) was proved. Semi-boundary condition 

of some operator F  if defined as: 

So, the FPOWA operator is monotonic, bounded, idempotent, symmetric and semi-bounded. 

3|on the Information Measures of the POWA and FPOWA 

Operators 

As preliminary concepts of our investigation we present four probabilistic information measures of the 

POWA and FPOWA operators defined in [27] following similar methodology developed for the OWA 

operator ([1], [2], [3], [6], [47], [48], [50], [52] and others): 

 The Orness parameter classifies the POWA and FPOWA operators in regard to their location between 

and and or: 

 The Entropy (dispersion) measures the amount of information being used in the aggregation: 

 

 The divergence of weighted vector w measures the divergence of the weights against the degree of 

Orness: 

    

 

 

 





 

    

  





% % %

% % % %

% % %

n ~

1 2 m j j

j 1

m

i i 1 2 m

i 1

p 1 2 m

FPOWA a , a , ..., a β w b

(1 β) p a β OWA a , a , ..., a

(1 β) E a , a , ..., a .

 
(11) 

    

 

 

 

    

   

  

% % % %

% % % %

% % %

i p 1 2 m
i

1 2 m i
i

p 1 2 m

β min{a } (1 β) E a , a , ..., a

F a , a , ..., a β max{a }

(1 β) E a , a , ..., a .

 (12) 

   

  







 
  

 

 
   

 





1 2,..., m

m

j

j 1

'
m

j

j 1

α(p , p p )

m j
β w

m 1

m j
(1 β) p .

m 1

  
(13) 

   

  

 



  
    

  
 

1 m2

m m

j j i i

j 1 i 1

H(p , p , ..., p )

β w ln w (1 β) p ln p .
  (14) 



137 

 

N
e
w

 v
ie

w
 o

f 
fu

z
z
y
 a

g
g

re
g

a
ti

o
n

s
p

a
rt

 I
: 

g
e
n

e
ra

l 
in

fo
rm

a
ti

o
n

 s
tr

u
c
tu

re
 f

o
r 

d
e
c
is

io
n

-m
a
k

in
g

 m
o

d
e
ls

 

P
a
rt

 I
: 

G
e
n

e
ra

l 
In

fo
rm

a
ti

o
n

 S
tr

u
c
tu

re
 f

o
r 

D
e
c
is

io
n

-M
a
k

in
g

 M
o

d
e
ls

 

 

where α( W )  is an Orness measure of the OWA or FOWA operators ( β 1) : 

and α( p )  is an Orness measure of the fuzzy-probabilistic aggregation ( β 0 ) : 

 

 

 The balance parameter measures the balance of the weights against the Orness or the andness 

 

 

 

 

4|General Decision-Making System (GDMS) and Its Information 

Structure (IS) 

In the parts II and III of this work we will focus on the construction of new generalizations of the POWA 

and FPOWA fuzzy-probabilistic aggregation operators induced by the ME (Choquet Integral [5], [7], [23], 

[38], [41], [51], [53], [54], [57] and others), or the FEV (Sugeno integral [14], [17], [24], [25], [36], [42], [44] 

and others) with respect to different monotone measures (fuzzy measure [8], [14], [21], [22], [36]-[38], [43], 

[44], [53]-[55], [61] and others). When trying to functionally describe insufficient expert data, in many real 

situations the property of additivity remains unrevealed for a measurable representation of a set and this 

creates an additional restriction. Hence, to study such data, it is better to use monotone measures 

(estimators) instead of additive ones. So, we will construct new generalizations of the POWA and FPOWA 

operators with respect to different monotone measures (instead of the probability measure) and different 

mean operators. 

We introduce the definition of a monotone measure (fuzzy measure) [44] adapted to the case of a finite 

referential. 

Definition 5. Let  1 2 mS {s ,s , ..., s }be a finite set and g be a set function sg : 2 [ 0,1] . We say g  is a 

monotone measure on S if it satisfies 

 

   

( i ) g 0; g( S ) 1;

( ii ) A, B S, if A B, then g A g B .

  

   
 

A monotone measure is a normalized and monotone set function. It can be considered as an extension of 

the probability concept, where additivity is replaced by the weaker condition of monotonicity. Non-

additive but monotone measures were first used in the fuzzy analysis in the 1980s [44] and are well 
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investigated ([8], [14], [21], [22], [36]-[38], [43], [44], [53]-[55], [61] and others). Therefore, in order to 

classify OWA-type aggregation operators with probabilistic (POWA, FPOWA operators and others) or 

fuzzy uncertainty (defined in parts II and III) it is necessary to define an information structure of these 

operators. The different cases of incompleteness (uncertainty measure + imprecision variable) and 

objectivity (objective weighted function) will be considered in our new aggregation operators. Therefore, 

from the point of view of systems approach it is necessary to describe and formally present the scheme 

of GDMS in uncertain – objective environment. GDMS gives us the possibility to identify the different 

cases of levels of incompleteness and objectivity of available information which in whole defines the 

aggregation procedure. 

Now we define the general decision-making system and its information structure which will be 

considered in the aggregation problems of parts II and III. 

Definition 6. The GDMS that will combine decision-making technologies and methods of construction 

of decision functions (aggregation operators) may be presented by the following 8-tuple 

where
1 2 nD {d ,d , ..., d }  is a set of all possible alternatives (decisions, diagnosis and so on) that are made 

by a Decision-Making Person (DMP). 

1 2 m}S {s , s , ..., s  is a set of systems states of nature (actions, activities, factors, symptoms and so on) that 

are act on the possible alternatives in the decision procedure? 

a - is an imprecision on precision variable of payoffs (utilities, valuations, some degrees of satisfaction 

to a fuzzy set, prices and so on), which will by defined by DMP’s subjective properties of preferences, 

dependences with respect to risks and other external factors. As a result, variable a  constructs some 

decision matrix (binary relation) on D S . 

g  is an uncertainty measure on s s2 ( g : 2 [ 0,1]).  In our case it may be some monotone measure. W  

is an objective weighted function (or vector) on the states of nature - S  

I  is the Information Structure on the data of states of nature. Cases of different levels of information 

incompleteness (uncertainty measure + imprecision variable) and objectivity (objective weighted 

function) on the states of nature will be considered as:  

I = Information Structure (on S): =imprecision (on S) + uncertainty (on S) + objectivity (on S), where: 

 Imprecision on S may be presented by some inexact (stochastic, fuzzy, fuzzy-stochastic or other) variable. 

 Uncertainty on S may be presented by the levels of belief, credibility, probability, possibility and other 

monotone measures on s2 . These levels identify the possibility of occurrence of some groups (events, 

focal elements and others) on the states of nature. 

 Objectivity on S is defined by the objective importance of states of nature in the procedure of decision 

making. As usual the objective function is presented by a weighted function (vector)  
0W : S R .  

Now we may classify cases of the Information Structure – I: 

I1: The case:  

 Imprecision is presented by some exact variable   1a : S R .  

 The measure of uncertainty does not exist.  

D,  S,  a,  g,  W, I,  F,  Im ,  (19) 
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 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  

Examples: OWA and MEAN operators belong to I1. 

I2: The case:  

  Imprecision is presented by some fuzzy variable:   % %a ψ; a : S [ 0,1].  

 The measure of uncertainty does not exist. 

 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  

Examples: FOWA operator belongs to I2. 

I3: The case:  

 Imprecision is presented by some stochastic variable:   1a : S R .  

  The measure of uncertainty is presented by concerning probability distribution on S ( SP : 2 [ 0,1] )  

i 1p P{s }, i 1, 2, ..., m.   

 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  

Example: POWA operator belongs to I3. 

I4: The case:  

 Imprecision is presented by the some fuzzy-stochastic variable: 

  % %a ψ; a : S [ 0,1].  

 Uncertainty measure is presented by the concerning probability distribution on S ( sP : 2 [ 0,1] ) 

i ip P{s }, i 1, 2, ..., m.   

 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  

Example: FPOWA operator belongs to I4. 

I5: The case:  

 Imprecision is presented by some exact variable:   1a : S R .  

 The measure of uncertainty defined by some monotone measure (possibility measure [11], [14], [21], [22], 

λ -additive measure ([44] and so on)  sg : 2 [ 0,1].  

 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  

Examples: SEV (Yager [51]) operator belongs to I5; SEV-POWA, AsPOWA, SA-POWA, SA-AsPOWA 

(will be defined in the part II of this work) operators belong to I5. 

I6: The case:  

 Imprecision is presented by some fuzzy variable:   % %a ψ; a : S [ 0,1].  

 The measure of uncertainty is presented by some monotone measure sg : 2 [ 0,1].  

 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  



 

 

140 

S
ir

b
il

a
d

z
e
 |

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 2

(2
) 

(2
0
2
1)

 1
3
0
-1

4
3

 

 

Examples. SEV-FOWA, AsFPOWA, and SA-AsFPOWA operators (will be defined in the part III of 

this work) belong to I6. 

Note that some other cases may be considered in the Information Structure – I (for an example, the 

cases when the weights in structure are not present and others). 

7) F – is an aggregation (in our case OWA-type) operator for ranking of possible alternatives by its 

outcome values calculated by the F . Following the Information Structure  I  on the states of nature 

for all possible alternatives  
d D, F( d )

 is a ranking value. In general, 
F( d )

 is defined as converted 

(or condensed) information of imprecision values plus uncertainty measure and objective weights.  

F( d ) aggregation( a( d ),  g, w).                      

We say – that alternative 
jd  is more prefered (dominated) than  

 
kd , j kd d ,f  

j kif  F(d ) F( d ),   

and 
jd  is equivalent to 

kd , 
j kd d , if  

j kF( d ) F( d ) . So, the aggregation operator F  induces some 

preference binary relation  f  on the all-possible alternatives - D . 

8) Im is a set of information measures of an aggregation operator F : 

In order to classify OWA-type aggregation operators {F}  it is necessary to investigate information 

measures (Eq.(20)). This analysis also gives us some information on the inherent subjectivity of the 

choice of the decision aggregation operator by DMP [6]. 

5|Conclusion 

This paper has a conceptual and introductory character. The main preliminary concepts were presented. 

Definitions of the OWA operator and the POWA and FPOWA operators as some fuzzy-probabilistic 

extensions of the OWA operator were introduced. Their information measures as - Orness, Enropy, 

Divergence and Balance were considered. From the point of view of systems approach the scheme of 

GDMS in uncertain – objective environment and its Information Structure was described and formally 

presented. New GDMS gives us the possibility to identify the different cases of levels of incompleteness 

and objectivity of available information which in whole defines the aggregation procedure. The main 

results on the constructions of new generalizations of the POWA and FPOWA operators will be 

presented in Parts II and III of this work. 
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