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Abstract 

 

1 | Introduction 

Transportation problem is an important network structured linear programming problem that 

arises in several contexts and has deservedly received a great deal of attention in the literature. 

The central concept in this problem is to find the least total transportation cost of a commodity 

in order to satisfy demands at destinations using available supplies at origins. Transportation 

problem can be used for a wide variety of situations such as scheduling, production, investment, 

plant location, inventory control, employment scheduling and many others.  
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Transportation Problem (TP) is an important network structured linear programming problem that arises in several 

contexts and has deservedly received a great deal of attention in the literature. The central concept in this problem is to 

find the least total transportation cost of a commodity in order to satisfy demands at destinations using available supplies 

at origins in a crisp environment. In real life situations, the decision maker may not be sure about the precise values of 

the coefficients belonging to the transportation problem. The aim of this paper is to introduce a formulation of TP 

involving Triangular fuzzy numbers for the transportation costs and values of supplies and demands. We propose a two-

step method for solving fuzzy transportation problem where all of the parameters are represented by non-negative 

triangular fuzzy numbers i.e., an Interval Transportation Problems (TPIn) and a Classical Transport Problem (TP). Since 

the proposed approach is based on classical approach it is very easy to understand and to apply on real life transportation 

problems for the decision makers. To illustrate the proposed approach two application examples are solved. The results 

show that the proposed method is simpler and computationally more efficient than existing methods in the literature. 
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In general, transportation problems are solved with the assumptions that the transportation costs 

and values of supplies and demands are specified in a precise way i.e., in crisp environment. However, 

in many cases the decision maker has no crisp information about the coefficients belonging to the 

transportation problem. If the nature of the information is vague, that is, if it has some lack of 

precision, the corresponding coefficients or elements defining the problem can be formulated by 

means of fuzzy sets, and thus fuzzy transportation problems arise. Several researchers have carried 

out investigations on fuzzy transportation problem. Zimmermann [4] developed Zimmermann's 

fuzzy linear programming into several fuzzy optimization methods for solving the transportation 

problems. ÓhÉigeartaigh [5] proposed an algorithm for solving transportation problems where the 

supplies and demands are fuzzy sets with linear or triangular membership functions. Chanas et al. [6] 

investigated the transportation problem with fuzzy supplies and demands and solved them via the 

parametric programming technique. Their method provided solution which simultaneously satisfies 

the constraints and the goal to a maximal degree.  

In addition, Chanas et al. [7] formulated the classical, interval and fuzzy transportation problem and 

discussed the methods for solution for the fuzzy transportation problem. Chanas and Kuchta [8] 

discussed the type of transportation problems with fuzzy cost coefficients and converted the 

problem into a bicriterial transportation problem with crisp objective function. Their method only 

gives crisp solutions based on efficient solutions of the converted problems. Jimenez and Verdegay 

[9] and [10] investigated the fuzzy solid transportation problem in which supplies, demands and 

conveyance capacities are represented by trapezoidal fuzzy numbers and applied a parametric 

approach for finding the fuzzy solution. Liu and Kao [11] developed a procedure, based on extension 

principle to derive the fuzzy objective value of fuzzy transportation problem, in that the cost 

coefficients and the supply and demand quantities are fuzzy numbers.  

Gani and Razak [12] presented a two-stage cost minimizing fuzzy transportation problem in which 

supplies and demands are as trapezoidal fuzzy numbers and used a parametric approach for finding 

a fuzzy solution with the aim of minimizing the sum of the transportation costs in the two stages. Li 

et al. [13] proposed a new method based on goal programming for solving fuzzy transportation 

problem with fuzzy costs. Lin [14] used genetic algorithm for solving transportation problems with 

fuzzy coefficients. Dinagar and Palanivel [15] investigated fuzzy transportation problem, with the 

help of trapezoidal fuzzy numbers and applied fuzzy modified distribution method to obtain the 

optimal solution in terms of fuzzy numbers. Pandian and Natarajan [16] introduced a new algorithm 

namely, fuzzy zero-point method for finding fuzzy optimal solution for such fuzzy transportation 

problem in which the transportation cost, supply and demand are represented by trapezoidal fuzzy 

numbers. Kumar and Kaur [17] proposed a new method based on fuzzy linear programming 

problem for finding the optimal solution of fuzzy transportation problem.  

Gupta et al. [18] proposed a new method named as Mehar's method, to find the exact fuzzy optimal 

solution of fully fuzzy multi-objective transportation problems. Ebrahimnejad [19] applied a fuzzy 

bounded dual algorithm for solving bounded transportation problems with fuzzy supplies and 

demands. Shanmugasundari and Ganesan [20] developed the fuzzy version of Vogel's and MODI 

methods for obtaining the fuzzy initial basic feasible solution and fuzzy optimal feasible solution, 

respectively, without converting them into classical transportation problem. Also, Chandran and 

Kandaswamy [21] proposed an algorithm to find an optimal solution of a fuzzy transportation 

problem, where supply, demand and cost coefficients all are fuzzy numbers. Their algorithm 

provides decision maker with an effective solution in comparison to existing methods. Ebrahimnejad 

[22] using an example showed that their method will not always lead to a fuzzy optimal solution. 

Moreover, Kumar and Kaur [23] pointed out the limitations and shortcomings of the existing 

methods for solving fuzzy solid transportation problem and to overcome these limitations and 
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shortcomings proposed a new method to find the fuzzy optimal solution of unbalanced fuzzy solid 

transportation problems.  

In addition, Ebrahimnejad [24] proposed a two-step method for solving fuzzy transportation problem 

where all of the parameters are represented by non-negative triangular fuzzy numbers. Some 

researchers applied generalized fuzzy numbers for solving transportation problems. Kumar and Kaur 

[25] proposed a new method based on ranking function for solving fuzzy transportation problem by 

assuming that transportation cost, supply and demand of the commodity are represented by 

generalized trapezoidal fuzzy numbers. After that, Kaur and Kumar [26] introduced a similar algorithm 

for solving a special type of fuzzy transportation problem by assuming that a decision maker is 

uncertain about the precise values of transportation cost only but there is no uncertainty about the 

supply and demand of the product. Ebrahimnejad [27] demonstrated that once the ranking function 

is chosen, the fuzzy transportation problem introduced by Kaur and Kumar [26] is converted into 

crisp one, which is easily solved by the standard transportation algorithms.

The contributions of the present study are summarized as follows: (1) in the TPTri under 

consideration, all of the parameters, such as the transportation costs, supplies and demands are 

considered as fuzzy numbers, (2) according to the proposed approach, the TPTri is converted into an 

TPIn and a TP. The integration of the optimal solution of the four sub-problems provides the optimal 

solution of the TPTri, (3) in contrast to most existing approaches, which provide a precise solution, 

the proposed method provides a fuzzy optimal solution, (4) In contrast to existing methods that 

include negative parts in the obtained fuzzy optimal solution and fuzzy optimal cost, the proposed 

method provides a fuzzy optimal solution and optimal cost, (5) similarly, to the competing methods 

in the literature, the proposed method is applicable for all types of triangular fuzzy numbers. and (6) 

the complexity of computation is greatly reduced compared with commonly used existing methods in 

the literature. 

The rest of this paper is organized as follows. In Section 2, we recall the definitions of interval number 

linear programming, interval numbers and the existing method for solving linear programming 

problem involving interval numbers. In Section 3, a new method is proposed for obtaining the fuzzy 

optimal solution of the TPTri. The advantages of the proposed method are discussed in Section 4. 

Two application examples are provided to illustrate the effectiveness of the proposed method in 

Section 5. Finally, concluding remarks are presented in Section 6. 

2| Materials and Methods 

In this section, some basic definitions, arithmetic operations for closed Intervals numbers and of linear 

programming problems involving interval numbers are presented [28]. 

2.1| A New Interval Arithmetic 

In this section, some arithmetic operations for two intervals are presented [28]. 

Let ℜ = {𝑎̅ = [𝑎1, 𝑎3]: 𝑎1 ≤ 𝑎3 𝑤𝑖𝑡ℎ 𝑎1, 𝑎3 ∈ ℝ} be the set of all proper intervals and ℜ̅ = {𝑎̅ = [𝑎1, 𝑎3]: 𝑎1 >

𝑎3 with 𝑎1, 𝑎3 ∈ ℝ} be the set of all improper intervals on the real line ℝ. We shall use the terms 

“interval” and “interval number” interchangeably. The mid-point and width (or half-width) of an 

interval number are defined as the midpoint and width (or half-width) of an interval number 𝑎̅ = [𝑎1, 𝑎3] 

are defined as 𝑚(𝑎)̅ = (
𝑎3+𝑎1

2
) and 𝑤(𝑎)̅ = (

𝑎3−𝑎1

2
). The interval number 𝑎̅ can also be expressed in terms 

of its midpoint and width as 𝑎̅ = [𝑎1, 𝑎3] = 〈𝑚(𝑎)̅, 𝑤(𝑎)̅〉 = 〈
𝑎3+𝑎1

2
,
𝑎3−𝑎1

2
〉. 
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For any two intervals 𝑎̅ = [𝑎1, 𝑎3] = 〈𝑚(𝑎)̅,𝑤(𝑎)̅〉 and 𝑏̅ = [𝑏1, 𝑏3] = 〈𝑚(𝑏̅), 𝑤(𝑏̅)〉, the arithmetic 

operations on 𝑎̅ and 𝑏̅ are defined as: 

Addition:  𝑎̅ + 𝑏̅ = 〈𝑚(𝑎)̅ + 𝑚(𝑏̅),𝑤(𝑎)̅ + 𝑤(𝑏̅)〉; 

Soustraction : 𝑎̅ − 𝑏̅ = 〈𝑚(𝑎)̅ − 𝑚(𝑏̅), 𝑤(𝑎)̅ + 𝑤(𝑏̅)〉,  αa̅ = {
〈αm(a̅),αw(a̅)〉 if α ≥ 0
〈αm(a̅),−αw(a̅)〉 if α < 0

; 

Multiplication :  𝑎̅ × 𝑏̅ =

{ 
  
  
  
  
  
 
〈𝑚(𝑎)̅𝑚(𝑏̅) + 𝑤(𝑎)̅𝑤(𝑏̅),𝑚(𝑎)̅𝑤(𝑏̅) + 𝑚(𝑏̅)𝑤(𝑎)̅ 〉 𝑖𝑓 𝑎1 ≥ 0, 𝑏1 ≥ 0 

〈𝑚(𝑎)̅𝑚(𝑏̅) + 𝑚(𝑎)̅𝑤(𝑏̅),𝑚(𝑏̅)𝑤(𝑎)̅ + 𝑤(𝑏̅)𝑤(𝑎)̅〉 𝑖𝑓 𝑎1 < 0, 𝑏1 ≥ 0 

〈𝑚(𝑎)̅𝑚(𝑏̅) − 𝑤(𝑎)̅𝑤(𝑏̅),𝑚(𝑏̅)𝑤(𝑎)̅ − 𝑚(𝑎)̅𝑤(𝑏̅)〉 𝑖𝑓𝑎3 < 0, 𝑏1 ≥ 0

.                                               

2.2| Formulation of a Linear Programming Problem Involving Interval Numbers 

(LPIn) 

We consider the Linear Programming Problems involving Interval numbers (LPIn) as follows [28], 

  
{ 
  
  
  
 
Max Z̅(x̅) ≈ ∑ c̅jx̅ j

n
j=1

Subject to the constraints
∑ a̅ijx̅ j ≼ b̅i
n
j=1

.            

For all the rest of this paper, we will consider the following notations:  

x̅ = [x̅ j]
n×1
= [[x j
1, x j
3]]
n×1

= [〈m(x̅ j),w(x̅ j)〉]
n×1

, 

c̅ = [c̅j]
1×n
= [[cj
1, cj
3]]
1×n

= [〈m(c̅j),w(c̅j)〉]
1×n

 , 

b̅ = [b̅i]
m×1
= [[bi
1, bi
3]]
m×1

= [〈m(b̅i),w(b̅i)〉]
m×1

 and 

A̅ = [a̅ij]
m×n
= [[aij
1, aij
3]]
m×n

= [〈m(a̅ij),w(a̅ij)〉]
m×n

  . 

For all the rest of this paper, we will consider the following LPIn [28], 

{ 
  
  
  
  
  
  
  
 
Min/Max Z̅(x̅1, … , x̅n) ≈ ∑ [cj

1, cj
3][x j
1, x j
3]n

j=1

Subject to the constraints

∑ [aij
1, aij
3]n

j=1  [x j
1, x j
3] (≼
≽
) [bi
1, bi
3]

1 ≤ j ≤ n and  1 ≤ i ≤ m

,                        
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 LPIn is equivalent to 

{ 
  
  
  
  
  
  
  
 
Min/Max Z̅(x̅1, … , x̅n) ≈ ∑ 〈m(c̅j),w(c̅ j)〉〈m(x̅ j),w(x̅ j)〉

n
j=1

Subject to the constraints

∑ 〈m(a̅ij),w(a̅ij)〉
n
j=1  〈m(x̅ j),w(x̅ j)〉 (

≼
≽
) 〈m(b̅i),w(b̅i)〉

1 ≤ j ≤ n and  1 ≤ i ≤ m

.  

3| Main Results 

In this section, we will describe our method of solving. 

3.1| A New Interval Arithmetic for Triangular Fuzzy Numbers via Intervals 

Numbers 

The aim of this section is to present some notations, notions and results which are of useful in our 

further consideration. 

A number 𝑎̃ = (𝑎1, 𝑎2, 𝑎3) (where 𝑎1 ≤  𝑎2 ≤ 𝑎3) is said to be a triangular fuzzy number if its membership 

function is given by [1]-[3]: 

 μã(x) =
{ 
  
  
  
 
x−a1

a2−a1
, a1 ≤ x ≤ a2 

x−a3

a2−a3
, a2 ≤ x ≤ a3 

. 

Assume that 𝑎̃ = (𝑎1, 𝑎2, 𝑎3) = (𝑎2|𝑎)̅ = (𝑎2|[𝑎1, 𝑎3] = 〈
𝑎3+𝑎1

2
,
𝑎3−𝑎1

2
〉)  and  𝑏̃ = (𝑏1, 𝑏2, 𝑏3) = (𝑏2|𝑏̅) =

(𝑏2|[𝑏1, 𝑏3] = 〈
𝑏3+𝑏1

2
,
𝑏3−𝑏1

2
〉) are two triangular fuzzy numbers. For any two triangular fuzzy numbers 𝑎̃ =

(𝑎2|𝑎̅) and 𝑏̃ = (𝑏2|𝑏̅), the arithmetic operations on 𝑎̃ and 𝑏̃ are defined as: 

Addition:  𝑎̃ + 𝑏̃ = (𝑎2|[𝑎1, 𝑎3]) + (𝑏2|[𝑏1, 𝑏3]) = (𝑎2 + 𝑏2|[𝑎1, 𝑎3] + [𝑏1, 𝑏3]); 

Soustraction: 𝑎̃ − 𝑏̃ = (𝑎2|[𝑎1, 𝑎3]) − (𝑏2|[𝑏1, 𝑏3]) = (𝑎2 − 𝑏2|[𝑎1, 𝑎3] − [𝑏1, 𝑏3]); . 

Multiplication: 𝑎𝑏̃̃ = (𝑎2|[𝑎1, 𝑎3])(𝑏2|[𝑏1, 𝑏3]) = (𝑎2𝑏2|[𝑎1, 𝑎3][𝑏1, 𝑏3]). 

For all the rest of this paper, we will consider the following notations:  

Assume that 𝑐𝑖̃𝑗 = (𝑐𝑖𝑗
1 , 𝑐𝑖𝑗
2 , 𝑐𝑖𝑗
3),   𝑥̃𝑗 = (𝑥𝑗

2|[𝑥𝑗
1, 𝑥𝑗
3]) = (𝑥𝑖𝑗

1 , 𝑥𝑖𝑗
2 , 𝑥𝑖𝑗
3), 𝑏̃𝑗 = (𝑏𝑗

2|[𝑏𝑗
1, 𝑏𝑗
3]) = (𝑏𝑗

1, 𝑏𝑗
2, 𝑏𝑗
3) and 𝑎𝑖̃ =

(ai
2|[ai
1, ai
3]) = (𝑎𝑖

1, 𝑎𝑖
2, 𝑎𝑖
3)  are triangular fuzzy numbers with 𝑥𝑖𝑗

1 , 𝑥𝑖𝑗
3 , 𝑐𝑖𝑗
1 , 𝑐𝑖𝑗
3 , 𝑏𝑗
1, 𝑏𝑗
3, 𝑎𝑖
1 and 𝑎𝑖

3  are real 

numbers (ℝ). 
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3.2| Formulation of a Transportation Problems Involving Interval Numbers 

(TPIn) 

We consider the TPIn as follows [28]: 

{ 
  
  
 
  
  
  
 
 
Min Z̅(x̅) ≈ ∑ c̅ijx̅ij

n
j=1

Subject to the constraints
∑ x̅ij ≈ a̅i
n
j=1 , 1 ≤ i ≤ m

∑ x̅ij ≈ b̅j
m
i=1 , 1 ≤ j ≤ n

3.3| Formulation of a Transportation Problem with Triangular Fuzzy Numbers 

(TPTri) 

A TPTri is a linear programming problem of a specific structure. If in transportation problem, all 

parameters and variables are fuzzy, we will have a fully fuzzy transportation problem as follows. 

Suppose that there are 𝑚 warehouses and 𝑎̃𝑖 represents renders of warehouse 𝑖 and  𝑛 represents 

customer and 𝑏̃𝑗 is the demand of customer  𝑗. 𝑐𝑖̃𝑗 is the cost of transporting one unit of product from 

warehouse  𝑖 to the customer  𝑗 and 𝑥̃𝑖𝑗 is the value of transported product from warehouse  𝑖 to the 

customer  𝑗. The objective is to minimize the cost of transporting a product from the warehouse to 

the customer. 

We consider the TPTri as follows [1]-[3]: 

     

{ 
  
  
 
  
  
  
 
 
Min Z̃(x̃) ≈ ∑ ∑ c̃ijx̃ij

n
j=1

m
i=1

Subject to the constraints
∑ x̃ij ≈ ãi
n
j=1 , 1 ≤ i ≤ m

∑ x̃ij ≈ b̃j
m
i=1 , 1 ≤ j ≤ n

 . 

For all the rest of this paper, we will consider the following TPTri: 

{ 
  
  
  
  
  
  
  
  
  
 
Min Z̃(x̃) ≈ ∑ ∑ (cij

2|c̅ij
13)(xij
2|x̅ij
13)n

j=1
m
i=1

Subject to the constraints

∑ (xij
2|x̅ij
13)n

j=1  ≈  (ai
2|a̅i
13)

∑ (xij
2|x̅ij
13)m

i=1 ≈  (bj
2|b̅ j
13)

1 ≤ j ≤ n and 1 ≤ i ≤ m.

.                                        

3.4| Our Method for Solving the Transportation Problem with Triangular Fuzzy 

Numbers (TPTri) 

In this section, a method to find a fuzzy optimal solution of TPTri is presented.  

For all the rest of this paper, we will consider the following primal TPIn13: 
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{ 
  
  
  
  
  
  
  
  
  
 
Min Z̅ 13(x̅ 13) ≈ ∑ ∑ c̅ij

13x̅ij
13n

j=1
m
i=1

Subject to the constraints

∑ x̅ij
13n

j=1  ≈  a̅i
13, 1 ≤ i ≤ m

∑ x̅ij
13m

i=1 ≈  b̅j
13, 1 ≤ j ≤ n

x̅ij
13 = [x j

1, x j
3] ≥ 0 

.                                         

3.4.1| Formulation of a transportation problem involving midpoint (TPMi13) 

Thanks to the new interval arithmetic and TPIn13, we can write the following Transportation Problem 

involving Midpoint (TPMi13) [28]:  

{ 
  
  
  
  
  
  
  
  
  
  
  
 
Min/Max Z 13(x 13) = ∑ ∑ m(c̅ij

13)xij
13n

j=1
m
i=1

Subject to the constraints

 ∑ xij
13n

j=1 =  m(a̅i
13), 1 ≤ i ≤ m

∑ xij
13n

j=1 =  m(b̅j
13), 1 ≤ j ≤ n

xij
13 = m(x̅ij

13) =
xij
3+xij
1

2
≥ 0 

.         

                                    

3.4.2| Formulation of a classical transportation problem (TP2) 

The classical Transport Problem (PT2) is: 

{ 
  
  
  
  
  
  
  
  
  
 
Min Z 2(x 2) ≈ ∑ ∑ cij

2xij
2n

j=1
m
i=1

Subject to the constraints

∑ xij
2n

j=1  ≈  ai
2, 1 ≤ i ≤ m

∑ xij
2m

i=1 ≈  bj
2, 1 ≤ j ≤ n

xij
1 ≤ xij
2 ≤ xij
3

.                                     

For all the rest of this paper, we will consider the following notations: 𝑥̅𝑖𝑗
13 = [𝑥𝑗

1, 𝑥𝑗
3], 𝑐𝑖̅𝑗
13 = [𝑐𝑗

1, 𝑐𝑗
3], 𝑏̅𝑗
13 =

[𝑏𝑗
1, 𝑏𝑗
3] and 𝑎𝑖̅

13 = [𝑎𝑖
1, 𝑎𝑖
3]. 

Thanks to the new interval arithmetic, we can write the following Lemma [28]: 

Lemma 1.  𝑥13 = (𝑥𝑖𝑗
13)
𝑚×𝑛

   is an optimal solution to the (TPMi13) if and only if  𝑥̅13 ≈ (𝑥̅𝑖𝑗
13)
𝑚×𝑛

is an 

optimal solution to the TPIn13. 

Proof. [28]. Assuming that ∑ 𝑥𝑖𝑗
13𝑛

𝑗=1 = ∑
𝑥𝑖𝑗
3+𝑥𝑖𝑗
1

2

𝑛
𝑗=1 =  

𝑎𝑖
3+𝑎𝑖
1

2
 and ∑ 𝑥𝑖𝑗

13𝑛
𝑗=1 = ∑

𝑥𝑖𝑗
3+𝑥𝑖𝑗
1

2

𝑛
𝑗=1 = 

𝑏𝑗
3+𝑏𝑗
1

2
 with 𝑤(𝑥̅𝑖𝑗

13) =

𝑤(𝑎𝑖̅
13)

𝑁
  where 𝑁 =⋕ {𝑥𝑖𝑗

13 ≠ 0} for 1 ≤ 𝑗 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑚, we can write that 𝑥̅𝑖𝑗
13 ≈ 〈𝑥𝑖𝑗

13, 𝑤(𝑥̅𝑖𝑗
13)〉 =

[𝑥𝑖𝑗
13 −  𝑤(𝑥̅𝑖𝑗

13), 𝑥𝑖𝑗
13 +  𝑤(𝑥̅𝑖𝑗

13)  ] if and only if 𝑥13 = (𝑥𝑖𝑗
13)
𝑚×𝑛

  is an optimal solution to the TPMi13. Then 

𝑥̅13 ≈ (𝑥̅𝑖𝑗
13)
𝑚×𝑛

 is an optimal solution to the TPIn13. 
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Thanks, the Lemma above, we can write the following corollary [28]: 

Corollary 1. If 𝑥̅𝑖𝑗
13 ≈ [𝑥𝑗

∗1 , 𝑥𝑗
∗3] is an optimal solution to the TPIn13 and 𝑥𝑖𝑗

2 is an optimal solution to 

the (TP2), then 𝑥̃∗ ≈ (𝑥̃𝑖𝑗
∗ )
𝑚×𝑛

 is an optimal solution to the TPTri with 𝑥̃𝑖𝑗
∗ ≈ (𝑥𝑖𝑗

2 |𝑥̅𝑖𝑗
13) = (𝑥𝑖𝑗

∗2 |[𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3]) =

(𝑥𝑗
∗1, 𝑥𝑖𝑗
∗2, 𝑥𝑖𝑗
∗3). 

Notice that TPTri is equivalent to 

{ 
  
  
  
  
  
  
  
  
  
 
𝑀𝑖𝑛 𝑍̃(𝑥̃) ≈ ∑ ∑ (𝑐𝑖𝑗

2  |[𝑐𝑖𝑗
1  , 𝑐𝑖𝑗
3])(𝑥𝑖𝑗
∗2 |[𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3])𝑛

𝑗=1
𝑚
𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

∑ (𝑥𝑖𝑗
∗2 |[𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3])𝑛

𝑗=1  ≈  (𝑎𝑖
2|[𝑎𝑖
1, 𝑎𝑖
3])

∑ (𝑥𝑖𝑗
∗2 |[𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3])𝑚

𝑖=1 ≈   (𝑏𝑗
2|[𝑏𝑗
1, 𝑏𝑗
3])

1 ≤ 𝑗 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑚.

. 

∑ (𝑥𝑖𝑗
2  |[𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3])𝑛

𝑗=1  ≈  (𝑎𝑖
2|[𝑎𝑖
1, 𝑎𝑖
3]) is equivalent to ∑ 𝑥𝑖𝑗

∗2 ≈𝑛
𝑗=1 𝑎𝑖

2 and ∑ [𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3] ≈𝑛

𝑗=1 [𝑎𝑖
1, 𝑎𝑖
3]. 

∑ (𝑥𝑖𝑗
2  |[𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3])𝑛

𝑗=1  ≈  (𝑏𝑗
2|[𝑏𝑗
1, 𝑏𝑗
3]) is equivalent to ∑ 𝑥𝑖𝑗

∗2 ≈𝑛
𝑗=1 𝑏𝑗

2 and ∑ [𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3] ≈𝑛

𝑗=1 [𝑏𝑗
1, 𝑏𝑗
3]. 

Moreover   ∑
𝑥𝑖𝑗
3+𝑥𝑖𝑗
1

2

𝑛
𝑗=1 =  

𝑎𝑖
3+𝑎𝑖
1

2
 for 1 ≤ 𝑖 ≤ 𝑚 and ∑

𝑥𝑖𝑗
3+𝑥𝑖𝑗
1

2

𝑛
𝑗=1 = 

𝑏𝑗
3
+𝑏𝑗
1

2
  for 1 ≤ 𝑗 ≤ 𝑛 and ∑

𝑥𝑖𝑗
3−𝑥𝑖𝑗
1

2

𝑛
𝑗=1 = 

𝑎𝑖
3−𝑎𝑖
1

2
 for 

1 ≤ 𝑖 ≤ 𝑚 and ∑
𝑥𝑖𝑗
3−𝑥𝑖𝑗
1

2

𝑛
𝑗=1 =  

𝑏𝑗
3−𝑏𝑗
1

2
 for 1 ≤ 𝑗 ≤ 𝑛. 

3.4.3| The steps of our computational method 

The steps of our method for solving the TPTri as follows: 

Step 1. Consider a TPTri. 

Step 2. Identify TPIn13 and TP2. 

Step 3. Ramesh and Ganesan’s method [28]: solving the TPIn13 via TPMi13. 

Applying the simplex method to the TPMi13 to determine the variables TPMi13: 

 𝑥13 = (𝑥𝑖𝑗
13)
𝑚×𝑛

 and 𝑥̅𝑖𝑗
13 ≈ 〈𝑥𝑖𝑗

13, 𝑤(𝑥̅𝑖𝑗
13)〉 = [𝑥𝑖𝑗

13 −  𝑤(𝑥̅𝑖𝑗
13), 𝑥𝑖𝑗
13 +  𝑤(𝑥̅𝑖𝑗

13)  ]  for 1 ≤ 𝑘 ≤ 𝑚 with 𝑤(𝑥̅𝑖𝑗
13) =
𝑤(𝑎𝑖̅
13)

𝑁𝑖
  

where 𝑁𝑖 =⋕ {𝑥𝑖𝑗
13 ≠ 0}. 

The associated value of the objective function: 𝑀𝑖𝑛 𝑍̅13(𝑥̅13) ≈ ∑ ∑ 𝑐𝑖̅𝑗
13𝑥̅𝑖𝑗
13𝑛

𝑗=1
𝑚
𝑖=1 . 

Step 4. Solving the TP2. 

Applying the simplex method to the TP2 to determine the variables TP2: 

 𝑥2 = (𝑥𝑖𝑗
2)
𝑚×𝑛

 with the associated value of the objective function: 𝑀𝑖𝑛 𝑍2(𝑥2) ≈ ∑ ∑ 𝑐𝑖𝑗
2𝑥𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1 . 

Step 5. Fuzzy optimal solution of TPTri: optimal solution: 𝑥̃𝑖𝑗
∗ ≈ (𝑥𝑖𝑗

2 |𝑥̅𝑖𝑗
13) = (𝑥𝑖𝑗

∗2 |[𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3]) =

(𝑥𝑖𝑗
∗1, 𝑥𝑖𝑗
∗2, 𝑥𝑖𝑗
∗3) with the associated value of the objective function Min 𝑍̃∗ = (𝑍∗1, 𝑍∗2, 𝑍∗3) = (𝑍2|𝑍̅13). 
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4| Advantages of the Proposed Method 

Let us explore the main advantages of the proposed method: 

The proposed technique does not use the goal and parametric approaches which are difficult to apply in real 

life situations. 

By applying the proposed approach for finding the fuzzy optimal solution, there is no need of much knowledge 

of fuzzy linear programming technique, Zimmerman approach and crisp linear programming which are difficult 

to learn for a new decision maker. 

The proposed method to solve TPTri is based on traditional transportation algorithms. Thus, the existing and 

easily available software can be used for the same. However, the existing method [1]-[3] to solve FTP should be 

implemented into a programming language. 

To solve the TPTri by using the existing method [1]-[3], there is need to use arithmetic operations of generalized 

fuzzy numbers. While, if the proposed technique is used for the same then there is need to use arithmetic 

operations of real numbers. This proves that it is much easy to apply the proposed method as compared to the 

existing method [1]-[3]. 

Moreover, it is possible to assume a generic ranking index for comparing the fuzzy numbers involved in the 

TPTri , in such a way that each time in which the decision maker wants to solve the TPTri under 

consideration(s),he can choose (or propose) the ranking index that best suits the TPTri. 

5| Numerical Illustration 

This section covers the numerical problems to signify the methodology of the proposed algorithm. 

Example 1

 Table 1. (TPTri) in triangular balanced form. 

 

 

 

Step 1. Consider a TPTri.  

{ 
  
  
  
  
  
  
  
  
  
  
  
 
Min Z̃(x̃) ≈ (22, 31, 34)x̃11 + (15, 19, 29)x̃12 + (30, 39, 54)x̃21 + (8, 10, 12)x̃22

Subject to the constraints
x̃11 + x̃12 ≈ (150, 201, 246)
x̃21 + x̃22 ≈ (50, 99, 154)
x̃11 + x̃21 ≈ (100, 150, 200)
x̃12 + x̃22 ≈ (100, 150, 200)
x̃ij are triangular fuzzy numbers

.     

 

 

 

 𝐑𝟏 𝐑𝟐 Supply (𝐚̃𝐢) 
A (22, 31, 34) (15, 19, 29) (150, 201, 246) 
B (30, 39, 54) (8, 10, 12) (50, 99, 154) 

Demand (b̃j) (100, 150, 200) (100, 150, 200) 
 ãi

m

i=1

= b̃j

n

j=1
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Step 2. Identify TPIn13 and TP2, respectivly. 

{ 
  
  
  
  
  
  
  
  
  
  
  
 
Min Z̅ 13(x̅ 14) ≈ [22, 34]x̅11

13 + [15, 29]x̅12
13 + [30, 54]x̅21

13 + [8, 12]x̅22
13

Subject to the constraints

x̅11
13 + x̅12
13 ≈ [150, 246] = 〈198, 48〉

x̅21
13 + x̅22
13 ≈ [50, 154] = 〈102, 52〉

x̅11
13 + x̅21
13 ≈ [100, 200] = 〈150, 50〉

x̅12
13 + x̅22
13 ≈ [100, 200] = 〈150, 50〉

, 

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
 
Min Z 2(x 2) = 31x11

2 + 19x12
2 + 39x21

2 + 10x22
2

Subject to the constraints

x11
2 + x12
2 = 201

x21
2 + x22
2 = 99

x11
2 + x21
2 = 150

x12
2 + x22
2 = 150

xij
1 ≤ xij
2 ≤ xij
3

.

Step 3. Ramesh and Ganesan’s method [28]: solving the TPIn13 via TPMi13. 

{ 
  
  
  
  
  
  
  
  
  
  
  
 
Min Z 13(x 13) = 28x11

13 + 22x12
13 + 42x21

13 + 10x22
13

Subject to the constraints

x11
13 + x12
13 = 198

x21
13 + x22
13 = 102

x11
13 + x21
13 = 150

x12
13 + x22
13 = 150

. 

Applying the simplex method to the TPMi13 to determine the variables TPMi13: 𝑥13 = (𝑥𝑖𝑗
13)
𝑚×𝑛

 . The 

optimal solution is: 𝑥11
13 = 150, 𝑥12

13 = 48, 𝑥21
13 = 0 and 𝑥22

13 = 102 with 𝑍13 = 6276. We have 𝑥̅𝑖𝑗
13 ≈

〈𝑥𝑖𝑗
13, 𝑤(𝑥̅𝑖𝑗

13)〉 ≈ [𝑥𝑖𝑗
13 −  𝑤(𝑥̅𝑖𝑗

13), 𝑥𝑖𝑗
13 +  𝑤(𝑥̅𝑖𝑗

13)  ] with 𝑤(𝑎1̅
13) = 48 with 𝑁1 =⋕ {𝑥11

13 ≠ 0, 𝑥12
13 ≠ 0 } = 2 and 

𝑤(𝑎2̅
13) = 52 with 𝑁2 =⋕ {𝑥22

13 ≠ 0} = 1. 

 We get 𝑤(𝑥̅1𝑗
13) =
𝑤(𝑎1̅
13)

𝑁1
=
48

2
= 24 and   𝑥̅1𝑗

13 ≈ [𝑥1𝑗
13 −  𝑤(𝑥̅1𝑗

13), 𝑥1𝑗
13 +  𝑤(𝑥̅1𝑗

13)  ]:  𝑥̅11
13 ≈ 〈150,24〉 = [126, 174] 

and  𝑥̅12
13 ≈ 〈48,24〉 = [24, 72]. Furthermore 𝑤(𝑥̅2𝑗

13) =
𝑤(𝑎2̅
13)

𝑁2
=
52

1
= 52 and   𝑥̅2𝑗

13 ≈ [𝑥2𝑗
13 −  𝑤(𝑥̅2𝑗

13), 𝑥2𝑗
13 +

 𝑤(𝑥̅2𝑗
13)  ]:  𝑥̅21

13 ≈ 0̅ and  𝑥̅22
13 ≈ 〈102,52〉 = [50, 154]. 

The associated value of the objective function: 𝑀𝑖𝑛 𝑍̅13(𝑥̅13) ≈ ∑ ∑ 𝑐𝑖̅𝑗
13𝑥̅𝑖𝑗
13𝑛

𝑗=1
𝑚
𝑖=1 = [3532, 9852]. 

Step 4. Solving the primal TP2. 
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{ 
  
  
  
  
  
  
  
  
 
  
  
  
  
  
  
  
  
  
 
 
Min Z 2(x 2) = 31x11

2 + 19x12
2 + 39x21

2 + 10x22
2

Subject to the constraints

x11
2 + x12
2 = 201

x21
2 + x22
2 = 99

x11
2 + x21
2 = 150

x12
2 + x22
2 = 150

126 ≤ x11
2 ≤ 174

24 ≤ x12
2 ≤ 72

50 ≤ x22
2 ≤ 154

.  

Applying the simplex method to the TP2 to determine the primal variables TP2 𝑥2 = (𝑥𝑖𝑗
2)
𝑚×𝑛

. The optimal 

solution is: 𝑥11
2 = 150, 𝑥12

2 = 51, 𝑥21
2 = 0 and 𝑥22

2 = 99 with the associated value of the objective function

𝑍2 = 6609

Step 5. Fuzzy optimal solution of TPTri. 

Optimal solution: 

𝑥̃𝑖𝑗
∗ ≈ (𝑥𝑖𝑗

∗2|𝑥̅𝑖𝑗
23) = ( 𝑥𝑖𝑗

∗2|[𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3]) = (𝑥𝑖𝑗

∗1, 𝑥𝑖𝑗
∗2, 𝑥𝑖𝑗
∗3): 𝑥̃11
∗ ≈ (150|[102, 198]) = (102, 150, 198),  𝑥̃12

∗ ≈ (51|[0, 96]) =

(0, 51, 96), 𝑥̃21
∗ ≈ (0|0̅) = 0̃,  𝑥̃22

∗ ≈ (99|[50, 154]) = (50, 99, 154), with the associated value of the objective 

function Min 𝑍̃∗ = (𝑍∗1, 𝑍∗2, 𝑍∗3) = (𝑍2|𝑍̅13). We have Min 𝑍̃∗ ≈ (6609|[3532, 9852]) =

(3532, 6609,   9852). 

Interpretation of results. We will now interpret the minimum total fuzzy transportation cost 

obtained in Example 1 by using the proposed methods presented in Section 3 Similarly, the obtained 

fuzzy optimal solution will also be interpreted. By using the methods proposed the minimum total 

fuzzy transportation cost is (3532, 6609,   9852), which can be physically interpreted as follows: 

 The least amount of the minimum total transportation cost is 3532. 

 The most possible amount of minimum total transportation cost is 6609. 

 The greatest amount of the minimum total transportation cost is 9852 i.e., the minimum total transportation cost 

will always be greater than 3532 and less than 6609, and the highest chances are that the minimum total 

transportation cost will be 9852. 

Example 2. [1]-[3]. Dali Company is the leading producer of soft drinks and low-temperature foods 

in Taiwan. Currently, Dali plans to develop the South-East Asian market and broaden the visibility of 

Dali products in the Chinese market. Notably, following the entry of Taiwan to the World Trade 

Organization, Dali plans to seek strategic alliance with prominent international companies and 

introduced international bread to lighten the embedded future impact. In the domestic soft drinks 

market, Dali produces tea beverages to meet demand from four distribution centers in Taichung, 

Chiayi, Kaohsiung and Taipei, with production being based at three plants in Changhua, Touliu and 

Hsinchu. According to the preliminary environmental information, Table 2 summarizes the potential 

supply available from these three plants, the forecast demand from the four distribution centers and 

the unit transportation costs for each route used by Dali for the upcoming season. 
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Table 2. Summarized data in the Dali case (in U.S. dollar). 

 

 

 

 

 

Step 1. The TPTri is given by: 

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
Min Z̃(x̃) = (8, 10, 10.8)(x11

1 , x11
2 , x11
3 ) + (20.4, 22, 24)(x12

1 , x12
2 , x12
3 )

+(8, 10, 10.6)(x13
1 , x13
2 , x13
3 ) + (18.8, 20, 22)(x14

1 , x14
2 , x14
3 )

+(14, 15, 16)(x21
1 , x21
2 , x21
3 ) + (18.2, 20, 22)(x22

1 , x22
2 , x22
3 )

+(10, 12, 13)(x23
1 , x23
2 , x23
3 ) + (6, 8, 8.8)(x24

1 , x24
2 , x24
3 )

+(18.4, 20, 21)(x31
1 , x31
2 , x31
3 ) + (9.6, 12, 13)(x32

1 , x32
2 , x32
3 )

+(7.8, 10, 10.8)(x33
1 , x33
2 , x33
3 ) + (14, 15, 16)(x34

1 , x34
2 , x34
3 )

Subject to the constraints

(x11
1 , x11
2 , x11
3 ) + (x12

1 , x12
2 , x12
3 ) + (x13

1 , x13
2 , x13
3 ) + (x14

1 , x14
2 , x14
3 ) = (7.2, 8, 8.8)

(x21
1 , x21
2 , x21
3 ) + (x22

1 , x22
2 , x22
3 ) + (x23

1 , x23
2 , x23
3 ) + (x24

1 , x24
2 , x24
3 ) = (12, 14, 16)

(x31
1 , x31
2 , x31
3 ) + (x32

1 , x32
2 , x32
3 ) + (x33

1 , x33
2 , x33
3 ) + (x34

1 , x34
2 , x34
3 ) = (10.2, 12, 13.8)

(x11
1 , x11
2 , x11
3 ) + (x21

1 , x21
2 , x21
3 ) + (x31

1 , x31
2 , x31
3 ) = (6.2, 7, 7.8)

(x12
1 , x12
2 , x12
3 ) + (x22

1 , x22
2 , x22
3 ) + (x32

1 , x32
2 , x32
3 ) = (8.9, 10, 11.1)

(x13
1 , x13
2 , x13
3 ) + (x23

1 , x23
2 , x23
3 ) + (x33

1 , x33
2 , x33
3 ) = (6.5, 8, 9.5)

(x14
1 , x14
2 , x14
3 ) + (x24

1 , x24
2 , x24
3 ) + (x34

1 , x34
2 , x34
3 ) = (7.8, 9, 10.2)

. 

Step 2. Identify TPIn13 and TP2, respectively. 

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
Min Z̅ 13(x̅ 13) = [8, 10.8]x̅11

13 + [20.4, 24]x̅12
13

+[8, 10.6]x̅13
13 + [18.8, 22]x̅14

13

+[14, 16]x̅21
13 + [18.2, 22]x̅22

13

+[10, 13]x̅23
13 + [6, 8.8]x̅24

13

+[18.4, 21]x̅31
13 + [9.6, 13]x̅32

13

+[7.8, 10.8]x̅33
13 + [14, 16]x̅34

13

Subject to the constraints

x̅11
13 + x̅12
13 + x̅13
13 + x̅14
13 = [7.2, 8.8] = 〈8, 0.8〉

x̅21
13 + x̅22
13 + x̅23
13 + x̅24
13 = [12, 16] = 〈14, 2〉

x̅31
13 + x̅32
13 + x̅33
13 + x̅34
13 = [10.2, 13.8] = 〈12, 1.8〉

x̅11
13 + x̅21
13 + x̅31
13 = [6.2, 7.8] = 〈7, 0.8〉

x̅12
13 + x̅22
13 + x̅32
13 = [8.9, 11.1] = 〈10, 1.1〉

x̅13
13 + x̅23
13 + x̅33
13 = [6.5, 9.5] = 〈8, 1.5〉

x̅14
13 + x̅24
13 + x̅34
13 = [7.8, 10.2] = 〈9, 1.2〉

, 

Source Destionation Supply (𝐚̃𝐢) (000 
dozen bottles) Taichung Chiayi Kaohsiung Taipei 

Changhua ($8, $10,$10.8) ($20.4,$22, $24) ($8,$10, $10.6) ($18.8, $20, $22) (7.2, 8, 8.8) 

Touliu ($14, $15, $16) ($18.2, $20, $22) ($10, $12,$13) ($6,$8, $8.8) (12, 14, 16) 

Hsinchu ($18.4, $20, $21) ($9.6, $12,$13) ($7.8,$10, $10.8) ($14,$15, $16) (10.2, 12, 13.8) 

Demand 

(b̃j) (000 

dozen bottles) 

(6.2, 7, 7.8) (8.9, 10, 11.1) (6.5,8, 9.5) (7.8,9, 10.2) 
 ãi

m

i=1

= b̃ j

n

j=1
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{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
Min Z 2(x 2) = 10x11

2 + 22x12
2 + 10x13

2 + 20x14
2

15x21
2 + 20x22

2 + 12x23
2 + 8x24

2

20x31
2 + 12x32

2 + 10x33
2 + 15x34

2

Subject to the constraints

x11
2 + x12
2 + x13
2 + x14
2 = 8

x21
2 + x22
2 + x23
2 + x24
2 = 14

x31
2 + x32
2 + x33
2 + x34
2 = 12

x11
2 + x21
2 + x31
2 = 7

x12
2 + x22
2 + x32
2 = 10

x13
2 + x23
2 + x33
2 = 8

x14
2 + x24
2 + x34
2 = 9

. 

Step 3. Ramesh and Ganesan’s method [28]: solving the TPIn13 via TPMi13. 

Applying the simplex method to the TPMi13 to determine the variables TPMi13: 

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
Min Z 13(x 13) = 9.4x11

13 + 22.2x12
13

+9.3x13
13 + 20.4x14

13

+15x21
13 + 20.1x22

13

+11.5x23
13 + 7.4x24

13

+19.7x31
13 + 11.3x32

13

+9.3x33
13 + 15x34

13

Subject to the constraints

x11
13 + x12
13 + x13
13 + x14
13 = 8

x21
13 + x22
13 + x23
13 + x24
13 = 14

x31
13 + x32
13 + x33
13 + x34
13 = 12

x11
13 + x21
13 + x31
13 = 7

x12
13 + x22
13 + x32
13 = 10

x13
13 + x23
13 + x33
13 = 8

x14
13 + x24
13 + x34
13 = 9

. 

𝑥13 = (𝑥𝑖𝑗
13)
𝑚×𝑛

 . The optimal solution is: 𝑥11
13 = 7, 𝑥12

13 = 0, 𝑥13
13 = 1 𝑥14

13 = 0, 𝑥21
13 = 0, 𝑥22

13 = 0, 𝑥23
13 = 5,  𝑥24

13 = 9 

and 𝑥31
13 = 0, 𝑥32

13 = 10, 𝑥33
13 = 2 𝑥34

13 = 0.  

𝑤(𝑎1̅
13) = 0.8 =

4

5
 with 𝑁1 =⋕ {𝑥11

13 ≠ 0, 𝑥13
13 ≠ 0 } = 2, 𝑤(𝑎2̅

13) = 2 with 𝑁2 =⋕ {𝑥23
13 ≠ 0, 𝑥24

13 ≠ 0} = 2 and  

𝑤(𝑎3̅
13) = 1.8 =

9

5
 with 𝑁3 =⋕ {𝑥32

13 ≠ 0, 𝑥33
13 ≠ 0} = 2. 

We get 𝑥̅1𝑗
13 ≈ [𝑥1𝑗

13 −  𝑤(𝑥̅1𝑗
13), 𝑥1𝑗
13 +  𝑤(𝑥̅1𝑗

13)  ] with 𝑤(𝑥̅1𝑗
13) =

4

10
=
2

5
: 

𝑥̅11
13 ≈ [7 −

2

5
, 7 +
2

5
] = [
33

5
,
37

5
],  𝑥̅12
13 ≈ 0̅,  𝑥̅13

13 ≈ [1 −
2

5
, 1 +
2

5
] = [
3

5
,
7

5
] and 𝑥̅14

13 ≈ 0̅. 

𝑥̅2𝑗
13 ≈ [𝑥2𝑗

13 −  𝑤(𝑥̅2𝑗
13), 𝑥2𝑗
13 +  𝑤(𝑥̅2𝑗

13)  ] with 𝑤(𝑥̅2𝑗
13) =

2

2
= 1: 
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𝑥̅21
13 ≈ 0̅, 𝑥̅22

13 ≈ 0̅, 𝑥̅23
13 ≈ [5 − 1, 5 + 1] = [4, 6] and 𝑥̅24

13 ≈ [9 − 1, 9 + 1] = [8, 10]. 

𝑥̅3𝑗
13 ≈ [𝑥3𝑗

13 −  𝑤(𝑥̅3𝑗
13), 𝑥3𝑗
13 +  𝑤(𝑥̅3𝑗

13)  ] with 𝑤(𝑥̅3𝑗
13) =

9

10
: 

𝑥̅31
13 ≈ 0̅, 𝑥̅32

13 ≈ [10 −
9

10
, 10 +

9

10
] = [
91

10
,
109

10
], 𝑥̅33
13 ≈ [2 −

9

10
, 2 +
9

10
] = [
11

10
,
29

10
] and 𝑥̅34

13 ≈ 0̅. 

The associated value of the objective function: 𝑀𝑖𝑛 𝑍̅13(𝑥̅13) ≈ ∑ ∑ 𝑐𝑖̅𝑗
13𝑥̅𝑖𝑗
13𝑛

𝑗=1
𝑚
𝑖=1 = [

12081

50
$,
21689

50
$]. 

Step 4. Solving the primal TP2. 

{ 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
Min Z 2(x 2) = 10x11

2 + 22x12
2 + 10x13

2 + 20x14
2

15x21
2 + 20x22

2 + 12x23
2 + 8x24

2

20x31
2 + 12x32

2 + 10x33
2 + 15x34

2

Subject to the constraints

x11
2 + x12
2 + x13
2 + x14
2 = 8

x21
2 + x22
2 + x23
2 + x24
2 = 14

x31
2 + x32
2 + x33
2 + x34
2 = 12

x11
2 + x21
2 + x31
2 = 7

x12
2 + x22
2 + x32
2 = 10

x13
2 + x23
2 + x33
2 = 8

x14
2 + x24
2 + x34
2 = 9

33

5
≤ x11
2 ≤
37

5
3

5
≤ x13
2 ≤
7

5
4 ≤ x23
2 ≤ 6

8 ≤ x24
2 ≤ 10

91

10
≤ x32
2 ≤
109

10
11

10
≤ x33
2 ≤
29

10

. 

The optimal solution is: 𝑥11
2 = 7, 𝑥12

2 = 0, 𝑥13
2 = 1 𝑥14

2 = 0, 𝑥21
2 = 0, 𝑥22

2 = 0, 𝑥23
2 = 5,  𝑥24

2 = 9 and 𝑥31
2 = 0, 

𝑥32
2 = 10, 𝑥33

2 = 2 𝑥34
2 = 0 with Min 𝑍2 = 352$. 

Step 5. Fuzzy optimal solution of TPTri. 

Optimal solution: 

 𝑥̃𝑖𝑗
∗ ≈ (𝑥𝑖𝑗

∗2|𝑥̅𝑖𝑗
23) = ( 𝑥𝑖𝑗

∗2|[𝑥𝑖𝑗
∗1 , 𝑥𝑖𝑗
∗3]) = (𝑥𝑖𝑗

∗1, 𝑥𝑖𝑗
∗2, 𝑥𝑖𝑗
∗3): 

𝑥̃11
∗ ≈ (
33

5
, 7,   
37

5
), 𝑥̃12
∗ ≈ 0̃,  𝑥̃13

∗ ≈ (
3

5
, 1,   
7

5
) and  𝑥̃14

∗ ≈ 0̃; 

𝑥̃21
∗ ≈ 0̃,  𝑥̃22

∗ ≈ 0̃,   𝑥̃23
∗ ≈ (4, 5, 6) and 𝑥̃24

∗ ≈ (7, 9, 10); 

𝑥̃31
∗ ≈ 0̃,  𝑥̃32

∗ ≈ (
11

10
, 10,   

29

10
),  𝑥̃33
∗ ≈ (
91

10
, 2,   
109

10
) and 𝑥̃34

∗ ≈ 0̃.  
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With the associated value of the objective function Min 𝑍̃∗ = (𝑍∗1, 𝑍∗2, 𝑍∗3) = (𝑍2|𝑍̅13).  

We have Min Z̃ ∗ ≈ (352$| [
12081

50
$,
21689

50
$]) = (

12081

50
$, 352$,

21689

50
$). 

Interpretation of results: 

We will now interpret the minimum total fuzzy transportation cost obtained in Example 2 by using the 

proposed methods presented in Section 3 Similarly, the obtained fuzzy optimal solution will also be 

interpreted. By using the methods proposed the minimum total fuzzy transportation cost is 

(
12081

50
$, 352$,

21689

50
$), which can be physically interpreted as follows: 

The least amount of the minimum total transportation cost is 
12081

50
$. 

The most possible amount of minimum total transportation cost is 352$. 

The greatest amount of the minimum total transportation cost is 
21689

50
$ i.e., the minimum total 

transportation cost will always be greater than 
12081

50
$ and less than 352$, and the highest chances are 

that the minimum total transportation cost will be 
21689

50
$. 

5| Concluding Remarks and Future Research Directions 

These days a number of researchers have shown interest in the area of fuzzy transportation problems 

and various attempts have been made to study the solution of these problems. In this paper, to 

overcome the shortcomings of the existing methods we introduced a new formulation of 

transportation problem involving Triangular fuzzy numbers for the transportation costs and values of 

supplies and demands.  We propose a fuzzy linear programming approach for solving Triangular fuzzy 

numbers transportation problem based on the converting into an TPIn and a classical TP. To show 

the advantages of the proposed methods over existing methods, some fuzzy transportation problems, 

may or may not be solved by the existing methods, are solved by using the proposed methods and it 

is shown that it is better to use the proposed methods as compared to the existing methods for solving 

the transportation problems. Finally, we feel that, there are many other points of research and should 

be studied later on. Some of these points are discussed below. 

The solid transportation problem considers the supply, the demand, and the conveyance to satisfy the 

transportation requirement in a cost-effective manner. Thus, research on the topic for developing the proposed 

method to derive the fuzzy objective value of the fuzzy solid transportation problem when the cost coefficients, 

the supply and demand quantities and conveyance capacities are interval-valued triangular fuzzy numbers, is left 

to the next research work. 

Further research on introducing a new formulation of interval-valued triangular fuzzy numbers transportation 

problem that lead to a method for solving this problem based on the classical transportation algorithms is an 

interesting stream of future research. 

From both theoretical and algorithmic considerations, and examples solved in this paper, it can be 

noticed that some shortcomings of the methods for solving the fuzzy transportation problems known 

from the literature can be resolved by using the new methods proposed in Section 3. 
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