Document Type : Research Paper


1 1Research Scholar, Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.

2 Assistant Professor, Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.


A Quadripartitioned Neutrosophic Pythagorean (QNP) set is a powerful general format framework that generalizes the concept of Quadripartitioned Neutrosophic Sets and Neutrosophic Pythagorean Sets. In this paper, we apply the notion of quadripartitioned Neutrosophic Pythagorean sets to Lie algebras. We develop the concept of QNP Lie subalgebras and QNP Lie ideals. We describe some interesting results of QNP Lie ideals.


Main Subjects

  1. Akram, M. (2006). Anti fuzzy Lie ideals of Lie algebras. Quasigroups and related systems14(2), 123-132.
  2. Akram, M. (2007). Intuitionistic (S, T)-fuzzy Lie ideals of Lie algebras. Quasigroups and related systems15(2), 201-218.
  3. Akram, M. (2008). Generalized fuzzy Lie subalgebras. Journal of generalized lie theory and applications2(4), 261-268.
  4. Atanassov, K. (2016). Intuitionistic fuzzy sets. International journal bioautomation20, 1.
  5. Coelho, P., & Nunes, U. (2003). Lie algebra application to mobile robot control: a tutorial. Robotica21(5), 483-493.
  6. Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite study.
  7. Akram, M., Gulzar, H., & Shum, K. P. (2018). Single–valued neutrosophic lie algebra. Journal of Mathematical research with applications. DOI: 3770/j.issn:2095-2651.2019.02.003
  8. Radha, R., & Mary, A. S. A. (2021). Pentapartitioned neutrosophic pythagorean soft set. Infinite Study.
  9. Mary, S. A. (2021). Pentapartitioned neutrosophic pythagorean set. International research journal on advanced science hub3, 62-68.
  10. Radha, R., & Mary, A. S. A. (2021). Heptapartitioned neutrosophic sets. International journal of creative research thoughts (IJCRT), 9(2), 222-230.
  11. Radha, R., Mary, A. S. A., & Smarandache, F. (2021). Quadripartitioned neutrosophic pythagorean soft set. International journal of neutrosophic science (IJNS), 14(1), 9-23.
  12. Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis. Amer Res Press, Rehoboth, USA.
  13. Smarandache, F. (2015). n – valued refined neutrosophic logic and its applications in physics. In Unmatter plasma, relativistic oblique-length contraction factor, neutrosophic diagram and neutrosophic degree of paradoxicity (pp. 40-53). Pons Publishing.
  14. Zulqarnain, R. M., Xin, X. L., Siddique, I., Khan, W. A., & Yousif, M. A. (2021). TOPSIS method based on correlation coefficient under pythagorean fuzzy soft environment and its application towards green supply chain management. Sustainability13(4), 1642.