Document Type : Research Paper


1 Department of Mathematics, Arul Anandar College (Autonomous), Karumathur, India.

2 Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA.

3 Department of Mathematics, PKN Arts College, Madurai, India.


The theory of Plithogeny is gaining momentum in recent times as it generalizes the concepts of fuzzy, intuitionistic, neutrosophy and other extended representations of fuzzy sets. The relativity of the comprehensive and accommodative nature of plithogenic sets in dealing with attributes shall be applied to handle the decision–making problems in the field of sociology.  This paper introduces the concepts of Plithogenic Sociogram (PS) and Plithogenic Number (PN) where the former is the integration of plithogeny to the sociometric technique of sociogram and the latter is the generalization of fuzzy, intuitionistic and neutrosophic numbers that shall be used in representations of preferences in group dynamics. This research work outlines the conceptual development of these two newly proposed concepts and discusses the merits of the existing theory of similar kind with suitable substantiation. The plithogenic sociogram model encompassing the attributive preferences with plithogenic number representation is also developed to explicate how it can be materialized in the real social field. A conjectural illustration is put forth to analyze the efficiency and the feasibility of the proposed plithogenic sociogram model and its function in decision-making. This paper also throws light on generalized plithogenic number, dominant attribute constrained plithogenic number and combined dominant attribute constrained plithogenic number together with its operations and suitable illustrations.


Main Subjects

  1. Bautista, E., E. Casas, I. Pineda, J.M. Bezanilla, L. Renero, and Y. Silva, (2009). Utilidad del sociograma como herramienta para el análisis de las interacciones grupales. Psicologia para América Latina, 18. (In Spanish).
  2. Yanai, M., Yanai, A., Tsuda, E., Okuda, Y., Yamashita, H., & Inaida, J. (1996). Fuzzy sociogram analysis applying Shapley value. International journal of biomedical soft computing and human sciences: the official journal of the biomedical fuzzy systems association2(1), 63-68.
  3. Uesu, H., Yamashita, H., Yanai, M., & Tomita, M. (2001, July). Sociometry analysis applying fuzzy node fuzzy graph. Proceedings joint 9th IFSA world congress and 20th NAFIPS international conference (Cat. No. 01TH8569)(Vol. 1, pp. 369-374). IEEE.
  4. Abdel-Basset, M., Nabeeh, N. A., El-Ghareeb, H. A., & Aboelfetouh, A. (2020). Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise information systems14(9-10), 1304-1324.
  5. Smarandache, F. (2002). Neutrosophy, a new branch of philosophy. Infinite Study.
  6. Abdel-Baset, M., Chang, V., & Gamal, A. (2019). Evaluation of the green supply chain management practices: a novel neutrosophic approach. Computers in industry108, 210-220.
  7. Gómez, G. A., García, J. F. G., Gómez, S. D. Á., & Smarandache, F. (2020). Neutrosophic sociogram for group analysis(Vol. 37). Infinite Study.
  8. Smarandache, F. (2018). Plithogeny, plithogenic set, logic, probability, and statistics. Infinite Study.
  9. Abdel-Basset, M., El-Hoseny, M., Gamal, A., & Smarandache, F. (2019). A novel model for evaluation Hospital medical care systems based on plithogenic sets. Artificial intelligence in medicine100, 101710.
  10. Abdel-Basset, M., Manogaran, G., Gamal, A., & Chang, V. (2019). A novel intelligent medical decision support model based on soft computing and IoT. IEEE internet of things journal7(5), 4160-4170.
  11. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., & Smarandache, F. (2019). A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry11(7), 903.
  12. Zadeh, L. A. (1965). Fuzzy set. Inform and control, 8, 338-353.
  13. Stefanini, L., Sorini, L., Guerra, M. L., Pedrycz, W., Skowron, A., & Kreinovich, V. (2008). Fuzzy numbers and fuzzy arithmetic. Handbook of granular computing12, 249-284.
  14. Stefanini, L. (2010, June). New tools in fuzzy arithmetic with fuzzy numbers. International conference on information processing and management of uncertainty in knowledge-based systems(pp. 471-480). Springer, Berlin, Heidelberg.
  15. Dison Ebinesar, M. (2015). Different types of fuzzy numbers and certain properties. Journal of computer and mathematical sciences, 6(11), 631-651.
  16. Mallak, S. F., & Bedo, D. (2013). Particular fuzzy numbers and a fuzzy comparison method between them. International journal of fuzzy mathematics and systems, 3(2), 113-123.
  17. Grzegorzewski, P., & Stefanini, L. (2014). Fuzzy numbers and their applications. Fuzzy sets and systems, 257, 1-2. DOI: 1016/j.fss.2014.08.009
  18. Atanassov, K. T. (1986). Intuitionistic fuzzy set. Fuzzy set and systems, 20(1), 87-96.
  19. Mahapatra, G. S., & Roy, T. K. (2013). Intuitionistic fuzzy number and its arithmetic operation with application on system failure. Journal of uncertain systems7(2), 92-107.
  20. Seikh, M. R., Nayak, P. K., & Pal, M. (2013). Notes on triangular intuitionistic fuzzy numbers. International Journal of mathematics in operational research5(4), 446-465.
  21. Nayagam, V. L. G., Jeevaraj, S., & Sivaraman, G. (2016). Complete ranking of intuitionistic fuzzy numbers. Fuzzy information and engineering8(2), 237-254.
  22. Pardha Saradhi1, B., Madhuri, M. V., & Ravi Shankar, N. (2017). Ordering of intuitionistic fuzzy numbers using centroid of centroids of intuitionistic fuzzy number. International journal of mathematics trends and technology (IJMTT), 52(5), 276-285.
  23. Velu, L. G. N., Selvaraj, J., & Ponnialagan, D. (2017). A new ranking principle for ordering trapezoidal intuitionistic fuzzy numbers. Complexity.
  24. Gahlot, S., & Saraswat, R. N. (2021, March). Single valued neutrosophic numbers and applications in selection criteria. Journal of physics: conference series, 1849(1), 012010.
  25. Sun, H. X., Yang, H. X., Wu, J. Z., & Ouyang, Y. (2015). Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making. Journal of intelligent & fuzzy systems28(6), 2443-2455.
  26. Karaaslan, F. (2018). Gaussian single-valued neutrosophic numbers and its application in multi-attribute decision making. Neutrosophic sets and systems22(1), 101-117.
  27. Chakraborty, A., Mondal, S. P., Alam, S., & Mahata, A. (2020). Cylindrical neutrosophic single-valued number and its application in networking problem, multi-criterion group decision-making problem and graph theory. CAAI Transactions on intelligence technology5(2), 68-77.
  28. Saini, R. K., & Sangal, A. (2020). Application of single valued trapezoidal neutrosophic numbers in transportation problem. Neutrosophic sets and systems35, 563-583.
  29. El-Hefenawy, N., Metwally, M. A., Ahmed, Z. M., & El-Henawy, I. M. (2016). A review on the applications of neutrosophic sets. Journal of computational and theoretical nanoscience13(1), 936-944.
  30. Pramanik, S., & Banerjee, D. (2018). Neutrosophic number goal programming for multi-objective linear programming problem in neutrosophic number environment. Infinite Study.
  31. Radhika, C., & Parvathi, R. (2016). Defuzzification of intuitionistic fuzzy sets. Notes intuitionistic fuzzy sets22(5), 19-26.
  32. Mert, A. (2019, July). On the WABL Defuzzification method for intuitionistic fuzzy numbers. International conference on intelligent and fuzzy systems(pp. 39-47). Springer, Cham.
  33. İrfan, D. E. L. İ., & Öztürk, E. K. (2020). A defuzzification method on single-valued trapezoidal neutrosophic numbers and multiple attribute decision making. Cumhuriyet science journal41(1), 22-37.
  34. Solairaju, A., & Shajahan, M. (2018). Transforming neutrosophic fuzzy set into fuzzy set by imprecision Method. Infinite Study.