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Abstract 

                 1 | Introduction  

Optimizations of the problem that the objective function is defined with the ratio of two linear 

functions are named fractional programming [26]–[28]. Optimization of linear fractional 

programming problem initially was proposed by the Charnes and Cooper [2] and after that, it was 

developed by Craven [4]. When we want to optimize the number of fractional goals simultaneously, 

such problem is called multi-objective linear fractional programming problem. 

 It has been considered by many researchers as one of the most widely used issues in recent decades. 

In particular, by introducing the fuzzy theory in decision making by Bellman and Zadeh [1], 

Using fuzzy perspective, appropriate methods created to solve this type of problem. For instance, the 

method of linguistic variables [15], [17], interactive method [21], goal planning [14], [18] 
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and the Taylor series method [12] are expressed by several researchers. In this way, often they solve the 

problem by considering the expectation levels for the objective functions by the decision maker and 

obtaining membership functions such as each of the objectives. For example, in goal planning, first a 

specific number is set as an ideal for each of the goals, and then the multi-objective linear fractional 

planning problem becomes a single-objective problem by determining the objective function related to the 

goal planning. Then we find a solution from the feasible area in a way that satisfies the set ideals as much 

as possible. Das et al. [6], [7] proposed the concepts of an effective ranking method between two triangular 

fuzzy numbers. Then, formulate an equivalent tri-objective linear fractional programming problem for the 

main problem to calculate the upper, middle and lower bounds of the main problem. So, they can construct 

the optimal values with obtaining upper, middle and lower bounds. A novel scheme which is constructed 

from a combination of Charnes−Cooper method and multi-objective linear programming problem 

proposed by [8], [9]. Veeramani and Sumathi [25] extended a new Algorithm to solve the Fuzzy Linear 

Fractional Programming Problem (FLFPP). Recently, Dong and Wan [10] proposed a new approach to 

solve fuzzy multi-objective optimization. In their model, the cost of the objective function, the resources 

and the technological coefficients was triangular fuzzy numbers. The main problem transformed into an 

equivalent deterministic Multi Objective Linear Fractional Programming Problem (MOLFPP), then solved 

them each objective function. Other methods for this type of problem can also be found in [3], [5], [11], 

[13], [15]. 

In this kind of problem, we often face with situations where the objective functions are irreconcilable and 

inconsistent. It is reliable that the optimal solution of one objective function generally is not the optimal 

for the other objective functions of the main problem. Stanojević and Stanojević [22], inspired by what 

Lotfi et al. [16], presented a process based on goal planning to obtain efficient solutions to such problems. 

Of course, the problem of multi-objective linear fractional programming can be considered in such a way 

that the numerical coefficients in the objective functions are expressed in fuzzy form. Among the solution 

methods available in this type of uncertainty, we can mention the method presented by Pramy [19] which 

used graded mean integration representation, and according to it the fuzzy multi-objective linear fractional 

programming problem converted to a crisp model of multi-objective linear fractional programming. Then 

the efficient solution of the problem by transforming several goals to the single goal was obtained. 

 

However, fuzzy theory has shown successful expansion and performance in modeling and solving 

mathematical programming problems, especially linear and multi-objective fractional programming. But in 

some issues, we need to use the opinions of different  experts to evaluate the goals, parameters and other 

variables in the problem. For this purpose, a new expansion of fuzzy sets called hesitant fuzzy sets has been 

proposed in [23], [24]. In this generalization, when the decision maker is hesitant to express the degree of 

membership of an element, it is possible to assign more than one degree of membership to an element. 

Also, for cases where more than one decision maker with different experiences and views tends to record 

their opinion about the membership of an element, using this type of set can be an effective way to cover 

this type of uncertainty in the issue. With the introduction of cumulative operators on hesitant fuzzy sets 

[29], the necessary condition has been prepared for the extensive development of these sets to decision and 

optimization issues. 

During these years, many applications of hesitant fuzzy sets in various problems are discovered. Especially 

multi-criteria decision making, risk evaluation and clustering algorithms. Several of them can be found in 

[30], [31] and their references. 

A few researches have been done on the applications of this type of set in linear and nonlinear 

programming problems of objective and multi-objective types. Among the limited researches presented in 

this field, we can point out to [20].  

In this study, we want to model and solve the problem of multi-objective linear fractional programming in 

a hesitant fuzzy decision space. For this purpose, the rest of this research is organized as follows: in Section 

2, some basic concepts and essential definitions of hesitant fuzzy sets are given. In Section 3, the 

mathematical formulation of multi-objective linear fractional programming in hesitant fuzzy environment 

is provided and the process of solving it is given in Section 4. In Section 5, the accuracy of the solution 
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process is examined by giving a practical example of fractional multi-objective production planning in 

a hesitant fuzzy environment. Finally, some results are mentioned. 

2 | Preliminaries and Notations 

In this section, some basic notions of hesitant fuzzy set and their operations are reviewed. 
Definition 1. [29]. A hesitant fuzzy set over universal set X , is defined as follows: 

 
A

A (x,h (x)) x X , %%

% %%  

where 
A

h ( x )%%
%

 
is a set of amounts in [0,1] and indicates the possible membership degrees of an element 

x belong to X . In fact, 
A

h ( x )%%
% is characterized with HFEs. Two important operations on HFEs are 

given as follows:  

I. 
 


1 1 2 2

1 2 1 2γ h ( x ),γ h ( x )
h ( x) h ( x) max{γ ,γ },% %
% %U U  

II. 
 


1 1 2 2

1 2 1 2γ h ( x ),γ h ( x )
h ( x) h ( x) min{γ ,γ }.% %
% %I I  

In the next definition, hesitant fuzzy decision space is proposed as an extension of Bellman and Zadeh 

decision making theory which can be useful to solve problems with the hesitant fuzzy environment [3]. 

The basis of most developed models in the fuzzy space is the well-known fuzzy decision making 

(see[1]). For this model, it is assumed that all goals and constraints can consider as fuzzy numbers. As a 

result, the structure of the decision space should be introduced as follows: 

1 2 p 1 2 m
D G C (G G ... G ) (C C ... C ). % % % % % % % %% I I I I I I I I 

Where p and m are the numbers of goals and constraints, respectively. 

 

then  ,X in C%%and a hesitant constraint  G%%goal Assume we have a hesitant fuzzy  .Definition 2. [20]

which means a hesitant  ,C%% and G%% can be made by the combinations ofD%% the hesitant fuzzy decision

In this case, we can write . C%% and G%%fuzzy decision involves the intersection of  

D G C,
% %% % %% I 

and for hesitant fuzzy function we have: 

D G C
h τ(h ,h ),% % %% % %
% % %  

where τ  as a T-norm is employed to obtain the membership degree amounts for the intersection of 

hesitant fuzzy components. Also, we have 

G C
q q1 2 1 2

G G G G C C C C
h h ,h , ... ,h , h h ,h , ... ,h ,

   
      

    
         

% % % % % % % %% % % % % % % %
% % % % % % % %

 

where the number of the decision makers which established different aspiration levels for the objective 

functions and constraints are shown 
G

q and 
C

q respectively. This idea can extend for multi-objective 

programming. For this aim, assume we have p goals 1 2 p
G ,G , ... ,G% % %% % %  and m  constraints 

1 2 m
C ,C , ... ,C .% % %% % %

So, the proper decision is          

1 2 p 1 2 m
D G C (G G ... G ) (C C ... C ). 

% % % % % % % %% % % % % % % % %% I I I I I I I I  

In the space of hesitant fuzzy decision, each of the goals and constraints can consider as a hesitant fuzzy 

number, but in the current study, we considered only the goals as fuzzy hesitant numbers. 

 

Definition 3. [31]. Assume  ( ) ( ) ( )τ :H H HM M M , where τ  is a hesitant triangular norm and ( )H M   is 

a hesitant fuzzy set withM  elements, if  ( )

1 2 3
h , h , h H% % % M then the following axioms satisfy: 
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 Commutative property; 
1 2 2 1

τ( h , h ) τ( h , h ),% % % %

 Associative property; 
1 2 3 1 2 3

τ( h ,τ( h , h )) τ(τ( h , h ), h ),% % % % % %

 Monotone property;  ( ) ( )2 3 1 2 1 3H H
if h h then τ( h , h ) τ( h , h ),% % % % % %

M M

 Neutral property; ( )1 1H
τ( h , 1 ) h ,% %

M

where ( )H
1 {1, 1, ... , 1}M

 is a full HFE with M elements. 

In this study, we consider the minimum operator for the hesitant triangular norm on HFE th

i
k with 

following relation: 

1 1 2 2

1 2 1 2
γ h (x),γ h (x)

τ(h ,h ) min{γ , γ }.
 


% %

% % U  

 

3 | Formulation of MOLFP Problem under Hesitant Fuzzy Decision 
Making Environment  
 
In the current section, firstly, the classical linear fractional programming problem is defined. Then the 

important interpretation of the optimal solution is given in Theorem 1, and by developing that to multi-

objective linear fractional programming problems, a test in Theorem 2 is given to evaluate the efficiency of 

the feasible solution of this type of problems. Using Algorithm 1 and based on Theorem 2, by starting from 

an arbitrary point, the efficient solution to the multi-objective linear fractional programming problem is 

obtained. Theorem 3 gives us the guarantee that the sequence of points obtained from Algorithm 1 

converges to the efficient solution of the linear fractional programming problem. After that, the general 

formulation of the MOLFP problem under the hesitant fuzzy environment is introduced and the solution 

process is developed efficiently, too. 

3.1 | LFP Problem  

The LFP problem is introduced generally as follows: 

 
                                                                        

where   m n nA R , α,β R, c R , and  mb R . As we can see the objective function in Eq. (1) is expressed 

as a ratio of two linear functions. The feasible solution space, X( A,b) , is convex and bounded. So, if the 

denominator is non-zero in goal, the sign of the denominator does not change. (i.e. for all x X( A,b) , 

we can say:  Td x β 0  or  Td x β 0 ). Hence, the sign of the denominator always is positive or negative. 

Without reducing the generality of LFP problem, in this study we consider the sign of the dominator is 

positive. (If the denominator is negative, we can multiply the numerator and the denominator by a negative, 

thus we can  Td x β 0 , for all x X( A,b) ). There is an important interpretation for the optimal solution 

of the linear fractional programming problem, which can be expressed in the following theorem. 

 

Theorem 1. [15]. The point *x X( A,b) , is an optimal solution of Eq. (1) if and only if the optimal value 

of the following problem is zero, 

T

T

n

f(x) c x α
LFP : max

g(x) d x β

s.t. x X(A, b) {x R : Ax b,x 0},






    

 (1) 
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In the next subsection, by expanding this theorem, we can find the efficient solution to multi-objective 

programming problems. 

3.2 | MOLFP Problem 

 In practical issues, the simultaneous optimization of several objective functions is often considered by 

decision makers. In this section, we examine the problem of linear fractional programming with more 

than one goal. The general form of the multi-objective linear fractional programming problem can be 

expressed as follows: 

 

where, 

I. 
 
  

    
   

nX( A,b) x R : Ax( )b, x 0 , is a convex and bounded set, A is a technological 

coefficient matrix, 

II. p 2 , ( p  shows the number of objectives), 

III.      T T

i i i i i i
f ( x) c x α and g ( x) d x β for i 1, 2,..., p,  

IV.    n

i i i i
c ,d and α ,β for i 1, 2,..., p,  

V.      T

i i
d x β 0, for x X , i 1, 2,..., p.  

As we know, when we want to optimize several objective functions simultaneously, the optimal solution 

for each of the objective functions is not necessarily the optimal solution for the other objectives. 

Therefore, in this kind of problem, we try to find the type of answers that are called efficient solutions. 

Hence, the main purpose of the maximization Problem (2) is to obtain efficient solutions.  

 

Definition 4. [16]. *x X( A,b) , is an efficient solution of Eq. (2) if and only if there is not x X( A,b)

, such that 

  

*

i i

*
i i

f ( x ) f ( x )
, i 1, 2 , ..., p,

g ( x ) g ( x )
 

and, 

*

j j

*
j j

f ( x) f ( x )

g ( x) g ( x )
  for at least one j {1, 2,..., p}.  

 

Theorem 2. [22]. Assume *x X( A,b) , is an arbitrary solution of Eq. (2), then *x  is an efficient 

solution if and only if the optimal value of the following problem is zero, 

0

*

t

T *

T *

* T

* T

f max(ξ ξ )

c x α ξ f(x )θ,s.t

d x β ξ g(x )θ,

f(x ) c x α,

g(x ) d x β,

θ 0 ,ξ 0 ,ξ 0.

 





 

 

  

  

 

 

  

 (2) 

p1 2

x X(A,b)
1 2 p

f (x)f (x) f (x)
MOLFP : max (( ),( ), ... ,( )),

g (x) g (x) g (x)
 (3) 
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According to the following Algorithm, and employing the problem presented in Theorem 3, the efficient 

solution of the multi-objective linear fractional programming problem can be achieved correctly. 

Algorithm 1. Obtaining efficient solution [22]. 

Step 1: Set * 0x x , k 1.   

Step 2: Solve Problem (4), assume k k k k k

i i
(x , t ,θ ,ξ ,ξ )   be an optimal solution, 

and set pk k k
i 1 i i

t (ξ ξ ) 


  . 

Step 3: If kt 0 , then stop. kx , is an efficient solution for MOLFP problem, 

else set * kx x , k k 1    and go to Step 2. 

 

Theorem 3. [22]. The sequence
k

{ x } which is generated by Algorithm (1) converges to the efficient solution 

of the multi-objective linear fractional programming problem. 

3.3 | HFMOLFP Problem  

As we know, facing various uncertainties in modeling and receiving information from the problem in the 

face of everyday problems is inevitable. Hesitant fuzzy sets are a useful tool to show decision makers' 

uncertainty and hesitation in assigning membership value to each element of the set. Theory and 

applications of hesitant fuzzy sets significantly developed during the last decade. In HFMOLFP, 

evaluations of several experts based on their experiences establish to make a better decision. According to 

this attitude we can define hesitant fuzzy multi-objective linear fractional programming problem by: 

where the symbol "
%%max " means that we have to maximize the problem under hesitant fuzzy decision 

environment. We have different membership functions for each goal that are presented by the evaluations 

of several experts. Hence, for each objective function of Eq. (5) the HFS 
%%

i

f ( x )
( )

g( x)
as a hesitant fuzzy goal 

can be expressed by: 

 

 

 

p
* k k

tse i i
i 1

T *

i i i i

T *

i i i i

i i i

f max (ξ ξ )

c x α ξ f (x )θ , i 1, 2,..., p,s.t

d x β ξ g(x )θ , i 1, 2,..., p,

θ 0 ,ξ 0 ,ξ 0, i 1, 2,..., p,

x X.

 






 

 

    

    

    





 (4) 

%% p1 2

x X(A,b)
1 2 p

f (x)f (x) f (x)
HFMOLFP : max (( ),( ), ... ,( ))

g (x) g (x) g (x)
 (5) 

or  

%%
1 2 px X(A,b)

f(x) f(x) f(x)
HFMOLFP : max (( ) ,( ) , ... ,( ) ),

g(x) g(x) g(x)
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If we assume 
i

q is the number of experts which are given their comments about the thi goal, then the hesitant 

fuzzy membership function of the thi  goal, can be defined by: 

 
                                                            

 

If 
%  
 
  
 

ki

i

f ( x )

g( x )

μ ( x)  is the corresponded membership function of each objective for all i 1,2,..., p  and 


i i

k 1, 2 , ...,q , then it can be presented by: 

 

                                                

 

 

 

 

 

 

 

 

It should consider, ik

i
z  and ki

iz
d , are the desired value and maximum permissible deviation for thi  goal 

respectively which is determined by the th

i
k  decision maker, 

i i
k 1, 2 , ...,q . 

 

 

                                                                                    

where 
p

h ( x)%  is the hesitant fuzzy decision space of the objectives. 

Before presenting a method to solve the model, it is necessary to provide a proper definition of the 

concept of response in this type of problem. For this purpose, the definition of the hesitant fuzzy 

efficiency solution for the multi-objective linear fractional programming problem is given below. 

 
Definition 5. * *

p
x , h ( x )%  with *x X( A,b) ,  is called hesitant fuzzy efficient solution of Eq. (5) if 

there is not x X( A,b) , such that 

% %      
   
      
   

  k ki i

i i

*

i i
f ( x ) f ( x )

g( x ) g( x )

μ ( x) μ ( x ),  for all i 1, 2 ,..., p, k 1, 2 ,...,q ,  

and, 

% %      
   
      
   

k kj j

j j

*

f ( x ) f ( x )

g( x ) g( x )

μ ( x) μ ( x )  for at least one j {1, 2,..., p}  and 
j j

k 1, 2,...,q . 

 

(6) 

%% % % %1 2 qi

i

i i i

f(x) f(x) f(x) f(x)( )
g(x) g(x) g(x) g(x)

h (x) μ (x),μ (x),...,μ (x) .
     
     
     
          
     

 
 
  

  
 
 
  

%  (7) 

%

i

ki
i

i
k ki i

i i
ki
i

i

ki
i

k

i i

i z
k

i ik zf(x)
i zg(x)

i z

f(x)
1 ( ) z ,

g(x)
f(x)

( ) d
g(x) f(x)

μ (x) d ( ) z ,
g(x)z d

f(x)
0 ( ) d .

g(x)

 
 
 
  
 


 


 


  
 

 




 (8) 

%%

i

p f(x)
( )
g(x)

h (x) h (x) i 1,2,...,p ,

 
 
 

  
 
 
 

% %  (9) 

% ki

i

i i
f(x)

g(x)

μ (x) i 1,2,...,p, k 1,2,...,q ,
 
 
 
  
 

 
 
  

   
 
 
  

 

%%

%%

i

i f(x)
( )
g(x)

f(x)
( ) x,h (x) x X(A, b) .
g(x)

    
     
      

%
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Theorem 4. *x X( A,b)  is an efficient solution of Eq. (3) if and only if *x  is a hesitant fuzzy efficient 

solution of the Problem (5). 

 
Proof. Assume that *x X( A,b)  is not hesitant fuzzy efficient solution of Eq. (5). So, we can state 

% %      
   
      
   

    k ki i

i i

*

i i
f ( x ) f ( x )

g( x ) g( x )

x X( A,b) s.t μ ( x) μ ( x ),  for all i 1, 2 ,..., p, k 1, 2 ,...,q ,  

% %      
   
      
   

k kj j

j j

*

f ( x ) f ( x )

g( x ) g( x )

μ ( x) μ ( x )  for at least one j {1, 2,..., p}  and 
j j

k 1, 2,...,q . 

From 
% %      
   
      
   

k kj j

j j

*

f ( x ) f ( x )

g( x ) g( x )

μ ( x) μ ( x ) , and according to Eq. (8) we have 

kk jj
jj

j j

k kj j
j j

*

j*j zz

k k

j j
z z

f(x )f(x)
( ) d( ) d

g(x) g(x )

z d z d




 

k kj j
j j

*

j j*z z

f(x) f(x )
( ) d ( ) d
g(x) g(x )

   

*

j j*

f(x) f(x )
( ) ( ) ,
g(x) g(x )

   

 

which is in contradiction to efficiency *x  for the Problem (3). 

Conversely, suppose that *x X( A,b)  is not efficient solution of Eq. (3). So, we can state 

    

*

i i

*
i i

f ( x ) f ( x )
x X( A,b) s.t ,   i 1, 2 , ..., p,

g ( x) g ( x )
 



*

j j

*
j j

f ( x) f ( x )

g ( x) g ( x )
  for at least one j {1, 2,..., p} . 

We assume jk

j
z  and k j

jz
d , are the desired value and maximum permissible deviation for jth objective 

function respectively which is determined by the th

j
k  decision maker, 

j j
k 1, 2,...,q . So, from 



*

j j

*
j j

f ( x) f ( x )

g ( x) g ( x )
 we can write 

k kj j
j j

*

j j*z z

f(x) f(x )
( ) d ( ) d
g(x) g(x )

  

kk jj
jj

j j

k kj j
j j

*

j*j zz

k k

j j
z z

f(x )f(x)
( ) d( ) d

g(x) g(x )

z d z d



 
 

% %k kj j

j j

*

f(x) f(x)

g(x) g(x)

μ (x) μ (x ),
   
   
   
      
   

   

which is in contradiction to efficiency *x for the Problem (5).  

Now we can describe our solution method by using the above mentioned concepts. 
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4 | Solution Procedure 
 

At first, we should determine the hesitant fuzzy decision space of HFMOLFP Model (5). For this purpose, 

according to Definition 2, the hesitant decision space caused by all goals can be presented by: 

 
                                                               

Furthermore, using the membership function in Eq. (8) and according to Definition 3, for each 

x X( A,b) , we have: 

 

                                                               

where 
1 2 p

β q ,q , ... ,q  and 
ir i

α {1, 2 , ...,q } . The corresponding MOLFP problem of the rth  member 

of Eq. (11) can be introduced by the following formulation: 

 

 

                                                                                                         

Now, by introducing a new variable and according to Bellman and Zadeh principle we can state equivalent 

nonlinear programming as follows: 

 

                                                                       

To get the efficient solution of the Problem (13), start from the obtained point then employ Algorithm 1. 

After solving Model (13), we obtain r *x  that denotes the thr maximizing solution with the corresponded 

membership degree r *λ  of the HFMOLFP Problem (5). Thus, by solving β  MOLFP problem as Model 

(13), we obtain, β*1* 2*{x , x , ... , x }  with the corresponded membership degree β*1* 2*{λ ,λ , ... ,λ } . 

 As described, after solving the problem, the decision maker can choose the desired value among a set of 

optimal solutions. 

5 | Practical Example 

In this part, we show the efficiency of the proposed model and method by solving a develoed practical 

example of production planning [12].  

Example. A company manufactures two products of A1 and A2 . Assume that the increasing costs and 

capital demands, required are proportional to the individual activities. Also, regardless of the main 

product program 4000 dollars is considered as a fixed capital demand. in order to ensure conventional 

level determination, the inventory is considered more than 10% of the all production. Safety inventory is 

%% %% %%

1 2 p

f(x) f(x) f(x)
D ... .

g(x) g(x) g(x)

     
     
           
          
     

%% I I I  (10) 

% % %

% % %

α α α1 2 p

i i i

α α α1 2 p

i i i

D f(x) f(x) f(x)

g(x) g(x) g(x)

x f(x) f(x) f(x)

g(x) g(x) g(x)

x f(

h μ (x),μ (x), ... ,μ (x),

min{μ (x),μ (x), ... ,μ (x)},

{min{μ

     
     
     
          
     

     
     
     
          
     







%%
% U

% αir

i

p β

i 1 r 1
x)

g(x)

(x)} } ,
  

 
 
  
 

 
(11) 

% αir

i

p

i 1
f(x)r
g(x)

min{μ (x)}

(P) :

s.t. x X(A, b).

 
 
 
  
 



 (12) 

% αir

i

r

f(x)

g(x)

(NLP) : maxλ

s.t. {μ (x)} λ, i 1, 2, ... , p,

λ [0, 1]

x X(A, b).

 
 
 
  
 

 





 (13) 
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carried out, because the demand is uncertain and a product shortage may result if actual demand exceeds 

the forecasted demand. Furthermore, management of the company is determined by the inventory 

constraints for each product, which are 10% and 5% of the total production quantity for each product, 

respectively. Table 1 shows the data for production, which are fixed. The company considers maximization 

for both the profitability of the owned /employed capital and inventory turnover ratio. When production 

quantities of A1 and A2  are 
1

x  and 
2

x  respectively, inventory quantities of them are 
1

y  and 
2

y . Then, 

multi-objective fractional programming of the above problem is as follows:  

Table 1. Information for the production of the example. 

Capacity available Demand per unit of 

each product 

1A  
2A  

Raw material (unites of quality): 250 2 1 

Machines (hours): 500 5 4 

Owned capital (dollars): 5200 40 55 

Profit per unit (dollars) 12 13 

Inventory cost per unit (dollars) 1.5 1.6 

 

In addition, ik

i
z  and ki

iz
d ,  

i
( i 1, 2 and k 1, 2,3)  are the desired value and maximum permissible 

deviation for ith goal respectively which is determined by the th

i
k  decision maker (Table 2). 

 
Table 2. Information of the decision makers. 

 

 i
ki
2

k

2 z
z ,d   i

ki
1

k

1 z
z ,d  𝐃𝐌𝐬 

1
2

1

2 z
(z , d ) (70 , 20)  1

1

1

1 z
(z , d ) (0.1 , 0.1)   DM1 

2
2

2

2 z
(z , d ) (74 , 18)  2

1

2

1 z
(z , d ) (0.12 , 0.06)   DM2 

3
2

3

2 z
(z , d ) (72 , 25)  3

1

3

1 z
(z , d ) (0.13 , 0.09)   DM3 

 
Now, we can write the membership functions corresponding to each of the goals based on their decision 

maker's views by applying Eq. (8). For example, if we use the first decision maker information, the two 

membership functions for the first and second goals are: 

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2 1 2

2 2

1 1

2 2

1 2 1 2

12x 13x
max

12x 13x 4000

12x 13x
max

1.5y 1.6y 2
s.t.                                    

2x x 250,

5x 4x 500,

45x 30x 1200,

0.1(x x ) y y ,

0.05x y ,

x y ,

x y ,

x , x , y , y 0.



 



 

 

 

 

  








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, 

 

 

Other membership functions can be written in a similar way. Hence, the hesitant fuzzy decision space of 

the problem comprises three membership functions for the first goal and three membership functions 

for the second goal. So, 9 fuzzy subspaces (9 fuzzy subproblems) can be considered for it. The results 

for 9 solved problems are summarized in Table 3.  

 
Table 3. Information for the solution of the example. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in Table 3, a set of solutions is got by solving the subproblems. Therefore, the decision maker 

with an optimistic, pessimistic or balanced view of the values in Table 3 can choose the desired solution. 

 

6 | Conclusion 
 
In this study, multi-objective linear fractional programming problem in hesitant fuzzy decision making is 

modeled in which more than one decision maker record their evaluations for the objectives. After 

modeling, we define the concept of hesitant fuzzy efficient solution for hesitant fuzzy multi-objective 

linear fractional programming problem. Then, by using hesitant fuzzy decision space, the main problem 

is converted to the equivalent problem. After that, by tracking simple stages, hesitant fuzzy efficient 

solution can be found in a proper way. A decision maker can use the obtained solutions from solving the 

hesitant fuzzy problem based on the desired achievement degree. A practical oriented production 

planning is modeled and solved to show the validity and efficiency of the proposed solution process. 

% 1

1

1

1 2

1 2

1
f(x)

g(x)

1

f(x)
1 ( ) 01,

g(x)
12x 13x

( 0.1)
12x 13x 4000 f(x)

μ (x) 0.1 ( ) 0.1,
0.1 ( 0.1) g(x)

f(x)
0 ( ) 0.1.

g(x)

 
 
 
  
 


 

 
    

   
  
  





  

% 1

2

2

1 2

1 2

2
f(x)

g(x)

2

f(x)
1 ( ) 70,

g(x)
12x 13x

20
1.5y 1.6y 2 f(x)

μ (x) 20 ( ) 70,
70 20 g(x)

f(x)
0 ( ) 20.

g(x)

 
 
 
  
 


 

 
   

  
 
 





 

r *x  
r*λ  r(NLP)  

(2.051282 , 36.92308 , 2.051282 , 1.846154) 0.8567048 1(NLP)  

(2.051282 , 36.92308 , 2.051282 , 1.846154) 0.8006294 2(NLP)  

(2.051282 , 36.92308 , 2.051282 , 1.846154) 0.8050052 3(NLP)  

(0.00000 , 40.0000 , 0.00000 , 4.108629) 0.7992829 4(NLP)  

(1.324434 , 38.01335 , 1.324434 , 2.609345) 0.7945699 5(NLP)  

(1.08807 , 38.37579 , 1.082807 , 2.863053) 0.7954362 6(NLP)  

(0.00000 , 40.00000 , 0.00000 , 4.000000) 0.7903226 7(NLP)  

(0.5874268 , 39.11886 , 0.5874268 , 3.383202) 0.7886210 8(NLP)  

(0.4191001 , 39.37135 , 0.4191001 , 3.559945) 0.7891099 9(NLP)  
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