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Abstract 

 

1 | Introduction  

From the seminal paper [71] on fuzzy set theory, several extensions for this theory have been 

proposed [18]. Among them, we stress “Interval-valued Fuzzy Sets Theory” [10], [19], [72] and 

“Atanassov’s Intuitionistic Fuzzy Sets Theory” [2], [5], [25], [26]. Although they are mathematically 

equivalents, they capture dif- ferent kinds of uncertainty in the membership degrees, i.e. they have 

different semantics [61]. The first one takes in account the intrinsic difficulty to determine the exact 

membership degree of an object to some linguistic term; in this case, an expert provides an interval 

which expresses his uncertainty on such degree. The second one adds an extra degree to the usual 

fuzzy sets in order to model the hesitation and uncertainty about the membership degree. In fuzzy 

set theory, the non-membership degree is by default the complement of the membership degree, i.e. 
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1- µA (x) , meaning that there is no doubt or hesitation in the membership degree. In [3], both extensions 

are mixed by considering that we can also have an uncertainty or imprecision in the membership and 

non-membership degrees if we model them with intervals. This results in other extension of fuzzy set 

theory, known as Interval-Valued Atanassov’s Intuitionistic Fuzzy Sets (IVAIFS). Several applications 

of IVAIFS, and extensions of usual fuzzy notions to the IVAIFS framework have been made, see for 

example [4], [7], [21], [32], [51], [64]. 

Besides, Group Decision Making (GDM) and Multi-attribute Decision Making (MADM) are the most 

well know branches of decision making. GDM consists in choosing of one or more alternatives among 

several ones by a group of decision makers (experts), probably with a weight of confidence [24]. MADM 

choosing one or more alternatives among several ones based in the assesses of an expert his opinion of 

how much the alternative fulfills a criteria or satisfies an attribute. Usually, a weighting vector for the 

attributes is associated, in order to represent the importance of an attribute in the overall decision 

problem. Nevertheless, complex decision making problems usually need to consider a group of experts 

as well as a set of criteria or attributes, i.e. a Multi-attribute Group Decision Making (MAGDM) [28], 

[43], [55], [59]. 

Fuzzy logic, by their nature, has played an important role in the field of decision making, since decision 

makers can be subject to uncertainty expressed in terms of fuzzy degrees [46], [47], [55], [57]. An 

important mathematical tool for fuzzy decision-making are Weighted Average (WA) and the Ordered 

Weighted Average (OWA) operators introduced in [69], which have triggered their “extension” for 

Interval-Valued Atanassov’s Intuitionistic Fuzzy Values (IVAIFV) – see for example [65], [67]. 

However, in the cited cases, the proposed interval-valued Atanassov’s intuitionistic OWA, although of 

preserve some algebraic properties of the OWA (monotonicity, idempotency, symmetry and 

boundedness [16]), have not the same behaviour as the OWA when applied to diagonals elements. 

In [11], [54], in order to formalize the principle of correctness of interval computation [37], it was 

introduce the notion of interval representation of real functions. In addition, the best of the interval 

representations of a real function models the notion of optimality in interval computing. This notion 

has been used in the context of interval-valued fuzzy functions, to obtain interval-valued t-norms (t-

conorms, overlap functions, fuzzy negations and fuzzy implications) from t- norms (t-conorms, overlap 

functions, fuzzy negations and fuzzy implications) in [1], [8], [14], [34]. In this paper we extend the 

notion of interval-valued representation and the best interval-valued representation of fuzzy functions 

for the interval-valued Atanassov’s intuitionistic representations of fuzzy and interval- valued fuzzy 

functions. In particular, we provide a novel extension of the WA and OWA operator for IVAIFS, based 

on the best interval-valued Atanassov’s intu- itionistic fuzzy representation, which preserve the main 

properties of the OWA operators and when restrict to the diagonals elements it is an OWA in 0, 1 . This 

new IVAIFAF OWA together with some total orders for IVAIFV are used to develop a method to rank 

alternatives from the individual interval-valued Atanassov’s intuitionistic decision matrices of a group 

of experts reflecting how much each alternative satisfy each attribute. Two illustrative examples are 

considered in order to show the use of the method and to show that the final ranking of alternatives 

obtained by the method is adequate. 

This paper is organized as follows: Section 2 introduces Atanassov intuitionisc and interval-valued fuzzy 

sets, the score and accuracy index and the notion of representation in particular in the interval-valued 

and Atanassov intuitionisc best representation of the WA and OWA operators. In Section 3 it is consider 

the notion of interval-valued intuitionistic fuzzy set and some orders for interval-valued. Atanassov’s 

intuitionistic fuzzy values are presented. In particular, based in a novel notion of membership and 

subsets, interval-valued intuitionistic fuzzy degrees are seen as an interval of interval-valued fuzzy 

degrees and based in this 

point of view a new total order for IVAIFV is provided. In Section 4 it is introduced the notion of 

IVAIFV representation and it is provide a canonical way of obtain the best representation of an interval-
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valued fuzzy function and of a fuzzy func- tion, which is used to obtain the best IVAIFV representation 

of the WA and OWA operators. In Section 5 the total orders on IVAIFV and the best IVAIFV 

representation of the WA and OWA are used to develop a method to solve MAGDMP and this method 

is used in two illustrative examples. Finally in Section 6 some final remarks on the paper are provided. 

2| Preliminaries 

Atanassov in [2] extended the notion of fuzzy sets, by adding an extra degree to model the hesitation or 

uncertainty in the membership degree. This second degree is called non-membership degree. In fuzzy set 

theory, by default, this non- membership degree is given by the complement of the membership degree, 

i.e. one minus the membership degree, and therefore is fixed whereas in Atanassov intuitionistic fuzzy sets 

the non-membership degree may take any value between zero and one minus the membership degree. 

Definition 1. [2]. Let X be a non-empty set and two functions
A

μ ,
A

ν : X [0 , 1] . Then 

is an Atanassov Intuitionistic Fuzzy Set (AIFS) over X if 
A A

μ ( x) ν ( x) 1   for each x X . 

The functions 
A

μ and 
A

ν  provide the membership and non-membership degrees of elements in X to the 

AIFS A. Let 2L {( x , y) [0 , 1] / x y 1}     . Elements of L  are calledL  -values. We define the 

projections l, r : L [0,1]  by l(x,y)=x and r(x,y)=y, but by notational simplicity, we will denote x
%

 and x%

instead of l(x) and r(x), respectively. 

The usual partial order on L is the following: 

Deschrijver and Kerre [33] proved that
L

L ,


    is a complete lattice and therefore that AIFS are a 

particular kind of L-fuzzy set, in the sense of Goguen [35]. 

Let A be an AIFS over X. The intuitionistic fuzzy index1 of an element x X to A is given by

*

A A A
π ( x) 1 -μ ( x) ν ( x)  . In particular, the intuitionistic fuzzy index of *x L is defined in a similar way, 

i.e. *

A
π ( x) 1 -l( x) r( x)  . This index measures the hesitation degree in each *x L . 

In [27], Chen and Tan, introduce the notion of score of a L -value as the function *S : L [ 1, 1]  defined 

by 

 

 

In [38], Hong and Choi, introduce the notion of accuracy function for an L -value as the function 
*h : L [0, 1]   defined by 

 

 

1 In the seminal paper on AIFS, i.e. in [2], this index was called degree of indeterminacy of an element x X to A  

A A
A {(x,μ (x), ν (x)) / x X},    

  *x L  y if x y and y x%%
% %

.  

 *S (x) x x%
%

 (1) 

 *h (x) x x%
%

 (2) 
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Xu and Yager in [68], based on the score and accuracy index on L  and with the goal of rank L  -

values, introduce the total order on L  defined by 

 

 

In [36], [40], [52], [72] and in an independent way, fuzzy set theory was extended by considering 

subintervals of the unit interval [0,1] instead of a single value in [0,1]. The main goal was to represent 

the uncertainty in the process of assigning the membership degrees. 

Definition 2. Let X be a non-empty set and L {[a, b] / 0   a  b 1}    be the set of closed 

subintervals of [0,1]. An Interval-Valued Fuzzy Set (IVFS) A over X is an expression 

Where
A

μ : X L.   

Define the projections1 ,  : L [0,1]   by  ([a,b]) = a  and ([a,b]) b.     

For notational simplicity, for an arbitrary X L , we will denote ( x) and (x) by X  and X , 

respectively. An interval X L is degenerate if X = X , i.e. X=[x,x] for some x [0 , 1] . Given X L , 

we denote its standard complement [1 X ,  1-X] by X. A more general notion of complement (or 

negation) for L  -values can be found in [8]. 

We can consider the following partial order on L, 

 

 

As it is well-known, 
L

L,   is a complete lattice and so it can be seen as a Goguen L-fuzzy set. 

As pointed by Moore in [45], an interval has a dual nature: as a set of real numbers and as a new kind of 

number (an ordered pair of real numbers with the restriction that the first component is smaller than or 

equal to the second one). The order 
L

  is an order which stresses the nature of ordered pair for elements 

in L whereas the inclusion of sets stresses the nature of set for elements in L. Nevertheless, the inclusion 

order on L can also be expressed using the ordered pair nature as follows: 

 

The score and accuracy function for interval fuzzy values, i.e. of an arbitrary interval X L are defined 

as follows: 

 

Where v( X ) X X  and w( X ) X X  . 

1
These projections are particular cases of Atanassov’s Kα-operator for intervals [19], [48].  

   * * * * * *

YY
x y if s (x) s (y) or (s (x) s (y) and h (x) h (y)) . (3) 

 
A

A {(x,μ (x)) / x X}.   

L
X Y iff X Y and X Y.     

   X Y iff Y X X Y .  

s(X) = v(X) -1 and h(X)= 1-w(x) .  
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As it is well known, the lattices 

L
L ,



   and 
L

L,   are isomorphic. The map *ρ :  L L defined by

ρ( X ) :  (X ,  1-X) is a such an isomorphism. Although both lattices are algebraically equivalent, from a 

semantical point of view they are different [61]. 

Remark 1. Note that, the score and the accuracy indexes on L  and L are related as follows: *s s  ο ρ

and *h h  ο ρ . Notice that the partial order  
XY

 on L obtained from the partial order
XY

 in Eq.(3) by 

using this isomorphism, i.e. 
XY

X Y iff 
XY

ρ( X ) ρ(Y ) , can be equivalently obtained as following: 

Bustince et al. [22] introduced the notion of admissible orders in the context of interval-valued fuzzy 

functions in order to always be possible to compare intervals which is important in some kind of 

applications [23]. An order   on L is admissible if it refines
L L

   , i.e. X Y whenever
L

X Y . In 

particular
XY

  is an admissible order. Other examples of admissible orders can be found in [53]. In addition, 

when we translate the notion of intuitionistic fuzzy index for interval values, we get the interval-valued 

fuzzy index *Π( X ) π (ρ( X )) X X w( X )    for each X L . Thus, the length of an interval is a measure 

of their indeterminacy or imprecision. 

2.1| The Best L and L* Representation of the OWA Operator 

In [13], it was adapted the notion of interval representation of [11], [54] in the context of interval-valued 

fuzzy sets theory for the particular case of the intervalvalued t-norms. Interval representation captures, in 

a formal way, the property of correctness of interval functions in the sense of [37]. From then, interval 

representations of several other connectives and fuzzy constructions (see for example [8], [12], [49]) have 

been studied. Here we are interested in considering the case of n-ary increasing fuzzy functions. Let’s start 

recalling some notions. 

Definition 3. Let nf :  [0,1]   [0,1] be an n-ary function. A function nF :  L   L is an interval 

representation or L-representation of f if for each 
1 n

X ,....., X L and 
i i

x X with i=1,....,n we have that

1 n 1 n
f ( x ,....., x ( X ,...F ).., X)  .  

Let nF ,G :  L   L . We write 
L

F    G  , if for any
1 n

X ,....., X L , 
1 n 1 n

G( X ,....., X F( X ,... ).., X)  . 

Notice that if X ,Y L and X Y then )h( X) h(Y . Thus, 
L

F    G  means that G is always more 

accurate than F, i.e. 
1 n 1 n

h )) h(( F( X ,....., X G( X ,....., X )) for any
1 n

X ,....., X L . Notice also that if G is 

an L-representation of a function f and
L

F    G  then F is also an L-representation of f, but less accurate 

than G. Therefore, G is a better L-representation of f than F. 

Proposition 1. [34]. Let nf :  [0,1]   [0,1] be an n-ary increasing fuzzy function. Then the function

nf̂ :  L   L defined by 

is an L-representation of f. Moreover, for any other L-representation F of f, 
L
ˆF f .  

f̂  is therefore the more accurate L-representation of f, i.e. the best L-representation w.r.t. the 
L

order. So 

f̂ has the property of optimality in the sense of [37]. 

  
XY XY

X Y iff s(X) s(Y) or (s(X) s(Y) and h(X) h(Y)).p  (4) 


1 n 1 n 1 n

f̂(X ,....,X ) [f(X ,....,X ),f(X ,....,X )] , ( ) 
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Remark 2. [10]. An important characteristic of the best L-representation is that when we identify points 

and degenerate intervals, via the merging m( x) [x,x] , f and f̂ have the same behavior, i.e. 


1 n 1 n

ˆm( f ( x , ..., x )) f ( m( x ), ..., m( x )). Another property of the best L-representation of some increasing 

function is that it is isotone with respect to both, the inclusion order and the  L order, i.e. if
i i

X ,Y L  

and i 1, ...., n  then 𝑓(̂𝑋1, … ,𝑋𝑛) ⊆ 𝑓(̂𝑌1, … ,𝑌𝑛) and, analogously, if 𝑋𝑖 ≤𝕃 𝑌𝑖 for each 𝑖 = 1,… , 𝑛 then 

𝑓(̂𝑋1, … ,𝑋𝑛) ≤𝕃 𝑓(̂𝑌1, … ,𝑌𝑛).  

Let Λ = (𝜆1, … , 𝜆𝑛) ∈ [0,1]
𝑛 be an n-ary weighting vector, i.e. ∑𝑛

𝑖=1 𝜆𝑖 = 1. The weighted average (WA) 

operator is defined by 

 

 

The Ordered Weighted Averaging (OWA) operator introduced by Yager [69] is defined by 

 

 

Where 𝜎: {1,… , 𝑛} → {1,… , 𝑛} is the permutation such that 𝑥𝜎(𝑖) ≥ 𝑥𝜎(𝑖+1) for any 𝑖 = 1,… , 𝑛 − 1, i.e. it 

orders in decreasing way a n-tuple of values in [0,1] and so 𝑥𝜎(𝑖) is the 𝑖th greatest element of {𝑥1, … , 𝑥𝑛}. 

Notice that, 

 

Several interval-valued and Atanassov intuitionistic extensions of the OWA operator have been 

proposed (see for example [15], [44], [70]), but most of them are not 𝕃 (𝐿∗)-representations of the OWA 

operator and do not reduce to the fuzzy OWA operator when applied to degenerate intervals. 

The best 𝕃-representation of 𝑜𝑤𝑎Λ is the interval-valued function 𝑜𝑤𝑎𝛬̂:𝕃
𝑛 →𝕃 defined by 

Where 𝑋𝜏𝑖 = [𝑋𝜏1(𝑖)
,𝑋𝜏2(𝑖)

]; 𝜏1, 𝜏2: {1, … , 𝑛} → {1,… , 𝑛} are permutations such that 𝑋𝜏1(𝑖)
≥ 𝑋𝜏1(𝑖+1)

 and 

𝑋𝜏2(𝑖)
≥ 𝑋𝜏2(𝑖+1)

 for any 𝑖 = 1,… , 𝑛 − 1; the scalar product is the usual in interval mathematics (see [45]), 

i.e. for any 𝜆 ∈ [0,1] and 𝑋,𝑌 ∈ 𝕃, 𝜆𝑋 = [𝜆𝑋,𝜆𝑋] and the sum is w.r.t. the limited addition defined by 

𝑋[+]𝑌 = [min(𝑋 + 𝑌, 1),min(𝑋 + 𝑌, 1)]. Notice that, in this case, because∑𝑛
𝑖=1 𝜆𝑖 = 1, 

 

 

Where [∑𝑛
𝑖=1 ] is the sommatory with respect to [+] and ∑𝑛

𝑖=1  is the sommatory with respect the usual 

addition between intervals (see [45]). 

Note that for each term in the sum above, lower and upper bounds from different intervals may be 

considered for a given weight𝜆𝑖. For example, for 𝜆1 = 0.2, 𝜆2 = 0.3, 𝜆3 = 0.5, 𝑋1 = [0.6,0.8], 𝑋2 =

[0.7,0.9] and 𝑋3 = [0.5,1] we have that [∑3
𝑖=1 ]𝜆𝑖𝑋𝑖 = [𝑚𝑖𝑛(0.2 ⋅ 0.6 + 0.3 ⋅ 0.7 + 0.5 ⋅ 0.5,1),𝑚𝑖𝑛(0.2 ⋅ 0.8 +

0.3 ⋅ 0.9 + 0.5 ⋅ 1,1)] = [0.58,0.93] = [0.2 ⋅ 0.6 + 0.3 ⋅ 0.7 + 0.5 ⋅ 0.5,0.2 ⋅ 0.8 + 0.3 ⋅ 0.9 + 0.5 ⋅ 1] =

∑3
𝑖=1 𝜆𝑖𝑋𝑖. 

waΛ(x1, … , xn) =∑

n

i=1

λixi.  

owaΛ(x1, … , xn) =∑

n

i=1

λixσ(i).  

owaΛ(x1, … , xn) = waΛ(xσ(1), … , xσ(n)). (6) 

owaΛ̂(X1, … , Xn) = [owaΛ(X1, … , Xn), owaΛ(X1, … , Xn)] =∑

n

i=1

λiXτ(i).  

[ 
  
  
 

∑

n

i=1

] 
  
  
 

λiXi = [ 
  
  
 

min( 
  
  
 

∑

n

i=1

λiXi, 1) 
  
  
 

,min ( 
  
  
 

∑

n

i=1

λiXi, 1) 
  
  
 

] 
  
  
 

= [ 
  
  
 

∑

n

i=1

λiXi,∑

n

i=1

λiXi] 
  
  
 

=∑

n

i=1

λiXi. 

(7) 
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Analogously, a function 𝐹: (𝐿∗)𝑛 → 𝐿∗ is an 𝐿∗-representation of a function 𝑓: [0,1]𝑛 → [0,1] if for each 𝐱𝑖 ∈

𝐿∗ and 𝑥𝑖 ∈ [𝐱𝑖, 1 − 𝐱𝑖̃], with 𝑖 = 1,… , 𝑛, 

 

 

Let 𝐹, 𝐺: (𝐿∗)𝑛 → 𝐿∗. We denote by 𝐹 ⊑𝐿∗ 𝐺, if for any x1, … , x𝑛 ∈ 𝐿
∗, 𝐺(x1, … , x𝑛) ⊆𝐿∗ 𝐹(x1, … , x𝑛), where 

𝑥 ⊆𝐿∗ 𝑦 if 𝑥 ≤ 𝑦 and 𝑥̃ ≤ 𝑦̃. Notice that although of this order be the usual on 𝑅2, considering the 

mathematical equivalence of 𝐿∗ and 𝕃, we have that 𝑥 ⊆𝐿∗ 𝑦 iff 𝜌
−1(𝑋) ⊆ 𝜌−1(𝑌). Thus, 𝐹 ⊑𝐿∗ 𝐺 means than 

the result of 𝐺 is always more accurate than the result of 𝐹, i.e. ℎ∗(𝐹(𝑥1, … , 𝑥𝑛)) ≤ ℎ∗(𝐺(𝑥1, … , 𝑥𝑛)) for any 

𝑥1, … , 𝑥𝑛 ∈ 𝐿
∗. 

Proposition 2. Let 𝑓: [0,1]𝑛 → [0,1] be an increasing function. Then the function 𝑓: (𝐿∗)𝑛 → 𝐿∗ defined by  

 

 

 

is the greatest 𝐿∗-representation of 𝑓 w.r.t. ⊑𝐿∗ order and so is the best one.  

Proof.  If 𝑥𝑖 ∈ [𝐱𝑖, 1 − 𝐱𝑖̃] for each 𝑖 = 1,… , 𝑛, then because 𝑓 is increasing we have that 𝑓(𝑥1, … , 𝑥𝑛) ≤

𝑓(𝑥1, … , 𝑥𝑛) ≤ 𝑓(1 − 𝑥1̃, … ,1 − 𝑥𝑛̃) and therefore, 𝑓(𝑥1, … , 𝑥𝑛) ≤ 𝑓(𝑥1, … , 𝑥𝑛) ≤ 1 − 𝑓(𝑥1, … , 𝑥𝑛)̃ . So, 

𝑓(𝑥1, … , 𝑥𝑛) is an 𝐿∗-representation of 𝑓.  

Now, suppose that 𝐹 is another 𝐿∗-representation of 𝑓, then by Eq. (8) and because 𝑓 is increasing, we 

have that 𝐹(𝑥1, … , 𝑥𝑛) ≤ 𝑓(𝑥1, … , 𝑥𝑛) ≤ 𝑓(1 − 𝑥1̃, … ,1 − 𝑥𝑛̃) ≤ 1 − 𝐹(𝑥1, … , 𝑥𝑛)̃ . Therefore, 

𝑓(𝑥1, … , 𝑥𝑛) ⊆𝐿∗ 𝐹(𝑥1, … , 𝑥𝑛), i.e. 𝐹 ⊑∗ 𝑓.               

Moreover, if 𝑓 is an aggregation function then 𝑓 is also an 𝐿∗-valued aggregation function [42] (Lemma 1). 

Clearly, 𝑓 = 𝜌 ∘ 𝑓̂ ∘ 𝜌−1, or equivalently, 𝑓̂ = 𝜌−1 ∘ 𝑓 ∘ 𝜌. Therefore, 𝑜𝑤𝑎Λ it is the best 𝐿∗-representation of 

𝑜𝑤𝑎Λ . 

Proposition 3. Let f, g: [0,1]n → [0,1]. If f ≤ g then f̂ ≤ ĝ and f ≤ g.  

Proof.  Straightforward. 

Remark 3. owa as well as owâ are interval-valued and Atanassov intuitionistic aggregation functions in 

the sense of [42]. Moreover, both are symmetric and idempotent, and as a consequence of the above 

proposition, they are bounded by owa(0,…,0,1)̂  (owa(0,…,0,1)), i.e. min̂ (min) and owa(1,0,…,0)̂  (owa(1,0,…,0)), i.e. 

max̂ (max). 

3| Interval-Valued Atanassov’s Intuitionistic Fuzzy Sets 

Definition 4. [3]. An IVAIFS 𝐴 over a nonempty set 𝑋 is an expression given by 

where 𝜇𝐴, 𝜈𝐴:𝑋 → 𝕃 with the condition 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1.  

Deschrijver and Kerre [33] provide an alternative approach for Atanassov intuitionistic fuzzy sets in term 

of L-fuzzy sets in the sense of Goguen [35]. Analogously, we can also see IVAIFS as a particular case of 

L-fuzzy set by considering the complete lattice 〈𝕃∗,≤𝕃∗〉 where 

F(x1, … , xn) ≤ f(x1, … , xn) ≤ 1 − F(x1, … , xn)̃ . (8) 

f(x1, … , xn) = (f(x1, … , xn), 1 − f(1 − x1̃, … ,1 − xñ)).  

A = {(x, μA(x), νA(x))/x ∈ X},  
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And 

Notice that 0𝕃∗ = ([0,0], [1,1]) and 1𝕃∗ = ([1,1], [0,0]). Analogously to the case of 𝐿∗, we define the 

projections 𝑙, 𝑟: 𝕃∗ → 𝕃 by 

and for each 𝑋 ∈ 𝕃∗, we denote 𝑙(𝑋) and 𝑟(𝑋) by 𝑋 and 𝑋̃, respectively. 

Elements of 𝕃∗ will be called 𝕃∗-values. An 𝕃∗-value 𝑋 is a semi-diagonal element if 𝑋 and 𝑋̃ are 

degenerate intervals. 𝑋 ∈ 𝕃∗ is a diagonal element if 𝑋 + 𝑋̃ = [1,1] i.e. if 𝑋 = ([𝑥, 𝑥], [1 − 𝑥, 1 − 𝑥]) for 

some 𝑥 ∈ [0,1]. We denote by 𝒟𝑆 and 𝒟  the sets of semi-diagonal and diagonal elements of 𝕃∗, 

respectively. Clearly, 𝒟 ⊆ 𝒟𝑆 and there is a bijection between [0,1] and 𝒟 (𝜙(𝑥) = ([𝑥, 𝑥], [1 − 𝑥, 1 − 𝑥])), 

between 𝐿∗ and 𝒟𝑆 (𝜓(𝑥) = ([𝑥, 𝑥], [𝑥̃, 𝑥̃])) and between 𝕃 and 𝒟𝑆 (𝜑(𝑋) = ([𝑋,𝑋], [𝑋,𝑋]𝑐), i.e. 𝜑 = 𝜓 ∘ 𝜌) 

[29]. 

3.1 | Some indexes for 𝕃∗-Values 

In [50] the Atanassov intuitionistic fuzzy index was extended for IVAIFS, in order to provide an interval 

measure of the hesitation degree in IVAIFS. Let 𝐴 be an IVAIFS over a set 𝑋. The interval-valued 

Atanassov intuitionistic fuzzy index of an element 𝑥 ∈ 𝑋 for the IVAIFS 𝐴 is determined by the 

expression Π ∗(𝑥) = [1,1] − 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥). In an analogous way the interval-valued Atanassov 

intuitionistic fuzzy index of an (𝑋, 𝑌) ∈ 𝕃∗ is defined by 

 

The Chen and Tan score measure was extended for 𝕃∗ in [66] 1 and [41]. 

In this paper we consider Xu’s definition: Let 𝑆: 𝕃∗ → [−1,1] be defined by 

For each 𝑋 ∈ 𝕃∗, 𝑆(𝑋) is called the score of 𝑋. 

Remark 4. 𝑆 when applied to semi-diagonal elements is the same, up to an isomorphism 𝜓, as 𝑠∗, i.e. 

𝑆(𝜓(𝑥)) = 𝑠∗(𝑥) for any 𝑥 ∈ 𝐿∗. Analogously, 𝑆 when applied to semi-diagonal elements is the same, up to 

an isomorphism φ, as s, i.e. S(φ(X)) = s(X) for any X ∈ 𝕃. Moreover, the range of S ([−1,1]) is the same 

as that of s ∗ and S can be obtained from s and s ∗, as shown by the Eq. (10). 

 

Since we can have two different 𝕃∗-values with the same score, for example 𝑆([0.2,0.3], [0.4,0.5]) =

𝑆([0.1,0.2], [0.3,0.4]) = −0.2, the score determines just a pre-order on 𝕃∗: 

1 Because this reference is in Chinese, we are based on the definition in [64]. 

𝕃∗ = {(𝑋, 𝑌) ∈ 𝕃 × 𝕃/𝑋 + 𝑌 ≤ 1}.  

(X1, X2) ≤𝕃∗ (Y1, Y2)  iff   X1 ≤𝕃 Y1   and   Y2 ≤𝕃 X2.  

l(X1, X2) = X1   and   r(X1, X2) = X2,  

Π ∗(X,Y) = [1,1] − X − Y. (9) 

S(X) =
v(X) − v(X̃)

2
.  

S(X) =
s ∗ (s(X), s(X̃))

2
. 

(10) 

X ≤S Y   iff   S(X) ≤ S(Y).  
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Since ≤𝑆 is a pre-order, it defines the following natural equivalence relation: 𝑋 ≡𝑆 𝑌 iff 𝑋 ≤𝑆 𝑌 and 𝑌 ≤𝑆 𝑋 

Another important index for 𝕃∗-values is the extension of the accuracy function. Nevertheless, in the 

literature several non-equivalent such “extensions” have been proposes. In [29], [30], it was made an 

analysis of five of such proposals concluding that the more reasonable would be the new accuracy function 

proposed in that paper and the one proposed in [66]. Here we will consider Xu’s accuracy function: 

because, analogously to the case of 𝑆, the Xu’s accuracy function when applied to semi-diagonal elements 

is the same, up to an isomorphisms 𝜓 and 𝜑, as ℎ∗ and ℎ, respectively, i.e. 𝐻(𝜓(𝑥)) = ℎ∗(𝑥) for any 𝑥 ∈ 𝐿∗ 

and 𝐻(𝜑(𝑋)) = ℎ(𝑋) for any 𝑋 ∈ 𝕃. In addition, the range of 𝐻, ℎ and ℎ∗ are the same. 

3.2| Order for 𝕃∗-Values 

In [56], it was introduced the notion of n-dimensional fuzzy interval and it was observed that 4-dimensional 

fuzzy sets are isomorphic to IVAIFS. The degrees in an n-dimensional fuzzy interval take values in 

𝐿𝑛([0,1]) = {(𝑥1, … , 𝑥𝑛) ∈ [0,1]
𝑛/𝑥𝑖 ≤ 𝑥𝑖+1 for each 𝑖 = 1,… , 𝑛 − 1}. In [9] the elements of 𝐿𝑛([0,1]) are called 

n-dimensional intervals and the bijection 𝜚:𝕃∗ → 𝐿4([0,1]) defined by 𝜚(𝑋) = (𝛻(𝑋),△ (𝑋),1 −△ (𝑋̃),1 −

𝛻(𝑋̃)) was provided. One of the possible interpretations considered in [9] for the 4-dimensional intervals 

(𝑥1, 𝑥2, 𝑥3, 𝑥4) is that the intervals [𝑥1, 𝑥2] and [𝑥3, 𝑥4] represent an interval uncertainty in the bounds of an 

interval-valued degree, i.e. of an element [𝑥, 𝑦] ∈ 𝕃, and so 𝑥 ∈ [𝑥1, 𝑥2] and 𝑦 ∈ [𝑥3, 𝑥4]. Having it in mind, 

we introduce the notion of membership of 𝕃-values in 𝕃∗-values. 

Definition 5. Let X ∈ 𝕃 and 𝑋 ∈ 𝕃∗. We say that 𝑋 ∈ 𝑋 if 𝑋 ∈ 𝑋 and 𝑋 ∈ 𝑋̃𝑐.  

Observe that this notion is strongly related to the notion of nesting given in 

[6], [7] and therefore also can be used as a representation of IVAIFS by pairs of 

AIFS. 

Notice that, for each 𝑋, 𝑌, 𝑍 ∈ 𝕃, 

I. if 𝑋 ⊆ 𝑌 ⊆ 𝑍 and 𝑋,𝑍 ∈ 𝑌 for some 𝑌 ∈ 𝕃∗, then 𝑌 ∈ 𝑌; 

II. if 𝑋 ≤𝕃 𝑌 ≤𝕃 𝑍 and 𝑋,𝑍 ∈ 𝑌 for some 𝑌 ∈ 𝕃∗, then 𝑌 ∈ 𝑌; 

III. 𝑌 ∈ 𝜑(𝑋) iff 𝑌 = 𝑋.  

For any 𝑋 ∈ 𝕃∗ we will denote 

 

 

i.e. 𝑋⃗ = [𝛻(𝑋),1 −△ (𝑋̃)] and 𝑋⃖ = [△ (𝑋),1 − 𝛻(𝑋̃)]. Notice that, the set 𝑆𝑋 = {𝑋 ∈ 𝕃/𝑋 ∈ 𝑋} is bounded, i.e. 

for any 𝑋 ∈ 𝑆𝑋 , 𝑋⃗ ≤𝕃 𝑋 ≤𝕃 𝑋⃖ and 𝑋⃗, 𝑋⃖ ∈ 𝑆𝑋 . Thus, 𝑆𝑋 is a closed interval ([𝑋⃗, 𝑋⃖]) of 𝕃-values and hence, 

analogously to 𝕃-values, 𝕃∗-values also have a dual nature: as an ordered pair of 𝕃-values with some 

condition and as a set (an interval) of 𝕃-values. 

3.2.1 | Subset order for 𝕃∗-values 

Since the usual membership relation is used to introduce the subset relation in set theory, the relation ∈ 

will allow us to introduce a notion of subset between 𝕃∗-values. Let 𝑋,𝑌 ∈ 𝕃∗, we say that 𝑋 ⊆ 𝑌 if for 

each 𝑋 ∈ 𝑋 we have that 𝑋 ∈ 𝑌. Analogously to the case of 𝕃-values, we can also define this inclusion 

relation via the bounds of the interval associated to 𝕃∗-values. 

H(X) =
v(X) + v(X̃)

2
.  

X⃗ = [∇ (X),∇ (X̃c)]   and   X⃖ = [△ (X),△ (X̃ c)], (11) 
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Proposition 4.  Let 𝑋, 𝑌 ∈ 𝕃∗. Then the following expression are equivalents   

I. 𝑋 ⊆ 𝑌;  

II. 𝑆𝑋 ⊆ 𝑆𝑌;  

III. 𝑌⃗ ≤𝕃 𝑋⃗ ≤𝕃 𝑋⃖ ≤𝕃 𝑌⃖;  

IV. 𝑋 ⊆ 𝑌   𝑎𝑛𝑑   𝑋̃ ⊆ 𝑌̃. 

Proof. 

I. 1⇒2: If X▁(⊆) Y then for each X▁(∈) X also X▁(∈) Y, and so S_X⊆S_Y. 

II. 2 ⇒ 3: Straightforward once that 𝑆𝑋 = [𝑋⃗, 𝑋⃖]. 

 3 ⇒ 4 𝑌⃗ ≤𝕃 𝑋⃗ ≤𝕃 𝑋⃖ ≤𝕃 𝑌⃖ then by definition [𝛻(𝑌), 𝛻(𝑌̃𝑐)] ≤𝕃 [𝛻(𝑋), 𝛻(𝑋̃
𝑐)] ≤𝕃 [△ (𝑋),△

(𝑋̃𝑐)] ≤𝕃 [△ (𝑌),△ (𝑌̃𝑐)] So, 𝛻(𝑌) ≤ 𝛻(𝑋) ≤△ (𝑋) ≤△ (𝑌) and 𝛻(𝑌̃𝑐) ≤ 𝛻(𝑋̃𝑐) ≤△ (𝑋̃𝑐) ≤△ (𝑌̃𝑐), i.e. 

1 −△ (𝑌̃) ≤ 1 −△ (𝑋̃) ≤ 1 − 𝛻(𝑋̃) ≤ 1 − 𝛻(𝑌̃). Therefore 𝑋 ⊆ 𝑌   𝑎𝑛𝑑   𝑋̃ ⊆ 𝑌̃.

IV. 4 ⇒ 1: If 𝑋 ∈ 𝑋 then 𝑋 ∈ 𝑋 and 𝑋 ∈ 𝑋̃𝑐. So, because 𝑋 ⊆ 𝑌 and 𝑋̃ ⊆ 𝑌̃, then 𝑋 ∈ 𝑌 and 𝑋 ∈ 𝑌̃𝑐. 

Therefore, 𝑋 ∈ 𝑌 and hence 𝑋 ⊆ 𝑌. 

Remark 5. Some properties of ▁(⊆): 

i. It is a partial order on 𝕃∗-values; 
 

ii. For each 𝑋, 𝑌 ∈ 𝕃, 𝜑(𝑋) ⊆ 𝜑(𝑌) iff 𝑋 = 𝑌; 

 
iii. For each 𝑥, 𝑦 ∈ [0,1], 𝜙(𝑥) ⊆ 𝜙(𝑦) iff 𝑥 = 𝑦; 

 

iv. Defining the complement of 𝕃∗-values by 𝑋𝑐 = (𝑋̃,𝑋), then 𝑋 ⊆ 𝑌 iff 𝑋𝑐 ⊆ 𝑌𝑐.  

3.2.2|  Extension of ≤𝑿𝒀 total order for 𝕃∗-values 

In order to rank any possible set of 𝕃∗-values it is necessary to provide a total order on 𝕃∗, as made in 

[68] for 𝐿∗-values which was based on the score and accuracy index. Following the same idea, we define 

the next binary relation on 𝕃∗-values: 

 
 

for any 𝑋,𝑌 ∈ 𝕃∗, where 𝑋 <𝑆 𝑌 iff 𝑋 ≤𝑆 𝑌 and 𝑋 ≡𝑆 𝑌. 

Nevertheless, as noted in [64], this relation is not an order. However, in [64] it was provided the next 

total order1 for 𝕃∗: 

 

 

 

for any 𝑋,𝑌 ∈ 𝕃∗, where 𝑇(𝑋) = 𝑤(𝑋) − 𝑤(𝑋̃) and 𝐺(𝑋) = 𝑤(𝑋) + 𝑤(𝑋̃). 

1 In [64] was not claimed this, but from Proposition 4.1. of [31], it is possible to conclude that this order is total. 

X ≤S,H Y   iff   {
X <S Y   or   
X ≡S Y   and   H(X) ≤ H(Y)

 (12) 

X ≼ Y   iff   

{ 
  
  
  
  
  
 X <S Y   or   
X ≡S Y   and   H(X) < H(Y)   or   
X ≡S Y   and   H(X) = H(Y)   and   T(X) < T(Y)   or   
X ≡S Y   and   H(X) = H(Y)   and   T(X) = T(Y)   and   G(X) ≤ G(Y)

 (13) 
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In [29], it was defined a new total order for 𝕃∗-values, denoted here by ≾, which is based on the total order 

for 𝐿∗-values of Xu and Yager given by Eq. (3). 

Theorem 1. [29] The binary relation ≾ on 𝕃∗, defined for any 𝑋,𝑌 ∈ 𝕃∗ by 

 

 

is a total order.  

Observe that the order ≾ is a particular instance of the admissible orders on 𝕃∗ introduced in [30], [31] (see 

also [32]), i.e. is total and refines ≤𝕃∗ . 

Here, we propose a new total order, with the same principle as (14), but by considering other intervals: 

Theorem 2. The binary relation ⪷ on 𝕃∗, defined for any 𝑋,𝑌 ∈ 𝕃∗, by 

 

 

is a total order.  

Proof.  Trivially, ⪷ is reflexive and antisymmetric. The transitivity of ⪷ follows from the transitivity of ≤𝑋𝑌 

and equality. Analogously, the totallity of ⪷ follows from the totality of ≤𝑋𝑌.               

4|  𝕃∗-Representation of OWA 

4.1 | 𝕃∗-Representations of 𝕃-Functions 

The notion of membership on 𝕃∗-values also allows us to adapt the notion of interval representation for 

𝕃∗ in the following way. 

Definition 6. Let 𝐹: 𝕃𝑛 → 𝕃 and ℱ : (𝕃∗)𝑛 → 𝕃∗. ℱ is an 𝕃∗-representation of 𝐹 if for each 𝑋𝑖 ∈ 𝕃
∗, and 

𝑋𝑖 ∈ 𝑋𝑖, with 𝑖 = 1,… , 𝑛, F(𝑋1, … , 𝑋𝑛) ∈ ℱ(𝑋1, … , 𝑋𝑛).  

Let 𝒢 ,ℱ : (𝕃∗)𝑛 →𝕃∗. We say that ℱ  is narrower than 𝒢 , denoted by 𝒢 ⊑𝕃∗ ℱ , if for any 𝑋𝑖 ∈ 𝕃
∗ with 

𝑖 = 1,… , 𝑛, ℱ (𝑋1, … ,𝑋𝑛) ⊆ 𝒢 (𝑋1, … , 𝑋𝑛). Analogously to the case of 𝕃-representation, we say that an 𝕃∗-

representation ℱ  of a function 𝐹:𝕃𝑛 → 𝕃 is better than another 𝕃∗-representation 𝒢  of 𝐹 if 𝒢 ⊑𝕃∗ ℱ . 

Theorem 3.  Let 𝐹: 𝕃𝑛 → 𝕃 be an isotone function. Then 𝐹̈: (𝕃∗)𝑛 → 𝕃∗ defined by 

 

 

 

 

is an 𝕃∗-representation of 𝐹. Moreover, if ℱ  is another 𝕃∗-representation of 𝐹 then ℱ ⊑𝕃∗ 𝐹̈.  

Proof.  Let 𝑋𝑖 ∈ 𝕃
∗ with 𝑖 = 1,… , 𝑛. Since, 𝐹 is isotone w.r.t. ≤𝕃, then for each 𝑋𝑖 ∈ 𝑋𝑖 with 𝑖 = 1,… , 𝑛, 

𝐹(𝑋1⃗, … ,𝑋𝑛⃗) ≤𝕃 𝐹(𝑋1, … , 𝑋𝑛) ≤𝕃 𝐹(𝑋1⃖, … , 𝑋𝑛⃖) and so 𝐹(𝑋1⃗, … ,𝑋𝑛⃗) ≤ 𝐹(𝑋1, … ,𝑋𝑛) ≤ 𝐹(𝑋1⃖, … ,𝑋𝑛⃖) and 

𝐹(𝑋1⃗, … ,𝑋𝑛⃗) ≤ 𝐹(𝑋1, … ,𝑋𝑛) ≤ 𝐹(𝑋1⃖, … ,𝑋𝑛⃖). Therefore, 

X ≾ Y   iff   X <XY Y   or   (X = Y   and   X̃ ≤XY Ỹ), (14) 

X ⪷ Y   iff   X⃗ <XY Y⃗   or   (X⃗ = Y⃗   and   X⃖ ≤XY Y⃖). (15) 

F̈(X1, … , Xn) = ([F(X1⃗,… , Xn⃗), F(X1⃖, … , Xn⃖)] , [1 − F(X1⃖, … , Xn⃖), 1 − F(X1⃗, … , Xn⃗)]), (16) 
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𝐹(𝑋1, … , 𝑋𝑛) ∈ [𝐹(𝑋1⃗, … ,𝑋𝑛⃗), 𝐹(𝑋1⃖, … ,𝑋𝑛⃖)] = 𝐹̈(𝑋1, … ,𝑋𝑛) and 𝐹(𝑋1, … ,𝑋𝑛) ∈

[𝐹(𝑋1⃗, … , 𝑋𝑛⃗), 𝐹(𝑋1⃖, … , 𝑋𝑛⃖)] = 𝐹̈(𝑋1, … , 𝑋𝑛)̃ 𝑐 

Hence, 𝐹(𝑋1, … , 𝑋𝑛) ∈ 𝐹̈(𝑋1, … ,𝑋𝑛). 

If ℱ : (𝕃∗)𝑛 → 𝕃∗ is another 𝕃∗-representation of 𝐹, then for each 𝑋𝑖 ∈ 𝕃
∗, and 𝑋𝑖 ∈ 𝑋𝑖, with 𝑖 = 1,… , 𝑛, 

𝐹(𝑋1, … , 𝑋𝑛) ∈ ℱ (𝑋1, … ,𝑋𝑛). In particular, 𝐹(𝑋1⃗, … ,𝑋𝑛⃗), 𝐹(𝑋1⃖, … ,𝑋𝑛⃖) ∈ ℱ(𝑋1, … , 𝑋𝑛). So, by definition 

of ∈, 𝐹(𝑋1⃗, … , 𝑋𝑛⃗), 𝐹(𝑋1⃖, … , 𝑋𝑛⃖) ∈ ℱ (𝑋1, … ,𝑋𝑛) and 𝐹(𝑋1⃖, … ,𝑋𝑛⃖), 𝐹(𝑋1⃗, … ,𝑋𝑛⃗) ∈ ℱ (𝑋1, … , 𝑋𝑛)̃ 𝑐, i.e. 1 −

𝐹(𝑋1⃖, … , 𝑋𝑛⃖), 1 − 𝐹(𝑋1⃗, … ,𝑋𝑛⃗) ∈ ℱ (𝑋1, … , 𝑋𝑛)̃ . Therefore, 𝐹̈(𝑋1, … ,𝑋𝑛) ⊆ ℱ (𝑋1, … ,𝑋𝑛) and 

𝐹̈(𝑋1, … , 𝑋𝑛)̃ ⊆ℱ (𝑋1, … , 𝑋𝑛)̃  and so, by Proposition 4, 𝐹̈(𝑋1, … ,𝑋𝑛) ⊆ ℱ (𝑋1, … ,𝑋𝑛). Hence, ℱ ⊑𝕃∗ 𝐹̈.               

Corollary 1.  Let F:𝕃n →𝕃 be an isotone function. Then 

 

  

Proof.  Straightforward from Theorem 3 and Eq. (11).               

Corollary 2.  Let f: [0,1]n → [0,1] be an isotone function. Then 

 

Proof.  Straightforward from Theorem 3 and eq. (11).               

Corollary 3.  Let 𝑓, 𝑔: [0,1]𝑛 → [0,1] be isotone functions such that 𝑓 ≤ 𝑔. Then, 𝑓̂ ≤ 𝑔̂, i.e. 

𝑓(̂𝑋1, … ,𝑋𝑛) ≤𝕃∗ 𝑔̂(𝑋1, … ,𝑋𝑛) for each 𝑋𝑖 ∈ 𝕃
∗ with 𝑖 = 1,… , 𝑛.  

Proof.  Straightforward from Corollary 2 and definition of ≤𝕃∗ .               

Proposition 5. Let F: 𝕃n → 𝕃 be an isotone function. Then F̈(𝒟S) ⊆ 𝒟S and F̈(𝒟 ) ⊆ 𝒟   

Proof.  For any 𝑖 = 1,… , 𝑛, let 𝑋𝑖 ∈ 𝒟𝑆. Then 𝑋𝑖 = ([𝑥𝑖, 𝑥𝑖], [𝑦𝑖, 𝑦𝑖]) for some 𝑥𝑖, 𝑦𝑖 ∈ [0,1] such that 𝑥𝑖 +

𝑦𝑖 ≤ 1. Since 𝑋𝑖⃗ = [𝑥𝑖, 1 − 𝑦𝑖] = 𝑋𝑖⃖ then, by Eq. (16), 𝐹̈(𝑋1, … ,𝑋𝑛) and 𝐹̈(𝑋1, … ,𝑋𝑛)̃  are degenerate intervals 

and so 𝐹̈(𝑋1, … , 𝑋𝑛) ∈ 𝒟𝑆. 

For any 𝑖 = 1,… , 𝑛, let 𝑋𝑖 ∈ 𝒟 . Then 𝑋𝑖 = ([𝑥𝑖, 𝑥𝑖], [1 − 𝑥𝑖, 1 − 𝑥𝑖]) for some 𝑥𝑖 ∈ [0,1]. Since 𝑋𝑖⃗ = [𝑥𝑖, 𝑥𝑖] =

𝑋𝑖⃖ then, by equation (16), 𝐹̈(𝑋1, … , 𝑋𝑛) and 𝐹̈(𝑋1, … ,𝑋𝑛)̃  are degenerate intervals and 𝐹̈(𝑋1, … ,𝑋𝑛) =

𝐹̈(𝑋1, … , 𝑋𝑛)̃ 𝑐. So 𝐹̈(𝑋1, … , 𝑋𝑛) ∈ 𝒟 .               

Lemma 1.  Let X,Y ∈ 𝕃∗. Then X⃗ ⊆ Y⃗ and X⃖ ⊆ Y⃖ iff X ≤ Y and X̃ ≤ Ỹ. Dually, X ⊆ Y and X̃ ⊆ Ỹ iff X⃗ ≤

Y⃗ and X⃖ ≤ Y⃖.  

Proof.  X⃗ ⊆ Y⃗ and X⃖ ⊆ Y⃖ iff ∇(Y) ≤ ∇(X), △ (Y) ≤△ (X), ∇(X̃ 𝑐) ≤ ∇(Ỹ 𝑐) and △ (X̃ 𝑐) ≤△ (Ỹ 𝑐) iff X ≤ Y 

and X̃ 𝑐 ≤ Ỹ 𝑐 iff X ≤ Y and X̃ ≤ Ỹ. The other case is analogous.               

Proposition 6.  Let F:𝕃n → 𝕃 be an isotone function. Then 

 

  

Proof.  Straightforward from Lemma 1 and Corollary 1.               

F̈(X1, … , Xn)
⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = F(X1⃗, … , Xn⃗)  and   F̈(X1, … , Xn)

⃖⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ = F(X1⃖, … , Xn⃖). (17) 

f̂(X1, … , Xn) = (f̂(X1, … , Xn), f̂ (X1̃

c
, … , Xñ

c
)c). (18) 

F̈(X1, … , Xn) = F(X1, … , Xn)  and   F̈(X1, … , Xn)̃ = F(X1̃, … , Xñ). (19) 
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Proposition 7.  Let F,G:𝕃n → 𝕃 be isotone functions. If F ⊑𝕃 G then F̈ ⊑𝕃∗ G̈.  

Proof.  Let X𝑖 ∈ 𝕃
∗ for any 𝑖 = 1,… , 𝑛. Since, 𝐹 ⊑𝕃 𝐺, then 𝐺(X1⃗, … ,X𝑛⃗) ⊆ 𝐹(X1⃗, … , X𝑛⃗) and 𝐺(X1⃖, … , X𝑛⃖) ⊆

𝐹(X1⃖, … , X𝑛⃖) and so 𝐹(X1⃗, … ,X𝑛⃗) ≤ 𝐺(X1⃗, … ,X𝑛⃗) ≤ 𝐺(X1⃗, … ,X𝑛⃗) ≤ 𝐹(X1⃗, … ,X𝑛⃗) and 𝐹(X1⃖, … ,X𝑛⃖) ≤

𝐺(X1⃖, … ,X𝑛⃖) ≤ 𝐺(X1⃖, … ,X𝑛⃖) ≤ 𝐹(X1⃖, … , X𝑛⃖). Therefore, by Theorem 3, 𝐹̈(X1, … ,X𝑛) ⊆ 𝐺̈(X1, … ,X𝑛). Hence, 

𝐹̈ ⊑𝕃∗ 𝐺̈.               

Note that, considering the interval point of view for 𝕃∗-values, we have that  

  

 

4.2 | 𝕃∗-Representations of [𝟎, 𝟏]-Functions 

Let 𝑥 ∈ [0,1] and X ∈ 𝕃∗. Then 𝑥 ∈∗∗ X if 𝜙(𝑥) ⊆ X, i.e. if 1 − ∇(X̃) ≤ 𝑥 ≤△ (X). There is a close relation 

between ∈ and ∈∗∗ as can we see in the next proposition. 

Proposition 8.  Let 𝑋 ∈ 𝕃∗ and 𝑋 ∈ 𝕃. 𝑋 ∈ 𝑋 if and only if 𝑋 ∈∗∗ 𝑋 and 𝑋 ∈∗∗ 𝑋  

Proof. Since, trivially, 𝜙(𝑥)⃗ = [𝑥, 𝑥] = 𝜙(𝑥)⃖  for any 𝑥 ∈ 𝕃, then 

𝑋 ∈ X  𝑖𝑓𝑓 X⃗ ≤𝕃 𝑋 ≤𝕃 X⃖

 𝑖𝑓𝑓 X⃗ ≤𝕃 [𝑋,𝑋] ≤𝕃 [𝑋,𝑋] ≤𝕃 X⃖

 𝑖𝑓𝑓 𝜙(𝑋) ⊆ X   𝑎𝑛𝑑   𝜙(𝑋) ⊆ X  𝑏𝑦  𝑃𝑟𝑜𝑝.  4 

 𝑖𝑓𝑓 𝑋 ∈∗∗ X   𝑎𝑛𝑑   𝑋 ∈∗∗ X  𝑏𝑦  𝑑𝑒𝑓.  𝑜𝑓  ∈∗∗   

               

With this notion of membership, we can naturally extend the notion of 𝕃-representation of fuzzy function 

for the 𝕃∗-representation of fuzzy function and introduce a new notion of inclusion for 𝕃∗-values. 

Definition 7. Let f: [0,1]n → [0,1] and ℱ : (𝕃∗)n → 𝕃∗. ℱ is an 𝕃∗-representation of f if for each Xi ∈ 𝕃
∗ 

and xi ∈
∗∗ Xi, with i = 1,… , n, we have that f(x1, … , xn) ∈

∗∗ ℱ (X1, … ,Xn)  

Let X,Y ∈ 𝕃∗. Then X ⊆∗∗ Y if for each 𝑥 ∈∗∗ X, also 𝑥 ∈∗∗ Y. However, ⊆∗∗ is not a partial order (it is not 

antisymmetric – e.g. consider X = ([0.2,0.3], [0.4,0.5]) and Y = ([0.1,0.3], [0.2,0.5])). Therefore, we just 

consider ⊆ as the extension of inclusion order for 𝕃∗. 

Analogously to the case of 𝕃-representation, we said that an 𝕃∗-representation ℱ  of a function 𝑓: [0,1]𝑛 →

[0,1] is better than another 𝕃∗-representation 𝒢  of 𝑓 if 𝒢 ⊑𝕃∗ ℱ . 

Proposition 9.  Let f: [0,1]n → [0,1] and F: 𝕃n → 𝕃 be isotone functions. If F is an 𝕃-representation of f 

then F̈ is an 𝕃∗-representation of f.  

Proof. If 𝑥𝑖 ∈
∗∗ X𝑖 for any 𝑖 = 1,… , 𝑛, then 𝜙(𝑥𝑖) = ([𝑥𝑖, 𝑥𝑖], [1 − 𝑥, 1 − 𝑥]) ⊆ X𝑖 and so, by Proposition 4, 

[𝑥𝑖, 𝑥𝑖] ⊆ X𝑖 and [𝑥𝑖, 𝑥𝑖]
𝑐 ⊆ X 𝑖̃, or equivalently, [𝑥𝑖, 𝑥𝑖] ⊆ X 𝑖̃

𝑐
. Therefore, 𝑥𝑖 ∈ X 𝑖̃ and 𝑥𝑖 ∈ X 𝑖̃

𝑐
. Thus, since 𝐹 is 

an 𝕃-representation of 𝑓, 𝑓(𝑥1, … , 𝑥𝑛) ∈ 𝐹(X1, … ,X𝑛) and so [𝑓(𝑥1, … , 𝑥𝑛), 𝑓(𝑥1, … , 𝑥𝑛)] ⊆ 𝐹(X1, … , X𝑛) and 

[𝑓(𝑥1, … , 𝑥𝑛), 𝑓(𝑥1, … , 𝑥𝑛)]
𝑐 ⊆ 𝐹(X1̃

𝑐
, … ,X𝑛̃

𝑐
)𝑐. Hence, by Corollary 2, [𝑓(𝑥1, … , 𝑥𝑛), 𝑓(𝑥1, … , 𝑥𝑛)] ⊆

𝐹̈(X1, … , X𝑛) and [𝑓(𝑥1, … , 𝑥𝑛), 𝑓(𝑥1, … , 𝑥𝑛)]
𝑐 ⊆ 𝐹̈(X1, … ,X𝑛)̃ . Therefore, 𝜙(𝑓(𝑥1, … , 𝑥𝑛)) ⊆ 𝐹̈(X1, … ,X𝑛), i.e. 

𝑓(𝑥1, … , 𝑥𝑛) ∈
∗∗ 𝐹̈(X1, … ,X𝑛). So, 𝐹̈ is an 𝕃∗-representation of 𝑓.               

F̈(X1, … , Xn) ≃ [F(X 1⃗, … , Xn⃗), F(X1⃖, … , Xn⃖)].  
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Theorem 4. Let f: [0,1]n → [0,1] be an isotone function. f̂ is the best, w.r.t. ⊑𝕃∗ , 𝕃
∗-representation of f.  

Proof. From Propositions 1 and 9 and Remark 2 it follows that 𝑓 ̂is an 𝕃∗-representation of 𝑓. Thus, it only 

remains to prove that is the best one. 

Let ℱ : (𝕃∗)𝑛 →𝕃∗ be another 𝕃∗-representation of 𝑓 and X𝑖 ∈ 𝕃
∗ for 𝑖 = 1,… , 𝑛. If 𝑋𝑖 ∈ X𝑖, for any 𝑖 =

1,… , 𝑛, then by Proposition 8 𝑋𝑖 ∈
∗∗ X𝑖 and 𝑋𝑖 ∈

∗∗ X𝑖. So, because ℱ  is 𝕃∗-representation of 𝑓, 

𝑓(𝑋1, … ,𝑋𝑛) ∈
∗∗ ℱ (X1, … , X𝑛) and 𝑓(𝑋1, … ,𝑋𝑛) ∈

∗∗ ℱ (X1, … ,X𝑛). Thus, by equation (5), 

𝑓(̂𝑋1, … ,𝑋𝑛) ∈
∗∗ ℱ (X1, … , X𝑛) and 𝑓(̂𝑋1, … ,𝑋𝑛) ∈

∗∗ ℱ (X1, … ,X𝑛). Therefore, by Proposition 8, 

𝑓(̂𝑋1, … ,𝑋𝑛) ∈ ℱ (X1, … ,X𝑛), i.e. ℱ  is an 𝕃∗-representation of 𝑓.̂ Hence, by Theorem 3, 𝐹 ⊑𝕃∗ 𝑓,̂ and so 

𝑓 is a better 𝕃∗-representation of 𝑓 than ℱ .               

4.3| The Best 𝕃∗-Representation of the OWA Operator 

Aggregation functions play an important role in fuzzy sets theory, so it is natural to extend this definition 

for IVAIFS. 

Definition 8. An n-ary function 𝒜 : (𝕃∗)n →𝕃∗ is an n-ary interval-valued Atanassov’s intuitionistic 

aggregation function if 

I. If X𝑖 ≤𝕃∗ Y𝑖, for each 𝑖 = 1,… , 𝑛, then 𝒜(X1, … , X𝑛) ≤𝕃∗ 𝒜(Y1, … , Y𝑛);  

II. 𝒜 (0𝕃∗ , … , 0𝕃∗) = 0𝕃∗ and 𝒜 (1𝕃∗ ,… , 1𝕃∗) = 1𝕃∗ .  

Theorem 5. Let 𝐴: [0,1]𝑛 → [0,1] be an n-ary aggregation function. Then 𝐴̂ is an n-ary interval-valued 

Atanassov’s intuitionistic aggregation function. Moreover, if A is idempotent and/or symmetric, then 𝐴̂ 

is also idempotent and/or symmetric.  

Proof. Straightforward from Corollary 2 and Remark 2.               

In order to motivate the next section, we will need some arithmetic operations on 𝕃∗. 

Scalar product. The multiplication ⊙ of an scalar 𝜆 ∈ [0,1] by X ∈ 𝕃∗ is defined by 

 

Division by a positive integer. Let 𝑛 ∈ ℤ+ be a positive integer, then 
X

𝑛
=

1

𝑛
⊙ X 

Limited addition. Let 𝑋,𝑌 ∈ 𝐿∗. Then 

 

 

It is clear that these operations are well defined, i.e. they always provide an element of 𝕃∗. 

Definition 9. Let 𝛬 be an n-ary weighting vector, i.e. 𝛬 = (𝜆1, … , 𝜆𝑛) ∈ [0,1]
𝑛 such that ∑𝑛

𝑖=1 𝜆𝑖 = 1. The 

n-dimensional interval-valued intuitionistic weighted average 𝕃∗ −𝑊𝐴𝛬 is given by 

 

where the sum is w.r.t. the limited addition.  

 

λ ⊙ X = (λX, λX̃). (20) 

X ⊕ Y = (X[+]Y, X̃[+]Ỹ). (21) 

𝕃∗ −WA Λ(X1, … , Xn) = ∑n
i=1 λi ⊙ Xi, (22) 



253 

 

A
n

 i
n

te
rv

a
l-

va
lu

e
d

 a
ta

n
a
ss

o
v'

s 
in

tu
it

io
n

is
ti

c
 f

u
z
z
y
 m

u
lt

i-
a
tt

ri
b

u
te

 g
ro

u
p

 d
e
c
is

io
n

 m
a
k

in
g

 m
e
th

o
d

 b
a
se

d
 o

n
 t

h
e
 b

e
st

 r
e
p

re
se

n
ta

ti
o

n
 o

f 
th

e
 W

A
 a

n
d

 O
W

A
 o

p
e
ra

to
rs

 
Lemma 2.  Let 𝑋,𝑌 ∈ 𝕃∗ and 𝜆1, 𝜆2 ∈ [0,1] such that 𝜆1 + 𝜆2 ≤ 1. Then 𝜆1 ⊙ 𝑋 ⊕ 𝜆2 ⊙ 𝑌 = (𝜆1𝑋 +

𝜆2𝑌,𝜆1𝑋̃ + 𝜆2𝑌̃).  

Proof.  Straightforward from Eqs. (7), (20) and (21).               

Lemma 3.  Let 𝛬 be a weighting vector. Then, waΛ̂(X1
c,… ,Xn

c)c = waΛ̂(X1, … ,Xn).  

Proof.  Straightforward from Proposition 1 and the fact that 1 − 𝑤𝑎Λ(1 − 𝑥1, … ,1 − 𝑥𝑛) = 𝑤𝑎Λ(𝑥1, … , 𝑥𝑛).               

Theorem 6.  Let 𝛬 be a weighting vector. Then 𝕃∗ −𝑊𝐴𝛬 = 𝑤𝑎𝛬̂, i.e. is the best 𝕃∗-representation of the 

weighted average operator.  

Proof. First note that by the monotonicity of the weighted average operator, 𝑤𝑎Λ̂(𝑋1, … ,𝑋𝑛) =

[𝑤𝑎Λ(𝑋1,… , 𝑋𝑛), 𝑤𝑎Λ(𝑋1, … ,𝑋𝑛)] = ∑𝑛
𝑖=1 𝜆𝑖𝑋𝑖. So, 

 

𝑤𝑎Λ̂(X1, … , X𝑛) = (𝑤𝑎Λ̂(X1, … ,X𝑛), 𝑤𝑎Λ̂(X1
𝑐̃, … ,X𝑛

𝑐̃ )𝑐)   𝑏𝑦  𝐶𝑜𝑟.  2 

= (𝑤𝑎Λ̂(X1, … ,X𝑛), 𝑤𝑎Λ̂(X1̃, … ,X𝑛̃))   𝑏𝑦  𝐿𝑒𝑚𝑚𝑎  23 

= (∑𝑛
𝑖=1 𝜆𝑖X𝑖,∑

𝑛
𝑖=1 𝜆𝑖X 𝑖̃)   𝑏𝑦  𝑃𝑟𝑜𝑝.  231 

= ∑𝑛
𝑖=1 𝜆𝑖 ⊙ X𝑖   𝑏𝑦  𝐿𝑒𝑚𝑚𝑎  2312 .

 

Definition 10. Let 𝛬 be an n-ary weighting vector, i.e. 𝛬 = (𝜆1, … , 𝜆𝑛) ∈ [0,1]
𝑛 such that ∑𝑛

𝑖=1 𝜆𝑖 = 1. The 

n-dimensional interval-valued intuitionistic weighted addition 𝕃∗ − 𝑂𝑊𝐴𝛬 is given by 

 

  

 where the sum is w.r.t. the limited addition and 

 

with 𝛾𝑗: {0,1 … , 𝑛} → {0,1… , 𝑛} for 𝑗 = 1,… ,4, being permutations such that 𝛻(𝑋𝛾1(𝑖)
) ≥ 𝛻(𝑋𝛾1(𝑖+1)

), △

(X𝛾
2
(𝑖)) ≥△ (X𝛾

2
(𝑖+1)), ∇(X𝛾3(𝑖)̃

) ≤ ∇(X𝛾3(𝑖+1)̃
) and △ (X𝛾4(𝑖)̃

) ≤△ (X𝛾4(𝑖+1)̃
) for any 𝑖 = 1,… , 𝑛 − 1.  

Lemma 4.  Let 𝛬 be a weighting vector. Then, 𝑜𝑤𝑎𝛬̂(𝑋1
𝑐, … ,𝑋𝑛

𝑐 )𝑐 = 𝑜𝑤𝑎𝛬𝑟̂(𝑋1, … ,𝑋𝑛) where 𝛬𝑟 =

(𝜆𝑛,… , 𝜆1).  

Proof. Straightforward from Proppsition 1 and the fact that 1 − 𝑜𝑤𝑎Λ(1 − 𝑥1, … ,1 − 𝑥𝑛) = 𝑜𝑤𝑎Λ𝑟(𝑥1, … , 𝑥𝑛).             

Theorem 7.  Let 𝛬 be a weighting vector. Then 𝕃∗ − 𝑂𝑊𝐴𝛬 = 𝑜𝑤𝑎𝛬̂, i.e. is the best 𝕃∗-representation of 

the ordered weighted average operator. 

  Proof.  

𝕃∗ − OWA Λ(X1, … , Xn) =∑

n

i=1

λi ⊙ Xγ(i), (23) 

X𝛾(𝑖) = ([∇(X𝛾1(𝑖)
),△ (X𝛾2(𝑖)

)], [∇(X𝛾3(𝑖)̃
),△ (X𝛾4(𝑖)̃

)]). (24) 
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Corollary 4. 𝕃∗ −𝑂𝑊𝐴𝛬 is an idempotent and symmetric n-ary interval-valued Atanassov’s 

intuitionistic aggregation function. In addition, 𝕃∗ −𝑂𝑊𝐴𝛬 is bounded, i.e. 𝑚𝑖𝑛̂ ≤𝕃∗ 𝕃
∗ −

𝑂𝑊𝐴Λ ≤𝕃∗ 𝑚𝑎𝑥̂ 

Proof.  Straightforward from Theorems 7 and 5 and Corollary 3. 

5| A Method for Multi-attribute Group Decision Making Based 

Interval-Valued Atanassov’s Intuitionistic Decision Matrices 

Let 𝐸 = {𝑒1, … , 𝑒𝑚} be a set of experts, 𝑋 = {𝑥1, … , 𝑥𝑛} be a finite set of alternatives, and 𝐴 = {𝑎1, … , 𝑎𝑝} 

be a set of attributes or criteria. The decision makers determines a weighting vector 𝑊 = (𝑤1, … ,𝑤𝑝)
𝑇  

for the attributes. A method for MAGDM based on IVAIDM is an algorithm which determines a 

ranking of the alternatives in 𝑋 based in the opinion of each expert in 𝐸 of how much the alternatives 

attend each attribute. In particular we consider the case where the evaluation of the experts contains 

imprecision and hesitation which is represented by interval-valued Atanassov’s intuitionistic degrees. 

We propose the next method (algorithm) to obtain such ranking: 

𝑋, 𝑊, and for every 𝑙 = 1,… , 𝑚 an 𝕃∗-valued decision matrix 𝑅𝑙 of dimension 𝑛 × 𝑝 where each position 

(𝑖, 𝑗) in 𝑅𝑙, denoted by 𝑅𝑖𝑗
𝑙 , contains the interval-valued Atanassov’s intuitionistic value which reflects how 

much the alternative 𝑥𝑖 attends the attribute (or criterium1) 𝑎𝑗.  

A ranking 𝑟:𝑋 → {1,… , 𝑛}, denoting that an alternative 𝑥 ∈ 𝑋 is better than an alternative 𝑦 ∈ 𝑋 whenever 

𝑟(𝑥) ≤ 𝑟(𝑦) and when 𝑟(𝑥) = 𝑟(𝑦) meaning that the method is not able of determine if 𝑥 is better or worst 

alternative than 𝑦2.  

1 For the case of the cost criteria is considered the usal complement of these interval-valued Atanassov’s intuitionistic values. 
2 The most decision making methods admits cases for which the method is unable of discriminate between two different alternatives 

which is better. 

𝕃∗ −OWA Λ(X1, … ,Xn)

= ∑

n

i=1

λi ⊙ Xγ(i)  by  eq.  (23) 

= 𝕃∗ −WA Λ(Xγ(1),… , Xγ(n))  by  eq.  (2322) 

= waΛ̂(Xγ(1), … ,Xγ(n))  by  Thm.  23226 

= (waΛ̂(Xγ(1),… , Xγ(n)),waΛ̂(Xγ(1)̃

c
, … ,Xγ(n)̃

c
)c)  by  eq.  (2322618) 

= (waΛ̂(Xγ(1),… , Xγ(n)),waΛ̂(Xγ(1)̃,… ,Xγ(n)̃))  by  Lemma  23226183 

= (waΛ̂([∇(Xγ1(1)
),△ (Xγ2(1)

)],… , [∇(Xγ1(n)
),△ (Xγ2(n)

)],

  waΛ̂([∇(Xγ3(1)̃
),△ (Xγ4(1)̃

)],… , [∇(Xγ3(n)
̃),△ (Xγ4(n)

̃)]))  by  eq.  (2322618324) 

= ([waΛ(∇(Xγ1(1)
),… ,∇(Xγ1(n)

)),waΛ(△ (Xγ2(1)
),… ,△ (Xγ2(n)

))],

  [waΛ(∇(Xγ3(1)̃
),… ,∇(Xγ3(n)

̃)),waΛ(△ (Xγ4(1)̃
),… ,△ (Xγ4(n)

̃))])  by  eq.  (23226183245) 

= ([waΛ(∇(Xγ1(1)
),… ,∇(Xγ1(n)

)),waΛ(△ (Xγ2(1)
),… ,△ (Xγ2(n)

))],

  [waΛr(∇(Xγ3(n)
̃),… , ∇(Xγ3(1)̃

)),waΛr(△ (Xγ4(n)
̃),… ,△ (Xγ4(1)̃

))])

= ([owaΛ(∇(Xγ(1)),… , ∇(Xγ(n))), owaΛ(△ (Xγ(1)), … ,△ (Xγ(n)))],

  [owaΛr(∇(Xγ(1)̃),… ,∇(Xγ(n)̃)), owaΛr(△ (Xγ(1)̃), … ,△ (Xγ(n)̃))])  by  eq.  (232261832456) 

= (owaΛ̂(Xγ(1),… ,Xγ(n)), owaΛr̂ (Xγ(1)̃,… ,Xγ(n)̃))  by  eq.  (2322618324565) 

= (owaΛ̂(X1, … ,Xn), owaΛ̂(X1̃

c
,… , Xñ

c
)c)  by  Lemma  23226183245654 

= owaΛ̂(X1, … ,Xn).  by  eq.  (2322618324565418) 
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Step 1. Aggregate the IVAIDM of all experts in a single IVAIDM ℛ𝒞, for each 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑝, 

as follows:  

 

where 𝛬 = (𝜆1, … , 𝜆𝑚) is the following weighting vector: 

1. Case 𝑚 is even: 𝜆𝑖 =
1

2
𝑚
2
+2−𝑖

+
1

𝑚2
𝑚
2

 for each 𝑖 = 1,… ,
𝑚

2
, and 𝜆𝑖 = 𝜆𝑚+1−𝑖 for each 𝑖 =

𝑚

2
+ 1,… , 𝑚. 

2. Case 𝑚 is odd: 𝜆𝑖 =
1

2
𝑚+1
2

+2−𝑖
+

1

𝑚2
𝑚+1
2

+
1

4𝑚
 for each 𝑖 = 1,… ,

𝑚+1

2
, and 𝜆𝑖 = 𝜆𝑚+1−𝑖 for each 𝑖 =

𝑚+1

2
+ 1,… ,𝑚.  

Table  1. Assesses of expert 𝐩𝟏. 

 

 

ℛ𝒞  is the IVAIDM of consensus of all expert opinions1. 

Step 2. For each alternative 𝑥𝑖, with 𝑖 = 1,… , 𝑛, using 𝑤𝑎𝑊̂, determine the collective overall index 𝕃∗-value 

𝑂𝑖 as follows: 

 

Step 3. Rank the alternatives by considering a total order on their collective overall index 𝕃∗-values and 

choosing the greatest one. Thus, the output function 𝑟:𝑋 → {1,… , 𝑛} is defined by 𝑟(𝑥𝑖) = 𝑗 iff 𝑂𝑖 is the 𝑗th 

greatest collective overall index. Notice that if two or more alternatives, e.g. 𝑥 and 𝑦, have the same 

collective overall index, then 𝑟(𝑥) = 𝑟(𝑦).  

Example 1. Consider the air-condition system selection problem used as example in [62]. This problem 

considers three air-condition systems (alternatives) {𝐴1,𝐴2, 𝐴3}; four attributes: 𝑎1 (economical), 𝑎2 

(function), 𝑎3 (being operative) and 𝑎4 (longevity); and three experts {𝑝1, 𝑝2, 𝑝3}. By using statistical methods, 

for each expert 𝑝𝑙, alternative 𝐴𝑖 and atribute 𝑎𝑗 an interval-valued membership degree and an interval-

valued non-membership degree, i.e. an IVAIFV, is provided. These IVAIFV are summarized in the Tables 

1, 2 and 3 (the same used in [62]). We consider the weighting vector 𝑊 = (0.2134,0.1707,0.2805,0.3354) for 

the attributes2 . 

Since we have three experts (𝑚 = 3), then the weighting vector 𝛬 is calculated as following: 

𝜆1 =
1

23
+

1

3 ⋅ 22
+

1

4 ⋅ 3
=
1

8
+
1

6
= 0.2916, 

𝜆2 =
1

22
+

1

3 ⋅ 22
+

1

4 ⋅ 3
=
1

4
+
1

6
= 0.416, 

𝜆3 =
1

23
+

1

3 ⋅ 22
+

1

4 ⋅ 3
=
1

8
+
1

6
= 0.2916. 

1 It is not hard of prove that when 𝑛 > 1, Λ is a weighting vector. 
2 In [62] was considered the weights V = (0.35,0.28,0.46,0.55) which not satisfy the condition that the sums of the weights must be equal 

to 1. W is the weighting vector obtained normalizing 𝑉 in order to satisfy this condition. 

ℛ𝒞ij = owaΛ̂(Rij
1, … , Rij

m). (25) 

𝐑𝟏   𝐚𝟏   𝐚𝟐   𝐚𝟑   𝐚𝟒  

A 1   ([0.4,0.8],[0.0,0.1])   ([0.3,0.6],[0.0,0.2])   ([0.2,0.7],[0.2,0.3])   ([0.3,0.4],[0.4,0.5])  
A 2   ([0.5,0.7],[0.1,0.2])   ([0.3,0.5],[0.2,0.4])   ([0.4,0.7],[0.0,0.2])   ([0.1,0.2],[0.7,0.8])  
A 3   ([0.5,0.7],[0.2,0.3])   ([0.6,0.8],[0.1,0.2])   ([0.4,0.7],[0.1,0.2])   ([0.6,0.8],[0.0,0.2])  

Oi = waŴ(ℛ𝒞i1,… ,ℛ𝒞in). (26) 
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 Table  2. Assesses of expert 𝐩𝟐. 

 

 

 Table 3. Assesses of expert 𝐩𝟑. 

 

 

The Table 4 present the collective reflexive IvIFPR obtained from Tables 1, 2 and 3 by consider the Eq. 

(25). 

The collective overall preference obtained by using the calculation in Eq. (26), is the following: 

     𝑂1 = ([0.3509555488,0.6721], [0.140916,0.2651]),  

     𝑂2 = ([0.3867014634,0.6262], [0.180441,0.3184]),  

     𝑂3 = ([0.4086795732,0.6848], [0.111192,0.2443]).  

Thus, considering this collective overall preference and the total orders shows in section III.B, we have 

the ranking of the alternatives in the Table 5. Therefore, all the ranking obtained with this method, for 

the different the orders considered, agree with four of the five ranking obtained in [39], [62], [63], for 

this same illustrative example.  

Example 2. Consider the investment choice problem used as example in [59], [60]. This problem 

considers an investment company which would like to invest a sum of money in the best option among 

the following five possible alternatives to invest the money: 𝐴1 is a car company; 𝐴2 is a food company; 

𝐴3 is a computer company; 𝐴4 is an arms company; and 𝐴5 is a TV company. The choice of the best 

investmente must be made taking into account the following four benefit criteria: c1 is the profit ability; 

𝑐2 is the growth analysis; 𝑐3 is the social-political impact; and 𝑐4 is the enterprise culture. The five possible 

alternatives will be evaluated considering the interval-valued intuitionistic fuzzy information given by 

three decision makers 𝑒1, 𝑒2 and 𝑒3, who evaluate how much the alternative satisfies each one of the 

criterias. These informations are summarized in the Tables 6, 7 and 8 (the same considered in [58], [59], 

[60]). 

Since, in [59], [60] it was not considered a weight for the criteria, here we consider that all criteria have 

the same weight, i.e. we consider 𝑊 = (0.25,0.25,0.25,0.25). The ranking obtained by using our method 

considering the four total orders and the obtained by [59], [60] is summarized in the Table 9. 

Table 4. Collective reflexive IvIFPR. 

 

 

 

 

𝐑𝟐   𝐚𝟏   𝐚𝟐   𝐚𝟑   𝐚𝟒  

A1   ([0.5,0.9],[0.0,0.1])   ([0.4,0.5],[0.3,0.5])   ([0.5,0.8],[0.0,0.1])   ([0.4,0.7],[0.1,0.2])  

A2   ([0.7,0.8],[0.1,0.2])   ([0.5,0.6],[0.2,0.3])   ([0.5,0.8],[0.0,0.2])   ([0.5,0.6],[0.3,0.4])  

A3   ([0.5,0.6],[0.1,0.4])   ([0.6,0.7],[0.1,0.2])   ([0.4,0.8],[0.1,0.2])   ([0.2,0.6],[0.2,0.3])  

𝐑𝟑   𝐚𝟏   𝐚𝟐   𝐚𝟑   𝐚𝟒  

A1   ([0.3,0.9],[0.0,0.1])   ([0.2,0.5],[0.1,0.4])   ([0.4,0.7],[0.1,0.2])   ([0.3,0.6],[0.3,0.4])  

A2   ([0.3,0.8],[0.1,0.2])   ([0.5,0.6],[0.1,0.3])   ([0.2,0.8],[0.0,0.2])   ([0.3,0.5],[0.2,0.3])  

A3   ([0.2,0.6],[0.1,0.2])   ([0.2,0.6],[0.2,0.3])   ([0.3,0.6],[0.1,0.3])   ([0.4,0.7],[0.1,0.2])  

𝐑𝐂   𝐚𝟏   𝐚𝟐   𝐚𝟑   𝐚𝟒  

A 1   ([0.4,0.871],[0.0,0.1])   ([0.3,0.53],[0.13,0.371])   ([0.371,0.73],[0.1,0.2])   ([0.33,0.571],[0.271,0.371])  

A 2   ([0.5,0.771],[0.1,0.2])   [0.4416,0.571],[0.171,0.33])   [0.371,0.771],[0.0,0.2])   [0.3,0.4416],[0.3875,0.4874])  

A 3   [0.4125,0.63],[0.13,0.3])   ([0.4833,0.7],[0.13,0.23])   ([0.371,0.7],[0.1,0.23])   ([0.4,0.7],[0.1,0.23])  
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Table 5. Ranking obtained for the alternatives considering several total orders and the obtained in [62], 

[63]. 

 

 

Table 6. Assesses of expert 𝐞𝟏. 

 

 

 

Table 7. Assesses of expert 𝐞𝟐. 

 

 

 

Table 8. Assesses of expert 𝐞𝟑. 

 

 

 

Table 9. Ranking obtained for the alternatives considering several total orders and the obtained in [62]. 

 

Thus, making an analysis of these rankings of the alternatives we have that there is an absolute consensus 

that the worst alternative is A1 and the second worst alternative is A4. On the other hand, if we consider, 

for the other alternatives, the amount of times that an alternative was better ranked than the others (which 

is summarized in the Table 10) we can conclude that the more rasonable ranking of the alternatives would 

be𝐴5 > 𝐴2 > 𝐴3 > 𝐴4 > 𝐴1 

which agrees with the ranking obtained in [60] and also for the proposed method with the orders ⪅ and ≾. 

This way of aggregate or fuses many rankings of a set of alternatives corresponds to the ranking fusion 

function M2 of [20]. 

⪅   ≾   ≼   [62]   [63] (a), (b) and (d)   [63] (c)  

A 3   A 3   A 3   A 3   A 3   A 2  
A 1   A 1   A 1   A 1   A 1   A 1  
A 2   A 2   A 2   A 2   A 2   A 3  

𝐑𝟏   𝐚𝟏   𝐚𝟐   𝐚𝟑   𝐚𝟒  

A1   ([0.4,0.5],[0.3,0.4])   ([0.4,0.6],[0.2,0.4])   ([0.1,0.3],[0.5,0.6])   ([0.3,0.4],[0.3,0.5])  

A2   ([0.6,0.7],[0.2,0.3])   ([0.6,0.7],[0.2,0.3])   ([0.4,0.7],[0.1,0.2])   ([0.5,0.6],[0.1,0.3])  

A3   ([0.6,0.7],[0.1,0.2])   ([0.5,0.6],[0.3,0.4])   ([0.5,0.6],[0.1,0.3])   ([0.4,0.5],[0.2,0.4])  

A4   ([0.3,0.4],[0.2,0.3])   ([0.6,0.7],[0.1,0.3])   ([0.3,0.4],[0.1,0.2])   ([0.3,0.7],[0.1,0.2])  

A5   ([0.7,0.8],[0.1,0.2])   ([0.3,0.5],[0.1,0.3])   ([0.5,0.6],[0.2,0.3])   ([0.3,0.4],[0.5,0.6])  

𝐑𝟐   𝐚𝟏   𝐚𝟐   𝐚𝟑   𝐚𝟒  

A 1   ([0.3,0.4],[0.4,0.5])   ([0.5,0.6],[0.1,0.3])   ([0.4,0.5],[0.3,0.4])   ([0.4,0.6],[0.2,0.4])  
A 2   ([0.3,0.6],[0.3,0.4])   ([0.4,0.7],[0.1,0.2])   ([0.5,0.6],[0.2,0.3])   ([0.6,0.7],[0.2,0.3])  
A 3   ([0.6,0.8],[0.1,0.2])   ([0.5,0.6],[0.1,0.2])   ([0.5,0.7],[0.2,0.3])   ([0.1,0.3],[0.5,0.6])  
A 4   ([0.4,0.5],[0.3,0.5])   ([0.5,0.8],[0.1,0.2])   ([0.2,0.5],[0.3,0.4])   ([0.4,0.7],[0.1,0.2])  
A 5   ([0.6,0.7],[0.2,0.3])   ([0.6,0.7],[0.1,0.2])   ([0.5,0.7],[0.2,0.3])   ([0.6,0.7],[0.1,0.3])  

𝐑𝟑   𝐚𝟏   𝐚𝟐   𝐚𝟑   𝐚𝟒  

A 1   ([0.2,0.5],[0.3,0.4])   ([0.4,0.5],[0.1,0.2])   ([0.3,0.6],[0.2,0.3])   ([0.3,0.7],[0.1,0.3])  
A 2   ([0.2,0.7],[0.2,0.3])   ([0.3,0.6],[0.2,0.4])   ([0.4,0.7],[0.1,0.2])   ([0.5,0.8],[0.1,0.2])  
A 3   ([0.5,0.6],[0.3,0.4])   ([0.7,0.8],[0.1,0.2])   ([0.5,0.6],[0.2,0.3])   ([0.4,0.5],[0.3,0.4])  
A 4   ([0.3,0.6],[0.2,0.4])   ([0.4,0.6],[0.2,0.3])   ([0.1,0.4],[0.3,0.6])   ([0.3,0.7],[0.1,0.2])  
A 5   ([0.6,0.7],[0.1,0.3])   ([0.5,0.6],[0.3,0.4])   ([0.5,0.6],[0.2,0.3])   ([0.5,0.6],[0.2,0.4])  

Proposed Method   The methods proposed in [59], [60]  
⪅   ≾   ≼   [60]   [59] 𝛾 < 0.378   [59] 𝛾 = 0.378   [59] 0.378 < 𝛾 <

1  
 [59] 𝛾 = 1  

A 5   A 5   A 2   A 5   A 3   A 3 ∼ A 5   A 5   A 5  
A 2   A 2   A 5   A 2   A 5     A 3   A 3 ∼ A 2  
A 3   A 3   A 3   A 3   A 2   A 2   A 2    
A 4   A 4   A 4   A 4   A 4   A 4   A 4   A 4 
A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1  
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6| Final remarks 

This paper proposes a new extension of the OWA and WA operators in the context of interval-valued 

intuitionistic fuzzy values, which has as main characteristic by the best 𝕃∗-representation of the usual 

OWA and WA operators. Therefore, when applied to the diagonal elements these new operators have 

the same behaviour as the OWA and WA. This paper also extended the notion of interval 

representations introduced in [54] for 𝕃∗-representations, and has introduced a new notion of inclusion 

for 𝕃∗-values which is based in a notion of membership. Besides, we introduced a new total order for 

𝕃∗-values and provide new extensions of the OWA operator for 𝕃 and 𝐿∗-values. 

Table 10. Comparing based on the Table 9. 

 

 

We have shown the validity of our theoretical develpments by means of an illustrative decision-making 

example. In [32] was introduced an interval-valued Atanassov’s intuitionistic extension of OWA’s where 

the weights are assigned by decreasingly ordering the inputs with respect to an admissible order. The 

problem with this OWA is that in general it is not increasing with respect to the admissible order. So, as 

future work we intend to investigate OWAs on 𝕃∗ which are increasing with respect to a fixed admissible 

order. In addition, based on [17], we will use such OWAs in a method to select the most important 

vertice of an Interval-Valued Intuitionistic Fuzzy Graph [7]. 
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