Document Type : Research Paper


Department of Mathematics, Annamalai University, Annamalainagar, Tamilnadu, India.


We present the notion of Pythagorean Fuzzy Weak Bi-Ideals (PFWBI) and interval valued Pythagorean fuzzy weak bi-ideals of Γ-near-rings and studies some of its properties. We present the notion of interval valued Pythagorean fuzzy weak bi-ideal and establish some of its properties. We study interval valued Pythagorean fuzzy weak bi-ideals of  Γ-near-ring using homomorphism.


Main Subjects

  1. Akram, M. (2018). Fuzzy lie algebras, infosys science foundation series in mathematical sciences. Springer.
  2. Atanassov, K. (2016). Intuitionistic fuzzy sets. International journal bioautomation20, 1.
  3. Booth, G. L. (1988). A note on Γ-near-rings.  Sci. Math. Hung23, 471-475.
  4. Chinnadurai, V., Arulmozhi, K. R. I. S. H. N. A. N., & Kadalarasi, S. (2017). Characterization of fuzzy weak bi-ideals of Γ-near-rings. International journal of algebra and statistics6(1-2), 95-104.
  5. Chinnadurai, V., Arulmozhi, K., & Kadalarasi, S. (2017). Interval valued fuzzy weak bi-ideals of $ Gamma $-near-rings. Journal of linear and topological algebra (JLTA)6(03), 223-236.
  6. Chinnadurai, V., Arulmozhi, K., & Kadalarasi, S. (2018). Interval valued fuzzy ideals of Γ-near-rings. Bulletin of the International Journal Mathematics Virtual Institute8, 301-314.
  7. Chinnadurai, V., & Kadalarasi, S. (2016). Fuzzy weak bi-ideals of near-rings. Annals of fuzzy mathematics and informatics11(5), 799-808.
  8. Cho, Y. U., Chelvam, T. T., & Jayalakshmi, S. (2007). Weak bi-ideals of near-rings. The pure and applied mathematics14(3), 153-159.
  9. Jun, Y. B., SAPANCI, M., & ÖZTÜRK, M. A. (1999). Fuzzy ideals in gamma near-rings. Turkish journal of mathematics22(4), 449-460.
  10. Kaviyarasu, M., Indhira, K., & Chandrasekaran, V. M. (2017). Fuzzy sub algebras and Fuzzy K-ideals in INK-algebras. International Journal of pure and applied Mathematics113(6), 47-55.
  11. Kaviyarasu, M., Indhira, K., & Chandrasekaran, V. M. (2020). Fuzzy p-ideal in INK-Algebra. Journal of Xi’an University of architecture and technology12(3), 4746-4752.
  12. Kaviyarasu, M., Indhira, K., & Chandrasekaran, V. M. (2019). Direct product of intuitionistic fuzzy K-ideals of INK-algebras. Materials today: proceedings16, 449-455.
  13. Kim, S. D., & Kim, H. S. (1996). On fuzzy ideals of near-rings. Bulletin of the korean mathematical society33(4), 593-601.
  14. Manikantan, T. (2009). Fuzzy bi-ideals of near-rings. Journal of fuzzy mathematics17(3), 659-671.
  15. Meenakumari, N., & Chelvam, T. T. (2011). Fuzzy bi-ideals in gamma near-rings. Journal of algebra discrete structures9(1-2), 43-52.
  16. Narayanan, A., & Manikantan, T. (2005). (∈,∈∨ q)-fuzzy subnear-rings and (∈,∈∨ q)-fuzzy ideals of near-rings.Journal of applied mathematics and computing18(1), 419-430.
  17. Pilz, G. (2011). Near-rings: the theory and its applications. Elsevier.
  18. Satyanarayana, B. (1984). Contributions to near-ring theory (Doctrol Thesis, Nagarjuna University, India).
  19. Abou-Zaid, S. (1991). On fuzzy subnear-rings and ideals. Fuzzy sets and systems44(1), 139-146.
  20. Rao, C., & Swaminathan, V. (2010). Anti-homomorphism in fuzzy ideals. International scholarly and scientific research and innovation4(8), 1211-1214.
  21. Rao, M. M. K., & Venkateswarlu, B. (2015). Anti-fuzzy k-ideals and anti-homomorphism of Γ-semirings.  Int. Math. Virtual Inst5, 37-54.
  22. Chelvam, T. T., & Meenakumari, N. (2004). Bi-Ideals of gamma near-rings. Southeast asian bulletin of mathematics27(6), 983-988.
  23. Thillaigovindan, N., Chinnadurai, V., & Coumaressane, S. (2016). T-fuzzy subsemigroups and T-fuzzy ideals of regular Γ-semigroups. Annals of fuzzy mathematics and Informatics11(4), 669-680.
  24. Yager, R. R. (2013, June). Pythagorean fuzzy subsets. In 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS)(pp. 57-61). IEEE.
  25. Yager, R. R. (2013). Pythagorean membership grades in multicriteria decision making. IEEE Transactions on fuzzy systems22(4), 958-965.
  26. Zadeth, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.