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Abstract

We present the notion of Pythagorean Fuzzy Weak Bi-Ideals (PFWBI) and interval valued Pythagorean fuzzy weak bi-

ideals of I'-near-rings and studies some of its properties. We present the notion of interval valued Pythagorean fuzzy

weak bi-ideal and establish some of its properties. We study interval valued Pythagorean fuzzy weak bi-ideals of I'-near-

ring using homomorphism.
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Introduction

Zadeh [26] defined Fuzzy Set (FS) to deal with uncertainty. Atanassov [2] presented the notion of
Intuitionistic FS (IFS) and studied some of its properties. Later, Yager [24], [25] defined and studied
the properties of Pythagorean Fuzzy Set (PFS) and also used PES to solve Multi-Criteria Decision-
Making (MCDM) problems. Booth [3] presented the properties of I'-near-rings. Chinnadurai and
Kadalarasi [7] studied the near-ring properties of Fuzzy Weak Bi-Ideals (FWBI). Chinnadurai et al.
[4],[5] studied the I'-near-rings characterization of fuzzy weak bi-ideal and interval-valued fuzzy weak
bi-ideal. Later, Chinnadurai et al. [6] discussed the I'-near-rings properties of interval-valued fuzzy
ideals.

Akram [1] established the properties of fuzzy lie algebras. Kim and Kim [13] studied the near-rings
concept of fuzzy ideals. Kaviyarasu et al. [10]-[12] studied the different type of ideals in INK- algebras.
Jun et al. [9] presented the notion of fuzzy ideals and studied their properties in I'-near-rings.
Manikantan [14] defined and studied some of the near-rings properties of fuzzy bi-ideals.
Meenakumari and Chelvam [15] presented the I'-near-ringsproperties of fuzzy bi-ideals. Narayanan
and Manikatan [16] introduced the near-rings notions of fuzzy subnear-ring, fuzzy ideal, and fuzzy
quasi-ideal.
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Pilz [17] introduced the concept of anti fuzzy soft gamma rings and studied their properties. Rao and
Swaminathan [20] presented the notion of anti-homomorphism between two fuzzy rings and established
its properties. Rao and Venkateswarlu [21] studied the properties of anti fuzzy ideal and pre-image of
fuzzy ideal. Satyanarayana [18] dealt with the theory of near-rings. Salah Abou-Zaid [19] studied fuzzy
ideals of a near-ring. Chelvam and Meenakumari [22] obtained the characterization for gamma near-
fields. Thillaigovindan et al. [23] introduced the notion of generalized T-fuzzy bi-ideals of a gamma-
semigroup. Cho et al. [8] presented the notion of bi-ideals in near-rings and used it in near-fields.

We introduce the notion of Pythagorean fuzzy weak bi-ideal of I'-near-rings and interval valued
Pythagorean fuzzy weak bi-ideal of I'-near-rings. We discuss and present some properties of
homomorphism of Pythagorean fuzzy weak bi-ideal and homomorphism of an interval valued
Pythagorean fuzzy weak bi-ideal in gamma near-ring.

2| Preliminaries

Definition 1. [16]. A fuzzy set w of a I'-near-ring M is called a fuzzy left (resp. right) ideal of M if

L 7(k=1) = min{n(k), n(l)}, for allk,l € M,
II. nly+x-y)=n(x),forallx,y €M,
III.  m(ua(x +v) — uav) > ni(x), (resp. n(xau) > n(x)) for allx,u,ve M anda €I .

Definition 2. [15]. A fuzzy set T of M is called a fuzzy bi-ideal of M if

I 7m(x—vy) = min{n(x), n(y)} for all x,y € M,
II.  m(xaypz) = min{n(x), n(z)} for all x,y,z€e Mand a, B €T

Definition 3. [2]. An intuitionistic fuzzy set A is a nonempty set X'is an object having the form A =
{x,(mta(x), 94(x)): x € X} where the functions 1t4 - X — [0,1] and 9, - X — [0,1] define the degree of
membership and non-membership of the element x € X to the set A, which is a subset of Xrespectively
0 <ma(x) +94(x) <1 we use the simple A = (114,9,) .

Definition 4. [25]. A Pythagorean fuzzy subset P is a nonempty set Xis an object having the form P =
{(x, mp(x), Op(x))/x € X}, where the functions mp: X — [0,1] and 9p: X — [0,1] denote the degree of
membership and non membership of each element x € X to the set P, respectively, and 0 < (1p(x))? +
(9p(x))* <1 for all xe X. For the sake of simplicity, for the Pythagorean fuzzy subset P =
{(x, 7tp(x), 9p(x)) /x € X

3| Pythagorean Fuzzy Weak Bi-Ideals of I'near Ring

In this section, we initiate the notion of Pythagorean fuzzy weak bi-ideal of M and discuss some of its
properties.

Definition 4. A subgroup W of (M, +) is said to be a weak bi-ideal of M if WITWI'W C W.

Definition 5. A Pythagorean fuzzy setP = (np, 9p) of M is called a Pythagorean fuzzy weak bi-ideal of
M, it

I mp(x —y) > min{np(x), np(y)}.
IL. Sp(x —y) < max{9p(x), Sp(y)}.
I mtp(xyyyz) = min{mp(x), 7p(y), mp(z)}.
IV. Sp(xyyyz) < max{Sp(x),9p(y), 9p(2)} forallx,y,ze M anda,f€T.
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Example 1. Let M = {w, x, y, z} be a nonempty set with binary operation * + "and I' = {y’} be a nonempty

”’- set of binary operations as the following tables:
i

- Ww x y z
299 Xx w zy
Yy z

Z 7

W X

X W

~

and

Y w

W w

Hoox

X w
Yw xy 2z

Zw Xy z

Letmp : M — [0,1] be a Pythagorean fuzzy subset defined by mtp(w) = 0.7, tp(x) = 0.6, tp(y) = 7tp(z) = 0.5.
and Ip(w) = 0.3,9p(x) = 0.5, 9p(y) = 0.8 = 9p(z). Then P = (1tp, p) is a Pythagorean fuzzy weak bi-ideal
of M.

Theorem 1. Let P = (1tp, 9p) be a Pythagorean fuzzy subgroup of M. Then P = (rtp, 9p) is a Pythagorean
fuzzy weak bi-ideal of M if and only if 7tp % 7p * mp C 71p and Ip * 9p * Ip 2 Ip.

Proof. Assume that P = (7tp, 9p) be a Pythagorean fuzzy weak bi-ideal of M. Let x,y,2,11,¥, € M and
a,B €I such that x = yaz and y = y,8y,. Then

(Ttp * Ttp * Ttp)(X) = sup {min{(1tp * Tp)(y), Tip(2)}}
X=yaz

Pythagorean fuzzy weak bi-ideals of I'- near ring

sup {min{ sup min{np(y;), p(y2)}, p(2)}}
x=yaz y=y1By2

sup sup {min{min{rp(y;), p(y2)}, Tp(2)}}
X=yazy=yipys

sup {min{roy), To(y), 7o),

x=y1pyzaz
since 7p is a fuzzy weak bi-ideal of M,
Tp(y1By202) = min{rip(y1), Tp(y2), Tp(2)}

< sup Tp(y1Pyq20z)
x=y1pyzaz

= Tip (X)
And

(Sp x Jp * Ip)(x) = Xif}}gz{min{(sp * 3p)(y), Sp(2)}},

= inf {max{ in

z R f min{dp(y1), Sp(y2)}, Sp(2)}}
X=yaz y=y1By2



= inf sup {max{max{3p(y1), 9p(y2)}, ¥p(2)}}
XY Zy—y1Bys

= infLmax{Sp2), 96(r2), 350,

x=y1py20z
since 9p is a fuzzy weak bi-ideal of M,
Ip(y1By20z) < max{dp(y1), 9p(y2), ¥p(2)}

> inf dp(yiByr0z)
x=y1By20z

= dp(x).
If x can not be expressed as x = yaz, then (1p * mp * 71p)(x) = 0 < 71p(x) and
(Sp % Ip % Ip)(x) =0 > 9p(x). In both cases 7p * 7tp * 7tp C Ttp, and Ip * Sp *x Ip 2 Ip.
Conversely, assume that 7p % 7tp % 71p € mp. For x7,x,y,z€e Mand a, B, a1, €T
Let x7 be such that x/ = xaypz.

Then mp(xaypz) = mtp(xr) = (1p * Ttp * TTp)(X7)

sup {min{(Tp * Tp)(p), Ttp(q)}}
Xr=pa1q

= Ssup {min{ sup miﬂ{TCP(PD/T(P(Pz)},TCP(q)}}
xr=paiq p=p1f1p2

= sup {min{“P(Pl)r“P(Pz),TCP(q)”
x'=p1p1p20t1q

> min{rp(x), Ttp(y), Ttp(2)}-
Sp(xaypz) = Ip(x/) < (Sp * dp * dp)(x/)

= inf q{max{(Sp + 3p)(p), Sp(P}}

X/=paig

= inf {max{ inf min{Sp(p;), Sp(p2)}, Sp(q}}
Xr=pa1q pP=p1P1p2

= inf  {max{3p(p1), dp(p2), dp(P}}
x/=p1p1p201q

< max{9p(x), dp(y), ¥p(2)}.
Hence mtp(xaypz) > min{mp(x), mp(y), 7p(2)}, and Sp(xaypz) < max{Sp(x), 9p(y), 9p(2)}-

Lemma 1. Let 7tp = (71py, Ttpp) and 9p = (Spy1, 9pp) be Pythagorean fuzzy weak bi-ideals of M. Then the
products 7tp * 3p and 9p * mp are also Pythagorean fuzzy weak bi-ideals of M.

Proof. Let tp and 9p be a Pythagorean fuzzy weak bi-ideals of M and let a, ay,a; € I'. Then
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(Tpy * Tipp)(X —y) = sup min{mp;(a), py(b)}
-

2 sup min{Tpy(a; — ay), Tpy(bg — by)}

I Fuzzy. Ext. Appl
x—y=aj b1 —azazby<(aj—ap)(b1-b)

301

> supmin{min{mp;(a;), Ttpy(az)}, min{mpy(by), Tpa(by)}}
= supmin{min{mp;(a;), Ttpp(b1)}, min{mp;(ay), Tpa(by)}}

> min{ sup min{mpi(ay), mpy(b1)}, sup min{np(ay), Tpy(by)}}
x=aja1bq Y=a20¢2b2

= min{(mtp; * Ttpy)(X), (Ttpy * Tipp)(Y)}-

Op1 * Ip)(x—y) = X_ilrzlﬁabmax{sm(a)/ Spo(b)}

< inf max{dpi(a; —ay), ¥pp(b; —by)}
x—y=aja1by—apazby<(a;—az) (b1 -by) P 2y TPt 2

< infmax{max{9p;(a;), 9p1(az)}, max{Spy(b1), dpa(b2)}}
= infmax{max{3p;(a;), ¥po(b1)}, max{dpi(ay), Spa(b2)}}

<max{ inf max{dpi(a;), dpy(by)}, inf max{Ip;(az), Spp(bx)}}
x=aja1bq Y=320‘2b2

= max{(Jp; * Ip)(X), (Vp1 * Sp2)(y)}-

Pythagorean fuzzy weak bi-ideals of I'- near ring

It follows that 7tp * 9p is a Pythagorean fuzzy subgroup of M. Further,
(1tp % Op) * (7tp * Op) * (Ttp * Op) = Ttp * Ip * (7ip * Op * Tp) * Ip
C7tp Kk Op % (Op * Ip % Ip) % Ip
C mip*x (Op * 9p % Ip),

since P is a Pythagorean fuzzy weak bi-ideal of M C 1tp % 9p.

Therefore 7p * 9p is a Pythagorean fuzzy weak bi-ideal of M. Similarly 9p * 7tp is a Pythagorean fuzzy weak
bi-ideal of M.

Lemma 2. Every Pythagorean fuzzy ideal of M is a Pythagorean fuzzy bi-ideal of M.
Proof. Let P = (1tp, 9p) be a Pythagorean fuzzy ideal of M. Then
Tp*M*x1tp Cipk Mk M C mtp kM C 711p,
IpAM*xIp29pkM*xMDIp*xM2 Ip,
since P = (mtp, 9p) be a Pythagorean fuzzy ideal of M.
This implies that Tp * M % 1tp € mtp and Sp * M * 9p 2D 9p.

Therefore P = (np, 9p) be a Pythagorean fuzzy bi-ideal of M.



Theorem 2. Every Pythagorean fuzzy bi-ideal of M is a Pythagorean fuzzy weak bi-ideal of M.
Proof. Assume that P = (7ip, 9p) be a Pythagorean fuzzy bi-ideal of M.

Then 7tp * M x 7tp C 7tp and Sp * M x 9p 2 9p.

We have 7tp % 7tp % 71p C 71p * M K 71p and 9p % Ip * 9p 2 9p * M % Op.

This implies that 7tp % 7tp % 7tp S 7tp * M % 71p C 11p

and 9p * 9p * 9p 2 Ip * M * Ip 2 Ip.

Therefore P = (mtp, 9p) is a Pythagorean fuzzy weak bi-ideal of M.

Example 2. Let M = {w, x, y, z} be a nonempty set with binary operation+ and I' = {a} be a nonempty

set of binary operations as the following tables:

+ WXy z
Ww X y z
XX w zy
Yy z wx

Z7 y X W
and

@aW Xy z

Ww w ww

Xw X WX

YW WY y

Zw X y z

Let tp : M — [0,1] be a fuzzy set defined by mp(w) = 0.9, 7p(x) = 0.4 = 7p(y) and 7p(z) = 0.6, and
Ip(w) = 0.1, 9p(x) = 0.5 = 9p(y), Ip(z) = 0.3. Then 7tp is a fuzzy weak bi-ideal of M. But 7p is not a fuzzy
ideal and bi-ideal of M and mp(zyyyz) = mp(y) = 0.4 > 0.6 = min{np(z), tp(z)} and Ip(xa(z +w) —
xaw) < 9p(z) = 0.5 £ 0.3 and Sp(zyxyz) = 9p(x) = 0.5 £ 0.3 = min{9p(z), Ip(2)}.

Theorem 3. Let {(1p,, 9p)Ii € (2} be family of Pythagorean fuzzy weak bi-ideals of a near-ring M, then

Nieo Tip;and Uz Op,ate also a Pythagorean fuzzy weak bi-idea of M, where (2 is any index set.
Proof. Let {11;};co be a family of Pythagorean fuzzy weak bi-ideals of M.
Letx,y,ze M,a,f €I and mw = jeq T;.

Then,Nieq 7p,(X) = Nieq 7p,(X) = (infj)‘ﬁpi)(x) = infj)‘ 7p,(x)and

Uiea 9p,(xX) =Ujcq 9p,(x) = (sup 9p,)(x) = supdp (x).
i€Q i€Q

() e,(x =) = infree, (x - y)

ieQ
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2 infmin{mp, (x), 7 (y))

Ji—.
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303 = min{(") 7, (), () e, ()}

ieQ ieQ

Uieq dp,(X = y) = supTip (x - y)
ieQ

< supmax{9p,(x), 3p,(y))
i€Q

= max{supdp, (x), supdp,(y)}
ieQ i€Q

= max{Ujeq dp,(X),Vicq dp,(y)}-

And,
() e, (xayBz) = infrep, (xayp)
ieQ

> g}gmin{npi (), Tip,(y), Tip,(2)}

= nrun{ilggﬂpi (), ilé’l(gﬂpi ), ilé’l(gﬂpi (2)}

Pythagorean fuzzy weak bi-ideals of I'- near ring

=min{[ ] mp,(x), () TR, ¥), [ ] 7, (@)

ieQ ieQ ieQ

Ujeq dp,(xayBz) = SH(I))SPi(Xo‘YBZ)
1€

< supmax({3p,(x), 9p,(y), dp,(2)}
i€Q

= max{supdp, (x), supdp,(y), supp,(2)}
i€Q i€Q i€Q

= max{Ujeq dp,(3),Vieq dp,(y) Vieq dp,(2)}-
Hence the set (e Ttpand Ujeq 9p, ate also a family of Pythagorean fuzzy weak bi-ideals of M.

Theorem 4. Let P = (mtp,9p) be a Pythagorean fuzzy subset of M. Then U(mp;t) and L(9p;s) is a
Pythagorean fuzzy weak bi-ideal of M if and only if 7tp; is a weak bi-ideal of M, for all t € [0,1].

Proof. Assume that P = (1p, 9p) is a Pythagorean fuzzy weak bi-ideal of M.
Lets,t € [0,1] such that x,y € U(mp;1).

Then mtp(x) >t and mp(y) > ¢,

Then mtp(x —y) > min{np(x), tp(y)} > minit,t} = t and

Ip(x —y) < max{p(x), Op(y)} < maxis,s} =s.



Thus x -y € U(rp t).Letx,y,z€ mp; and a,f €T

This implies that mp(xaypz) > min{np(x), 7p(y), np(z)} = min{t,t, t} = t, and

Ip(xayBz) < max{dp(x), 9p(y), 9p(z)} < maxl{s, s, s} =s.

Therefore xaypz € U(mp;s).

Hence U (mtp, t) and (9p;s) is a weak bi-ideal of M.

Conversely, assume that U (rtp, £) and (8p;s)is a weak bi-ideal of M, for all s, t € [0,1].
Let x,y € M. Suppose

tp(x = y) < min{rip(x), mp(y)land 9p(x — y) > max{Sp(x), Sp(y)}.

Choose t such that 77(x —y) < t < min{rnp(x), Tp(y)} and Ip(x —y) > s > max{Sp(x), p(y)}.
This implies that mtp(x) > t, tp(y) > t and mp(x —y) < t.

Then we have X,y € mtp, but x —y € 7ip; and Ip(x) <5, Ip(y) <s and Ip(x —y) > s, we have x,y € Ip,
but x — y & Ip, a contradiction.

Thus 7tp(x — y) = min{np(x), Tp(y)} and p(x — y) < max{9p(x), p(y)}.

If there exist x,y,z € M and a,f € I such that mp(xaypz) < min{np(x), 7tp(y), 7p(z)} and Sp(xaypz) >
max{Ip(x), dp(y), 9p(z)}.

Choose t such that tp(xaypz) < t < min{rp(x), np(y), 7p(z)}.

Choose s such that 9p(xayBz) > s > max{9p(x), 9p(y), Ip(2)}.

Then 7tp(x) > t, mp(y) > t, 7ip(z) > t and Sp(x) < s, 9p(y) < 5, 9p(z) < s and mp(xaypz) < t.
So, x,y,z € mp > but xaypz € np;, and xaypz £ Sp,, which is a contradiction.

Hence ntp(xaypz) = min{rp(x), 7p(y), mp(2)}, Sp(xaypz) < max{Sp(x), 9p(y), 9p(2)}.
Therefore P = (1tp, 9p) is a Pythagorean fuzzy weak bi-ideal of M.

Theorem 5. Let P = (11p, 9p) be a Pythagorean fuzzy weak bi-ideal of M then the set M, s ={x €
M|7tp(x) = 1tp(0) = Ip(x)} is aweak bi-ideal of M.

Proof. Let X,y € Mz, 5, Then 7p(x) = 7p(0), 7p(y) = 715(0), 9p(x) = 0, 9p(y) = 0 and
ntp(x — y) = min{rp(x), 7p(y)}
= min{7p(0), tp(0)}
= 71tp(0), and
Ip(x = y) < max{Sp(x), p(y)}

= max{9p(0), 9p(0)}
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= 95(0).
So 7p(x — ) = 7p(0), 9p(x — y) = 95(0).
Thus x —y € M,,,, X~y € M, For every x,,z € My, and &, € T. We have
rtp(xayB2) > min{rp(x), p(y), p(2)}
= min{np(0), 1tp(0), Ttp(0)}
= p(0).
And
dp(xaypz) < max{dp(x), ¥p(y), dp(2)}
= max{dp(0), ¥p(0), ¥p(0)}
= 9p(0).

Thus xaypz € M, xaypz € My,. Hence M, s, is 2 weak bi-ideal of M.

4| Homomorphism of Pythagorean Fuzzy Weak Bi-Ideals of I''Near-
Rings
In this section, we characterize Pythagorean fuzzy weak bi-ideals of I'-near-rings using homomorphism.

Definition 6. Let f be a mapping from a set M to a set S. Let f = (1tp, 9p) be a Pythagorean fuzzy subsets
of M and S, resp. then f is image of 7p and Ip under f is a fuzzy subset of S defined by

[ sup mp(x) if f7(y)# @
f(mp)(y) = { xef-1(y)
{0 otherwise.

(

_J) inf 9 if f1(y)# @

ﬂ%wphﬁmﬂwl ()
1 otherwise

And the pre-image of mp and Up under f is a fuzzy subset of M defined by

[ () = mp(f (), 71 (9p(x)) = Op(f(x)) for allx € M and f~'(y) = {x € MIf(x) = y}.

Theotem 6. Let f:M — S be a homomorphism between ['-near-rings M and S If P = (mp,9p) is a
Pythagorean fuzzy weak bi-ideal of S, then f™(P) = [f~!(ntp, 9p)] is a Pythagorean fuzzy weak bi-ideal of

M.

Proof. Let f be a Pythagorean fuzzy weak bi-ideal of M. Let x,y,z € M and @, € I'. Then

£ (mp)(x - y) = Tp(f(x - y))

= 1ip(f(x) — £(y))



> min{mp(£(x)), mp(£(y))}

{17
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= min{f "' (np(x)), " (1tp(y))}-

f1(9p)(x—y) = Sp(f(x - y))
= Jp(f(x) - £(y))

< max{dp(f(x)), ¥p(f(y))}

= max{f " (8p(x)), f 1 (Sp(y))}-

£ (mp)(xayp2) = p(f(xaypz))

p(fO)af(y)pt(2))

\%

minf{rp(£(x)), Tp(£(y)), e (£(2))}

min{f ! (rtp(x)), £ (1tp(y)), £ (mp(2)))-
£71(9p)(xayBz) = Sp(f(xaypz))
= dp(f(x)af(y)pf(2))
< max{3p(f(x)), ¥p(f(y)), Sp(£(2))}
= max{f ' (8p(x)), f ' (8p(¥)), £ (8p(2))}-
Therefore f~1(P) = [f~1(rtp, 9p)] is a Pythagorean fuzzy weak bi-ideal of M.
We can also state the converse of the Theoren 7 by strengthening the condition on f as follows.
Theotem 7. Let f:M — S be an onto homomorphism of I'near-rings M and S. Let P = (7p, 9p) be a

Pythagorean fuzzy subset of S. If f~1(P) = [f~!(np), f1(8p) is a Pythagorean fuzzy weak bi-ideal of M,
then P = (7tp, 9p) is a Pythagorean fuuzy weak bi-ideal of S.

Marynirmala and Sivakumar |J. Fuzzy. Ext. Appl. 2(3) (2021) 297-320

Proof. Letx,,z € S. Then f(j) = x, (k) = y and f(I) = z for some j,k,I € Mand a, § € T It follows that
p(x —y) = 1ip(£(j) — £(k))
= 1ip(f(j — k)
= f71(mp) G - k)
> min{f ' (rp)(j), £ " (mp) (k)
= min{mp(f(j)), np(f(k))}
= min{rp(x), p(y)}-

Ip(x —y) = 9p(f(j) - f(k))



= 9p(f( - k)

Ji—.
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= £1(9p) - K)
307 < max{f~(9p)()), £ 1 (Sp) ()}
= max{9p(£()), 9p(F(k)}
= max{9p(x), Sp(y)}.
And
mp(xatyBz) = mp(FGaf()BED)
= mp(f(jk1)
= £ (mp) (D)
> min{f ! (rp)(), £ (mp) (), £~ (mp) (D)}
= min{rp(£(), mp(E(K)), Tp(ED))
= min{rp(x), Tp(y), Tp(2)}.
Sp(xaypz) = Sp(f()af(k)Bi()

= p(f(jk1))

Pythagorean fuzzy weak bi-ideals of I'- near ring

= £71(3p) (k1)
< max{f ' (9p)(), f " (Sp)(k), £ (3p) (D)}
= max{p(f(j)), dp(f(k)), Sp(f(1))}
= max{dp(x), 9p(y), ¥p(2)}-
Hence P is a Pythagorean fuzzy weak bi-ideal of S.

Theorem 8. Let f : M — S be an onto I'-near-ring homomorphism. If P = (tp, 9p) is a Pythagorean fuzzy
weak bi-ideal of M, then f(P) = f(rp, 9p) is a Pythagorean fuzzy weak bi-ideal of M.

Proof. Let P be a Pythagorean fuzzy weak bi-ideal of M. Since f(mp)(x/) = sup (mp(x)) , for x7 € S and

f)=x'

f®p)xr) = inf (Ip(x)) , for xs € Shence f(P) is nonempty. Let x7,y7 € S and «a,f € I'. Then we have
f@=v
{xlx€ flxr—y) 2{x-ylx € f Y (xr) and y € f U ys)} and {xlx € f~1(xryr)} 2 {xaylx € f1(xr) and ye€

).

f(np)(x/ —ys)= sup {mp(2)}
f(z)=(x/—y7)

> sup  {mp(x—y)}
f(x)=x+ £(y)=y”



>  sup {min{rp(x), Tp(y)}}
Py (/-

= min{ sup {rtp(x)}, sup {mp(y)}}

1 Fuzzy. Exi. Appl

fx)=x fy)=y’
= minlf(rp)0),  frp)(y) 308
And
f3p)0v —yn) = inf (3p(2))
f(z)=x/-yr
< inf dp(x —
f(x):):_/l}(y):y/{ p(x=y)}
< inf (%), d
f(x)leg}(y):y/{max{ p(X), Sp(Y)H}
S
= max{_inf {dp(x)}, inf {Sp(y)}} N
f(x)=xs f(y)=y» S
= max{fdp)(x),  f(3p)(y”))- S
D
Next, S
o
<
f(mp)(xraysfzr) = sup  {mp(w)} g
f(w)=xrayspzs S5}
g
> sup  [mp(xayp2)) ;
f(x)=x1£(y)=y’ f(z)=2/ =
> sup  (min{mp(9), me(y), e (2)) g
£09=x1,(y)=y" f(z)=2" g
z
= min{ sup {np(x)}, sup {mp(y)}, sup {np(2)}} %
f(x)=xs f(y)=y’ f(z)=zr 5
<
(5]
= min{f(rip)(x7), {(1p)(y ), f(ip) (27)}. £
=
And g

f(9p)(xraypzr) = inf  {dp(w)}

f(w)=xrayspzs

< inf Ip(xaypz
f(X):xr,f(y):y,,f(Z):Z,{ p( yp )}

< inf max{dp(x), dp(y), dp(z
f(X):X,,f(y):y,,f(z):y{ {9p(x), Op(y), p(2)}}

= max{f(glsz{sp(x)}, f(gl:fy,{sp(y)}, f(glsz,{Sp(Z)}}

= max{f(dp)(x/),  fp)(y7),  {(Sp)(2/)}-

Therefore f(P) is a Pythagorean fuzzy weak bi-ideal of S.
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5| Interval Valued Pythagorean Fuzzy Weak Bi-Ideals of I'-Near-
Rings

In this section, we initiate the notion of interval valued Pythagorean fuzzy weak bi-ideal of M and discuss
some of its properties.

Definition 7. An interval valued Pythagorean fuzzy set P = (%ip, 9p) of M is called an interval valued
Pythagorean fuzzy weak bi-ideal of M, if

I 7p(x—y) =2 min{mp(x), p(y)}.
I 9p(x— y) < mux{5p(x),§1)(y)}.
L. 7p(xyyyz) = min{mp(x), Tp(y), 7tp(2)}-
V. Op(xyyyz) < max{Sp(x),p(y), Sp(2)} forallx,y,ze Manda,B€T.

Example 3. Let M = {w, x, y, z} be a nonempty set with binary operation * + "and I' = {y'} be a nonempty

set of binary operations as the following tables:

TWX Yy z
Ww x vy z
Xx w zy
Yy 2z wx

Zz7 y X w

and

Yy WX Yz
Ww x w X
Xw X wW X
Yw xvy z
Zw Xy z

Let mp : M — D[0,1] and §p : M — D[0,]1] be aninterval valued fuzzy subsets defined by Tp(w) =
[0.6,0.7], T,(x) =[0.50.6], Tp(y) = Tp(z) = [04,05/ And Sp(w) =[0.2,0.3], 9p(x) = [04,05], Sp(y) =
[0.7,0.8] = 8p(2). Then P = (7ip, 9p) is an interval valued Pythagorean fuzzy weak bi-ideal of M.

Theorem 9. Let P = (7Tp, 9p) be an interval valued Pythagorean fuzzy subgroup of M. Then P = (%p, 9p)
is an interval valued Pythagorean fuzzy weak bi-ideal of M if and only if 7ip % 7p % 7Tp C Tp and 9p % 9p *
Sp 2 9p.

Proof. Assume that P = (p,9p) be an interval valued Pythagorean fuzzy weak bi-ideal of M. Let
X,Y,2,Y1,Y2 € M and @, € I such that x = yaz and y = y18y,. Then

(Ttp * Tp * Tp)(X) = sup {min{(Ttp * Tp)(y), Tp(2)}}
X=yaz

= sup {min{ sup min{Tp(y1), Tp(y2)}, Tp(2)}}
X=yaz y=y1Py2

= sup sup {min{min{Tp(y1), Tp(y2)}, Tp(2)}}
x=yazy=y1py;



= sup {min{Tp(y1), Tp(y2), Tp(2)}}

-

ﬁP(ylﬁyZO(Z) 2 mm{ﬁP(y1)l ﬁP(YZ)/ ﬁP(Z)} J. Fuzzy, Bxt. Appl

< sup Tp(y1Py20z) 310
x=y1By20z

= Tip(X)-

And

(Sp * Op * Ip)(x) = Xi:r}}gz{min{@l; * 3p)(y), 9p(2)}}

min{dp(y;), 3p(y2)}, p(2)}}

inf {max{ inf
X=yoz y:ylﬁyZ

inf _inf {max{max{dp(y1), Sp(y2)}, 9p(2)}}
X=yazy=yipy>

_inf {max{dp(y1), Sp(y2), Sp(2)}}
x=y1By20z

Ip(y1By0z) < max{Sp(y1), Sp(y2), Sp(2))

> inf Sp(y1Byr02)
x=y1py20z

= 9p(x).
Since P is an interval valued Pythagorean fuzzy weak bi-ideal of M,
If x can not be expressed as x = yaz, then (TTp * Tip * Tip)(x) = 0 < Tip(x) and
(8p % 9p % 9p)(x) = 0 = 9p(x). In both cases Tp * 7Tp % 7tp C Tip and 9p k Ip * 9p 2 Ip.

Conversely, assume that TTp * Tip % Tip € Tip. For x7,x,y,z€e M and a, B, a1, p1 € T

Marynirmala and Sivakumar |J. Fuzzy. Ext. Appl. 2(3) (2021) 297-320

Let x7 be such that x7 = xaypz.

Then Ttp(xaypz) = Tp(xr) > (Tip * TTp * Tip)(X7)

sup {min{(Ttp % Tp)(p), Tip(q)
X'=pa1q

sup {min{ sup min{Tp(p;), Tp(p2)}, Tp(q)}}
X/=pa1q P=P1P1P2

sup  {min{Ttp(p1), Tip(p2), T (P}
x/=p1P1p201q

> min{Ttp(X), Tp(y), Tp(2)).

p(xaypz) = dp(x7) < (3p * Op * Vp)(x/)



] = dnf _(max((dp « 3p)(p), Sp(@)}}

inf {max{ inf min{Sp(p;), dp(p2)}, Sp(P}}
xX/=pa1q p=p1B1p2
311

= inf  {max{Sp(p1), Sp(p2), Sp(q)}}
xr=p1B1p201q

< max{Sp(x), Sp(y), Sp(2)}.
Hence Ttp(xaypz) = min{mp(x), Tp(y), Tp(z)} and 9p(xaypz) < max{Sp(x), 9p(y), 9p(2)}.

Lemma 3. Let 7Tp = (Tpy, Tipy) and 9p = (9py, Opy) be an interval valued Pythagorean fuzzy weal bi-ideals

of M. Then the products 7p * Sp and 9p + TTp are also interval valued Pythagorean fuzzy weak bi-ideals of

M.

Proof. Tet Ttp and 9 be an interval valued Pythagorean fuzzy weak bi-ideals of M and let a, oy, @ € .
Then

(TMy * T)(x—y) = sup min{m(a), (b)}

x—y=aab

> sup min{T(a; — ay), T(b; — by)}
x—y=aja1by—azazby<(ay—az)(b1-by)

> sup min{min{T(a;), T(a,)}, min{T(b;), T(by)}}

Pythagorean fuzzy weak bi-ideals of I'- near ring

supmin{min{m(a;), T(b1)}, min{Tt(a,), T(by)}}

\%

min{ sup min{7(a;), T(b1)}, sup min{T(ay), T(by)}}
x:a1a1b1 y:az(xzbz

min{(Tt x T)(x), (T * TO)(y)}.

(9, * 9))(x—y) = inf bmax{§(a),§(b)}
X—y=aq

< inf max{9(a; — a,), 9(b; — by)}

" x—y=ajoqby—apapby <(ag—ap)(by —by)
< infmax{max{§(a1), §(a2)}, max{§(b1), §(b2)}}
= infmax{max{§(a1), §(b1)}, max{§(a2), §(b2)}}

<max{ inf max{S(a;),9(b)}, inf max{S(a,), S(b,)}}
y

x:a1a1b1 :az()(zbz
= max{(3 x D)(x), (3 * 9)(y)}.
It follows that 77 % 9 is an interval valued Pythagorean fuzzy subgroup of M. Further,

MThk ) XM XNk (ThN=TikIk(THkIXT) kI CT A I *(I kO % ),k CT*(JxI %), since

¥ is an interval valued Pythagorean fuzzy weak bi-ideal of M C 77 % 9.



Therefore Tip % 9p is an interval valued Pythagorean fuzzy weak bi-ideal of M. Similatly 95 * Tp is an
interval valued Pythagorean fuzzy weak bi-ideal of M.

Lemma 4. Every interval valued Pythagorean fuzzy ideal of M is an interval valued Pythagorean fuzzy
bi-ideal of M.

Proof. Let P = (7p, 9p) be an interval valued Pythagorean fuzzy ideal of M. Then
Tp*M*xTTp CTTp*xM*xMCTp*M C Tp,
Op *M*x0p 209, *M*M29p*M29,

since P = (7ip, 9p) be an interval valued Pythagorean fuzzy ideal of M.

This implies that 7tp * M * 7ip € 7tp and Sp * Mk 9p 2 9p.

Therefore P = (Tip, 9p) be an interval valued Pythagorean fuzzy bi-ideal of M.

Theorem 10. Every interval valued Pythagorean fuzzy bi-ideal of M is an interval valued Pythagorean
fuzzy weak bi-ideal of M.

Proof. Assume that P = (Tip, 9p) be an interval valued Pythagorean fuzzy bi-ideal of M.
Then Tip % M % TTp C Tp and 9p % M % 9p 2 Ip.

We have TTp * Top & 7ip C Tip % M & 7Tp and 9p % 9p % 9p 2 Sp k M * Ip.

This implies that 7tp & 7p % Tp C 7p % M & T1p C Tp and 9p % 9p % 9p 2 Op * Mk 9p 2 9p.
Therefore P = (Ttp, 9p) is an interval valued Pythagorean fuzzy weak bi-ideal of M.

Example 4. Let M = {w, x, y, z} be a nonempty set with binary operation+ and I' = {a} be a nonempty
set of binary operations as the following tables:

FTwWXyz
WW X y z
XX W zy
yy z WX

ZzZ Yy X W

and

WX y Z
wW W W w
XW X WX

yw wyy
ZW X Yy Z

Let P: M — D[0,1] be aninterval valued Pythagorean fuzzy set defined by 7p(w) = [0.8,0.9], tp(x) =
[0.3,0.4] = Tp(y) and Tip(z) = [0.5,0.6], and Sp(w) = [0,0.1], p(x) = [0.4,0.5] = 9p(y), 9p(2) = [0.2,0.3].
Then Ttp is an interval valued fuzzy weak bi-ideal of M. But 7p is not a fuzzy ideal and bi-ideal of M and

{17
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Tp(zyyyz) = Tip(y) = [0.3,0.4] > [0.5,0.6] = min{Tip(z), Tp(2)} and Sp(xa(z + w) — xaw) < 9p(z) =
[0.4,0.5] £[0.2,0.3] and 9p(zyxyz) = 9p(x) = [0.4,0.5] £ [0.2,0.3] = min{Sp(2), 9p(2)}.

Theorem 11. Tet {(ﬁpi,§pi)|i € (2} be family of interval valued Pythagorean fuzzy weak bi-ideals of a near-

ting M, then (e Tpand Ujeq §piare also an interval valued Pythagorean fuzzy weak bi-ideal of M, where

(2 is any index set.
Proof. Let {ﬁpi,§pi},~eg be a family of interval valued Pythagorean fuzzy weak bi-ideals of M.
Let X, Y,z S M, Oc,ﬁ el and ﬁpi = mieQ ﬁia §Pi :UiEQ §Pi

Then, 7tp,(x) = Nieq Tp,(¥) = (inf7p,)(x) = infTtp (x)
ieQ i€Q)

and 8, (x) =Useqy 95, (x) = (sup3p)(x) = sup3p, (x) .
i€Q) i€Q)

ﬁPi(x -y)= iig(f)ﬁpi(x -y)
> infmin{Tp, (x), Tp, (y)}
i€Q

= min{infrp, (x), infrip (y)}

= min{ﬂ Tip, (%), ﬂ Tp, (¥)}

i€Q i€Q
= min{ﬁl’i (X)/ ﬁPi (Y) } .

§Pi (x-y)= supgpi(x -y)
ieQ

< supmax{§pi (x), §Pi )}
i€eQ

= max{sup§Pi (%), sup§Pi )}
i€Q i€Q

= max{Uicq 9p,(X),Uicq Sp,(y)}
= max{p,(x), Sp,(y))-
And,
T, (xaypz) = inftip (xaypz)
> infmin({tp, (X), T, (y), 7, (2)}

= min{infrp, (x), infftp (y), infree, (2))

= min{(") T, (9, () ), () (@)

ieQ ieQ



= min{ﬁPi (), Tip, V), Tip, (2)}.

Sr,(xaypz) = supSy, (xay )
1€

< supmax{gpi(x), §pi ), §Pi ()}
i€Q

= max{sup§pi (%), sup§pi (), supgpi ()}
ieQ) ieQ ieQ

= max{Ujeq gPi(X)rUieQ §Pi(Y)rUieQ §Pi(Z)}
= max{p,(x), ¥p,(y), 3p.(2)}.
Theorem 12. Let P = (7p, 9p) be an interval valued Pythagorean fuzzy subset of M. Then U(Tp; t) and
L(8p;s) is an interval valued Pythagorean fuzzy weak bi-ideal of M if and only if Ttp; is a weak bi-ideal
of M, for all t € [0,1].
Proof. Assume that P = (Tip, 9p) is an interval valued Pythagorean fuzzy weak bi-ideal of R.
Lets,t € [0,1] such that x,y € U(7p; 1)
Then Tip(x) > t and TTp(y) = tthen Tip(x — y) = min{7mp(x), Tp(y)} = minft, t} = ¢ and
§P(x -y) < max{§P(x), 5P(y)} < max{s,s} =s.
Thus x —y € U(mp t).Letx,y,z€mip, anda, €T
This implies that TTp(xaypz) > min{mp(x), Tp(y), Tp(z)} = minit, t, ¢} = ¢, and
Sp(xaypz) < max{9p(x), 9p(y), 9p(z)} < maxls, s, s} =s.
Therefore xaypz € U(Tp;s).

Hence U (7p; t) and (8p;s) is an interval valued Pythagorean fuzzy weak bi-ideal of M.

Conversely, assume that U (7tp; t) and (§p ;8) is an interval valuedPythagorean fuzzy weak bi-ideal of M,
for alls,t € [0,1].

Let x,y € M. Suppose Tp(x —y) < min{Tip(x), Tip(y)tand Sp(x — y) > max{Sp(x), Sp(y)}.
Choose t such that TTp(x — y) < t < min{Tip(x), Tp(y)} and Sp(x — y) > s > max{Sp(x), Sp(y)}.
This implies that 7Tp(x) > ¢, 7Tp(y) > t and Tp(x —y) < t.

Then we have x,y € Ttp, but x — y € Tip, and 9p(x) < 5, 9p(y) < s and Sp(x — y) > 5, we have x,y € 9p, but

x -y € 9p, a contradiction.

Thus Tp(x - ) 2 min{Tp(x), Tp(y)} and 9p(x - y) < max{9p(x), Ip(y)}.

{17
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If there exist x,y,z€ M and «a,f €' such that 7p(xaypz) < min{mp(x), 7p(y), Tp(z)} and §P(xayﬁz) >
max{Sp(x), Sp(y), 9p(2)).

Choose t such that Tip(xaypz) < t < min{rp(x), tp(y), 7p(2)}.

Choose s such that Sp(xaypz) > s > max{9p(x), 9p(y), 9p(2)}.

Then Tp(x) > £, Tp(y) > £, Tp(z) > t and 9p(x) < 5, 9p(y) < 5, 9p(2) < s and Tip(xaypz) < t.
So, X, Y,z € Tp > but xaypz € Tp;, and xaypz € 9p,, which is a contradiction.

Hence Ttp(xaypz) = min{Tp(x), Tp(y), Tp(2)}, 9p(xaypz) < max{Sp(x), 9p(y), 9p(z)).
Therefore P = (Tip, 9p) is an interval valued Pythagorean fuzzy weak bi-ideal of M.

Theorem 13. Let P = (7p, 9p) be an interval valued Pythagorean fuzzy weak bi-ideal of M then the set

M- 5= {x € M|tp(x) = p(0) = §p(x)} is a interval valued Pythagorean fuzzy weak bi-ideal of M.

Proof. Let X,y € M 5.
Then Tip(x) = Tp(0), Tp(y) = Tp(0), p(x) = 0, 9p(y) = 0 and
TTp(x - y) = min(Tp(x), Tp(y)) = min(7Tp(0), 7p(0)} = 7(0), and
Sp(x —y) < max{Sp(x), p(y)} = max{9,(0), 9p(0)} = 9,(0).
So Tip(x = y) = Tp(0), Sp(x — y) = 9p(0).
Thus x -y € Mz,, x~y € Mg,. For every x,,z € Mz, and a, § € T. We have
Tip(xay Bz) > min{Tip(x), Tip(y), Tip(2)},
= min{7tp(0), Tp(0), Tp(0)} = Tip(0),
and
Sp(xaypz) < max{Sp(x), Sp(y), p(2)}
= max{3p(0), 3p(0), 3p(0)} = 3p(0).

Thus xaypz € Mz, xaypz € Mg, . Hence M
M.

(7p3p) 18 an interval valuedPythagorean fuzzy weak bi-ideal of

6| Homomorphism of Interval Valued Pythagorean Fuzzy Weak Bi-
Ideals of I'-Near-Rings

In this section, we characterize interval valued Pythagorean fuzzy weak bi-ideals of I'-near-rings using
homomorphism.



Definition 8. Let f be a mapping from a set M to a set S. Let f = (7p, 9p) be an interval valued

Pythagorean fuzzy subsets of M and S, resp. then f is image of 7Tp and 9p under f is a fuzzy subset of ”’-
S defined by

1 Fuzzy. Exi. Appl

( sup Tp(x) if f7(y) # @
f(Tp)(y) = < xet-1(y) 316
(0 otherwise.
( _
£(Sp)(y) = { eifnlf( )SP(X) if f(y)#@
xet(y
{1 otherwise

And the pre-image of 7tp and 9p under f is a fuzzy subset of M defined by

FTp () = Tp(f), f(Sp(x)) = Sp(f(x)) for allx € M and 7 (y) = {x € MIf(x) = y).
Theorem 14. Let f:M — S be 2 homomorphism between I'-near-rings M and S, If P = (7p, 9p) is an
interval valued Pythagorean fuzzy weak bi-ideal of S, then f~1(P) = [f~1(Tp, 9p)] is an interval valued

fuzzy weakbi-ideal of M.

Proof. Let f be an interval valued Pythagorean fuzzy weak bi-ideal of S. Let x,y,z€ M and a,f €T
Then

£ (Tep) (x — y) = Tp(f(x ~ y))
= Tip(f(x) — £(y))

> min{Tp(f(x)), Tp(f(y))}

= min{f (T (x)), £~ (Tp(y)))-
£71(9p)(x —y) = Op(f(x - y))

= Bp(f(x) — (y))

Marynirmala and Sivakumar |J. Fuzzy. Ext. Appl. 2(3) (2021) 297-320

< max{Sp(f(x)), Sp(f(y))}

= max{f *(3p(9), £ (Sp(y)))-

=1 (Tp)(xatypz) = Tip(f(xaypz))

= Tp(f(x)af(y)Bf(2))

> min{Tp(f()), Tp(f(y)), Tip (F(2))}

= min{f " ([p(9), 7 Tp(y)), £ (Tp(2))}-
£71(Sp)(xaypz) = Sp(f(xaypz))

= §P(f(x)af(y)f>f(z))
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< max{Sp(f(x)), Sp(£(y)), Sp(£(2))}

= max{f " (3p(x), £ ' (Sp(y)), " Bp(2))}.
Therefore f1(P) = [f~(%p, 9p)] 5 an interval valued Pythagorean fuzzy weak bi-ideal of M.
We can also state the converse of the Theorens 7 by strengthening the condition on f as follows.

Theorem 15. Let f:M — S be an onto homomorphism of I'-near-rings M and S, Let P = (7ip, 9p) be an
interval valued Pythagorean fuzzy subset of S. If f 1P =1 f _1(ﬁp,§p)] is an interval valued Pythagorean
fuzzy weak bi-ideal of M, then P = (7ip, 9p) is a Pythagorean fuzzy weak bi-ideal of S.

Proof. Let x,y,z € S. Then f(j) = x, f(k) = y and f(I) = z for some j,k,] € M and @, f € I'. It follows that
Tip(x — y) = Tip((j) — £(K))
= Top(f(j — k)
= £ () - k)
> min{f ™ (Tp)(j), £~ (7ip) (k)
= min{Tp(£())), Tp (F(K)))
= min{Tp (%), Tp(y)}-
S(x-y) = S(G) - (k)
= S((G - 1))
=£1(3)j-k)
< max{f ' (9)(), £ (9)(k))
= max{S(£(j)), S(f(k))}
= max{3(x), S(y)}.
And
Tip(xayBz) = Tip(F()af (K)BE(D)
= Tp(f(k1))
= £71(7p) k1)
> min{f ! (Tp)(j), £~ (TTp) (), £~ (7Tp) (1)}

= min{Ttp(£(})), Tp (f(k)), Tp (F(1))}



= min{Ttp(X), Tp(y), Tp(2)}.

{17

1 Fuzzy. Exi. Appl

= S(f(jkD) 318

S(xaypz) = S(f(ak(k)BED)

= £71(3)(jkD)
< max{f *(3)(), £ 1 S)(k), £ )M}
= max{S(f()), S((K)), S(ED))
= max{3(x), 3(y), S@)}.
Hence P is an interval valued Pythagorean fuzzy weak bi-ideal of S

Theorem 16. Let f :M — S be an onto I'-neat-ring homomorphism. If P = (7ip, 9p) is an interval valued

Pythagorean fuzzy weak bi-ideal of M, then f(P) = [f(7p, 9p)] is an interval valued Pythagorean fuzzy
weak bi-ideal of S.

Proof. Let P be an interval valued Pythagorean fuzzy weak bi-ideal of M. Since f(7p)(x7) = sup (7p(x))
flo=x"

and f(§P)(x1) = inf (5P(x)) , for x» € S and hence f(ﬁ) is nonempty. Let x7, 7 € S and a, f € I'. Then
flo)=x

we have {x|x € f1(xr—y) 2 {x—ylx € f1(x7) and y € f~1(y7)} and {x|x € f~1(xry7)} 2 {xaylx € f~1(xr)

andy € f1(y1)}.

f(mp)(x/ —y7) = sup {Tp(2)}
f(z)=(xr-y’)

> sup  {Tp(x—y)}
f(x)=x1f(y)=y’

> sup  {min{Tp(x), Tp(y)}
f(x)=x f(y)=y’
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= min{ sup {Tp(x)}, sup {Tp(y)}}
£(x)=x f(y)=y’

= min{f(7p)(x/), £(7ip)(y”))-

And

S -y) = inf (Sp(z))
(z)=xr—y

< inf  {(9pkx-YV))
=ty )

< inf max{dp(x), &
f(X)=XI,f(y)=y,{ {3p(x), Sp(y)H}

- max{f(glsz{%(x)},f(glfy,ﬁp(y)}}



”’- = max{f(gl’)(x/)/ f(gP)(y/)}

Next,
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319 f(m)(xrayrfzr) = o SBO}?YIBZI{R(W)}

> sup {M(xaypz)}
f(x)=x+ f(y)=y” f(z)=2/

> sup {min{m(x), T(y), T(2)}}
f(x)=x+ f(y)=y” f(z)=2/

= min{ sup {T(x)}, sup {7(y)}, sup {7(2)}}
f(x)=x» f(y)=y’ f(z)=zs

= min{f(T)(x7), f(T)(y), f(T0)(2/)}.

And

f@pwrayrpzr) = inf  (Sp(w))

)=xrayrBzr

= inf S (xauBz
f(x)=Xf,f(y):y/,f(z):Z,{ P( yﬁ )

< inf max{9p(x), 9p(1), 3p(z
f(x)=X/,f(y):y/,f(z):Z,{ { P( ) P(y) P( )}}

Pythagorean fuzzy weak bi-ideals of I'- near ring

= max{_inf (S0, inf (Sp()), inf [Sp(2)

= max{f(Op)(x"), f(3p)y7), f(Op)(z)).
Therefore f(B) is an interval valued Pythagorean fuzzy weak bi-ideal of S.

7| Conclusion

In this paper, we discuss Pythagorean fuzzy weak ideal, Pythagorean fuzzy weak bi-ideal, Homomorphism
of Pythagorean fuzzy weak ideal and weak bi-ideal. An interval valued Pythagorean fuzzy ideal, interval
valued Pythagorean fuzzy weak bi-ideal, Homomorphism of interval valued Pythagorean fuzzy weak ideal

and bi-ideal in gamma near ring are studied and investigated some properties with suitable examples.
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