Document Type : Research Paper


Department of Computer Engineering, Maltepe University, Istanbul 34857, Turkey.


Covid-19 pandemic forced all the world to make significant changes in their daily routines. As a result, internet and digital technologies started to be used more actively by individuals and businesses. Due to this digitalization, everyone is more open to digital threats. In order to provide the security of the network, firewalls should be used. Firewalls act as a barrier between the internal and the external networks. Thus, it is more important than ever to choose the right firewall for each network. In this study, an integrated Fuzzy-Analytic Hierarchy Process (AHP) and TOPSIS model is introduced to find out the most suitable firewall. A survey is designed and used to generate the data of this study. This study distinguishes from other studies by proposing a solution which ranks the firewall alternatives using a combination of fuzzy-AHP and TOPSIS models. As a result, among the five different firewall alternatives, the second one is found out to be the best. A solution proposal ranking the firewall alternatives is new in the literature. This approach is used in many different Multi-Criteria Decision Making (MCDM) problems before but not in firewall selection. Hence, this study can be considered quite innovative in terms of the problem it handles and the model used. It offers a new solution related to a decision making problem that has started to gain more importance with the current digitalization process due to Covid-19 pandemic.


Main Subjects

  1. Widup, S. (2019). Verizon data breach investigations report. Retrieved from Verizon
  2. Wen, H. J., & Tarn, J. H. M. (1998). Internet security: a case study of firewall selection. Information management & computer security, 6(4), 178-184.
  3. Karaarslan, E. (2003). Ağ güvenlik duvarı çözümü oluşturulurken dikkat edilmesi gereken hususlar. Akademik Bilişim.
  4. Karafili, E., Valenza, F., Chen, Y., & Lupu, E. C. (2020, April). Towards a framework for automatic firewalls configuration via argumentation reasoning. NOMS 2020-2020 IEEE/IFIP network operations and management symposium(pp. 1-4). IEEE. DOI: 1109/NOMS47738.2020.9110399
  5. Cronje, G. (2001). Choosing the best firewall. Retrieved from SANS.
  6. Schwartz, B., & Schwartz, B. (2004). The paradox of choice: why more is less. New York: Ecco.
  7. Chakraborty, S. (2011). Applications of the MOORA method for decision making in manufacturing environment. The international journal of advanced manufacturing technology54(9), 1155-1166.
  8. Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. Mc Graw Hill.
  9. Bevilacqua, M., D’Amore, A., & Polonara, F. (2004). A multi-criteria decision approach to choosing the optimal blanching–freezing system. Journal of food engineering63(3), 253-263.
  10. Zadeh, L. A. (1965). Information and control. Fuzzy sets8(3), 338-353.
  11. Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science17(4), B-141.
  12. Van Laarhoven, P. J., & Pedrycz, W. (1983). A fuzzy extension of Saaty's priority theory. Fuzzy sets and systems11(1-3), 229-241.
  13. Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European journal of operational research95(3), 649-655.
  14. Cheng, C. H., Yang, K. L., & Hwang, C. L. (1999). Evaluating attack helicopters by AHP based on linguistic variable weight. European journal of operational research116(2), 423-435.
  15. Mikhailov, L. (2002). Fuzzy analytical approach to partnership selection in formation of virtual enterprises. Omega30(5), 393-401.
  16. Kahraman, C., Cebeci, U., & Ruan, D. (2004). Multi-attribute comparison of catering service companies using fuzzy AHP: the case of Turkey. International journal of production economics87(2), 171-184.
  17. Chan, F. T., Kumar, N., Tiwari, M. K., Lau, H. C., & Choy, K. (2008). Global supplier selection: a fuzzy-AHP approach. International journal of production research46(14), 3825-3857.
  18. TURKER, Y. A., Baynal, K., & Turker, T. (2019). The evaluation of learning management systems by using fuzzy AHP, fuzzy topsis and an integrated method: a case study. Turkish online journal of distance education20(2), 195-218.
  19. Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. In Multiple attribute decision making(pp. 58-191). Springer, Berlin, Heidelberg.
  20. Abo-Sinna, M. A., & Amer, A. H. (2005). Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems. Applied mathematics and computation162(1), 243-256.
  21. Jahanshahloo, G. R., Lotfi, F. H., & Izadikhah, M. (2006). Extension of the TOPSIS method for decision-making problems with fuzzy data. Applied mathematics and computation181(2), 1544-1551.
  22. Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and computer modelling45(7-8), 801-813.
  23. Kaya, T. (2010). Multi-attribute evaluation of website quality in E-business using an integrated fuzzy AHPTOPSIS methodology. International journal of computational intelligence systems3(3), 301-314.
  24. Yu, X., Guo, S., Guo, J., & Huang, X. (2011). Rank B2C e-commerce websites in e-alliance based on AHP and fuzzy TOPSIS. Expert systems with applications38(4), 3550-3557.
  25. Sarkis, J., & Talluri, S. (2004). Evaluating and selecting e-commerce software and communication systems for a supply chain. European journal of operational research159(2), 318-329.
  26. Yu, C. S. (2002). A GP-AHP method for solving group decision-making fuzzy AHP problems. Computers & operations research29(14), 1969-2001.
  27. Benitez, J. M., Martín, J. C., & Román, C. (2007). Using fuzzy number for measuring quality of service in the hotel industry. Tourism management28(2), 544-555.
  28. Seçme, N. Y., Bayrakdaroğlu, A., & Kahraman, C. (2009). Fuzzy performance evaluation in Turkish banking sector using analytic hierarchy process and TOPSIS. Expert systems with applications36(9), 11699-11709.
  29. Chen, M. F., & Tzeng, G. H. (2004). Combining grey relation and TOPSIS concepts for selecting an expatriate host country. Mathematical and computer modelling40(13), 1473-1490.
  30. Ertuğrul, İ., & Karakaşoğlu, N. (2009). Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert systems with applications36(1), 702-715.
  31. Gumus, A. T. (2009). Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP and TOPSIS methodology. Expert systems with applications36(2), 4067-4074.
  32. Önüt, S., & Soner, S. (2008). Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Waste management28(9), 1552-1559.
  33. Yang, T., Chen, M. C., & Hung, C. C. (2007). Multiple attribute decision-making methods for the dynamic operator allocation problem. Mathematics and computers in simulation73(5), 285-299.