Document Type : Research Paper


Department of Computer Science, University of Uyo, Akwa Ibom State, Nigeria.


A novel hybrid intelligent approach for tuning the parameters of Interval Type-2 Intuitionistic Fuzzy Logic System (IT2IFLS) is introduced for the modeling and prediction of coronavirus disease 2019 (COVID-19) time series. COVID-19 is known to be a virus caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV-2) with a huge negative impact on human, work and world economy. Globally, more than 100 million people have been infected with over two million deaths and it is not certain when the pandemic will end. Predicting the trend of the COVID-19 therefore becomes an important and challenging task. Many approaches ranging from statistical approaches to machine learning methods have been formulated and applied for the prediction of the disease. In this work, the sliding mode control learning algorithm is used to adjust the parameters of the antecedent parts of  IT2IFLS system while the gradient descent backpropagation is adopted to tune the consequent parameters in a hybrid manner. The results of the hybrid intelligent learning model are compared with results of single learning models using sliding mode control and gradient descent algorithms and found to provide good performance in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) especially in noisy environments. The type-2 hybrid model also outperforms its type-1 counterparts in the different problem instances.


Main Subjects

  1. Hange, V. (2020). A narrative literature review of global pandemic novel coronavirus disease 2019 (COVID-19): epidemiology, virology, potential drug treatments available.  Med.12(3:9), 1-9. DOI: 10.36648/1989-5216.12.3.310
  2. Muhammad, L. J., Islam, M., Usman, S. S., & Ayon, S. I. (2020). Predictive data mining models for novel coronavirus (COVID-19) infected patients’ recovery. SN computer science1(4), 1-7.
  3. Ayyoubzadeh, S. M., Ayyoubzadeh, S. M., Zahedi, H., Ahmadi, M., & Kalhori, S. R. N. (2020). Predicting COVID-19 incidence through analysis of google trends data in Iran: data mining and deep learning pilot study. JMIR public health and surveillance6(2), e18828.
  4. Ardabili, S. F., Mosavi, A., Ghamisi, P., Ferdinand, F., Varkonyi-Koczy, A. R., Reuter, U., ... & Atkinson, P. M. (2020). Covid-19 outbreak prediction with machine learning. Algorithms13(10), 249.
  5. Agbelusi, O., & Olayemi, O. C. (2020). Prediction of mortality rate of COVID-19 patients using machine learning techniques in Nigeria. International journal of computer science and software engineering9(5), 30-34.
  6. Martin, N., Priya, R., & Smarandache, F. (2021). New Plithogenic sub cognitive maps approach with mediating effects of factors in COVID-19 diagnostic model. Journal of fuzzy extension and applications, 2(1), 1-15. DOI: 22105/jfea.2020.250164.1015
  7. Matta, D. M., & Saraf, M. K. (2020). Prediction of COVID-19 using machine learning techniques (Ph.D Dissertation, Blekinge Institute of Technology, Karlskrona, Swede). Retrieved from
  8. Anastassopoulou, C., Russo, L., Tsakris, A., & Siettos, C. (2020). Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PloS one15(3), e0230405.
  9. Eyoh, I., John, R., & De Maere, G. (2017, July). Time series forecasting with interval type-2 intuitionistic fuzzy logic systems. 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE)(pp. 1-6). IEEE.
  10. Dhiman, N., & Sharma, M. (2020). Fuzzy logic inference system for identification and prevention of Coronavirus (COVID-19). International journal of innovative technology and exploring engineering9(6), 2278-3075.
  11. Al-Qaness, M. A., Ewees, A. A., Fan, H., & Abd El Aziz, M. (2020). Optimization method for forecasting confirmed cases of COVID-19 in China. Journal of clinical medicine9(3), 674.
  12. Van Tinh, N. (2020). Forecasting of COVID-19 confirmed cases in Vietnam using fuzzy time series model combined with particle swarm optimization. Computational research progress in applied science and engineering (CRPASE), 6(2), 114-120.
  13. Fong, S. J., Li, G., Dey, N., Crespo, R. G., & Herrera-Viedma, E. (2020). Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Applied soft computing93, 106282.
  14. Fatima, S. A., Hussain, N., Balouch, A., Rustam, I., Saleem, M., & Asif, M. (2020). IoT enabled smart monitoring of coronavirus empowered with fuzzy inference system. International journal of advance research, ideas and innovations in technology6(1), 188-194.
  15. Verma, P., Khetan, M., Dwivedi S., & Dixit S. (2020). Forecasting the Covid-19 outbreak: an application of arima and fuzzy time series models. Available at
  16. Arora, S., Vadhera, R., & Chugh, B. (2021). A decision-making system for Corona Prognosis using Fuzzy Inference System. Journal of fuzzy extension and applications, 2(4), 344-354.
  17. Ly, K. T. (2021). A COVID-19 forecasting system using adaptive neuro-fuzzy inference. Finance research letters41, 101844.
  18. Atanassov, K. T. (1999). Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets(pp. 1-137). Physica, Heidelberg.
  19. Kozae, A. M., Shokry, M., & Omran, M. (2020). Intuitionistic fuzzy set and its application in corona covid-19. Applied and computational mathematics9(5), 146-154.
  20. Traneva, V., & Tranev, S. (2020). Two-way intuitionistic fuzzy analysis of variance for COVID-19 cases in europe by season and location factors. Paper presented at the meeting of Bulgarian Section of SIAM. Fastumprint.
  21. Traneva, V., & Tranev, S. (2020). Multi-layered intuitionistic fuzzy intercriteria analysis on some key indicators determining the mortality of Covid-19 in European Union. Paper presented at the meeting of Bulgarian Section of SIAM. Fastumprint.
  22. Eyo, I., Eyoh, J., & Umoh, U. (2021). On the prediction of COVID-19 time series: an intuitionistic fuzzy logic approach. Journal of fuzzy extension and application2(2), 171-190.
  23. Atanassov K., Gargov G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy sets and systems, 31(3), 343-349.
  24. Eyoh, I., John, R., & De Maere, G. (2016, October). Interval type-2 intuitionistic fuzzy logic system for non-linear system prediction. 2016 IEEE international conference on systems, man, and cybernetics (SMC)(pp. 001063-001068). IEEE.
  25. Eyoh, I., John, R., De Maere, G., & Kayacan, E. (2018). Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems. IEEE transactions on fuzzy systems26(5), 2672-2685.
  26. Bashir, Z., Malik, M. G., Afridi, F., & Rashid, T. (2020). The algebraic and lattice structures of type-2 intuitionistic fuzzy sets. Computational and applied mathematics39(1), 1-21.
  27. Amsini, P., & Rani, R. U. (2020, March). Enhanced type 2 triangular intuitionistic fuzzy C means clustering algorithm for breast cancer histopathology images. 2020 Fourth international conference on computing methodologies and communication (ICCMC)(pp. 589-594). IEEE.
  28. Yuan, W., & Chao, L. (2019). Online evolving interval type-2 intuitionistic fuzzy LSTM-neural networks for regression problems. IEEE access7, 35544-35555.
  29. Eyoh, I., John, R., & De Maere, G. (2017). Interval type-2 A-intuitionistic fuzzy logic for regression problems. IEEE transactions on fuzzy systems26(4), 2396-2408.
  30. Eyoh, I. J., Umoh, U. A., Inyang, U. G., & Eyoh, J. E. (2020). Derivative-based learning of interval type-2 intuitionistic fuzzy logic systems for noisy regression problems. International journal of fuzzy systems22(3), 1007-1019.
  31. Kumar, P. S. (2020). Intuitionistic fuzzy zero point method for solving type-2 intuitionistic fuzzy transportation problem. International journal of operational research37(3), 418-451.
  32. Ebrahimnejad, A., & Verdegay, J. L. (2016). An efficient computational approach for solving type-2 intuitionistic fuzzy numbers based transportation problems. International journal of computational intelligence systems9(6), 1154-1173.
  33. Fu, Y., Qin, Y., Kou, L., Liu, X., & Jia, L. (2021). Operational risk assessment of railway train based on type-2 intuitionistic fuzzy set and dynamic VIKOR approach. Journal of transportation safety & security13(10), 1025-1046.
  34. Eyoh, I., Eyoh, J., & Umoeka, I. (2020). Interval type-2 intuitionistic fuzzy logic system for forecasting the electricity load. International journal of advances in scientific research and engineering6(10), 38-51.
  35. Sarma, D., Das, A., & Bera, U. K. (2019, March). Generalized type-2 intuitionistic fuzzy approaches for allocation and redistribution of resources in the disaster operation. International conference on information technology and applied mathematics(pp. 327-341). Springer, Cham.
  36. Luo, C., Tan, C., Wang, X., & Zheng, Y. (2019). An evolving recurrent interval type-2 intuitionistic fuzzy neural network for online learning and time series prediction. Applied soft computing78, 150-163.
  37. Eyoh, I., Eyoh, J., & Kalawsky, R. (2020). Interval type-2 intuitionistic fuzzy logic system for time series and identification problems-a comparative study. International journal of fuzzy logic systems (IJFLS), 10(1), 1-17. DOI: 5121/ijfls.2020.10101
  38. Roy, S. K., & Bhaumik, A. (2018). Intelligent water management: a triangular type-2 intuitionistic fuzzy matrix games approach. Water resources management32(3), 949-968.
  39. Singh, S., & Garg, H. (2017). Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process. Applied intelligence46(4), 788-799.
  40. Dan, S., Kar, M. B., Majumder, S., Roy, B., Kar, S., & Pamucar, D. (2019). Intuitionistic type-2 fuzzy set and its properties. Symmetry11(6), 808.
  41. Li, M., Huang, X., & Zhang, C. (2020). Grey relational bidirectional projection method based on trapezoidal type-2 intuitionistic fuzzy numbers. Journal of intelligent & fuzzy systems38(4), 4447-4457.
  42. Demiralp, S., & Haçat, G. (2020). Ordering methods of c-control charts with interval type-2 intuitionistic fuzzy sets. Journal of universal mathematics3(1), 94-102.
  43. Yuan, W., & Chao, L. (2019). Online evolving interval type-2 intuitionistic fuzzy LSTM-neural networks for regression problems. IEEE access7, 35544-35555.
  44. Eyoh, I., John, R., & De Maere, G. (2017, October). Extended Kalman filter-based learning of interval type-2 intuitionistic fuzzy logic system. 2017 IEEE international conference on systems, man, and cybernetics (SMC)(pp. 728-733). IEEE.
  45. Eyoh, I., John, R., & Maere, G. D. (2018, June). Interval type-2 intuitionistic fuzzy logic systems-a comparative evaluation. International conference on information processing and management of uncertainty in knowledge-based systems(pp. 687-698). Springer, Cham.
  46. Eyoh, I., Eyoh, J., Umoh, U., & Kalawsky, R. (2020). A sliding mode control learning of interval type-2 intuitionistic fuzzy logic for non-linear system prediction. Solid state technology63(6), 7793-7811.
  47. Orouskhani, M., Mansouri, M., Orouskhani, Y., & Teshnehlab, M. (2013). A hybrid method of modified cat swarm optimization and gradient descent algorithm for training ANFIS. International journal of computational intelligence and applications12(02), 1350007.
  48. Kayacan, E., & Khanesar, M. A. (2015). Fuzzy neural networks for real time control applications: concepts, modeling and algorithms for fast learning. Butterworth-Heinemann.
  49. Radhika, C., & Parvathi, R. (2016). Intuitionistic fuzzification functions. Global journal of pure and applied mathematics12(2), 1211-1227.
  50. Hájek, P., & Olej, V. (2015, September). Intuitionistic fuzzy neural network: the case of credit scoring using text information. International conference on engineering applications of neural networks(pp. 337-346). Springer, Cham.
  51. Mahapatra, G. S., & Roy, T. K. (2013). Intuitionistic fuzzy number and its arithmetic operation with application on system failure. Journal of uncertain systems7(2), 92-107.
  52. Khanesar, M. A., Lu, J., Smith, T., & Branson, D. (2021). Electrical load prediction using interval type-2 Atanassov intuitionist fuzzy system: gravitational search algorithm tuning approach. Energies14(12), 3591.
  53. Ahmed, S., Shakev, N., Topalov, A., Shiev, K., & Kaynak, O. (2012). Sliding mode incremental learning algorithm for interval type-2 Takagi–Sugeno–Kang fuzzy neural networks. Evolving systems3(3), 179-188.
  54. Kayacan, E., & Kaynak, O. (2012). Sliding mode control theory‐based algorithm for online learning in type‐2 fuzzy neural networks: application to velocity control of an electro hydraulic servo system. International journal of adaptive control and signal processing26(7), 645-659.
  55. Eyoh, I., Eyoh, J., Umoh, U., & Kalawsky, R. (2021). Optimization of interval type-2 intuitionistic fuzzy logic system for prediction problems. International journal of computational intelligence and applications20(04), 2150022.
  56. Kayacan, E., Sarabakha, A., Coupland, S., John, R., & Khanesar, M. A. (2018). Type-2 fuzzy elliptic membership functions for modeling uncertainty. Engineering applications of artificial intelligence, 70, 170-183.