Document Type : Research Paper

Authors

1 Department of Industrial Engineering, Faculty of Engineering, Konya Technical University, Konya, Turkey.

2 Department of Fashion Design, Faculty of Architecture and Design, Selcuk University, Konya, Turkey.

Abstract

This paper deals with the Fuzzy Hybrid Flow Shop (FHFS) scheduling inspired by a real apparel process. A Parallel Greedy (PG) algorithm is proposed to solve the FHFS problems with Setup Time (ST) and Lot Size (LS). The fuzzy model is used to define the uncertain setup and Processing Time (PT) and Due Dates (DDs). The setup and PTs are defined by a Triangular Fuzzy Number (TAFN). Also, the Fuzzy Due Date (FDD) is denoted by a doublet. The tardiness, the tardy jobs, the setup and Idle Time (IT), and the Total Flow (TF) time are minimized by the proposed PG algorithm. The effectiveness of the proposed PG algorithm is demonstrated by comparing it with the Genetic Algorithm (GeA) in the literature. A real-world application in an apparel process is done.  According to the results, the proposed PG algorithm is an efficient method for FHFS scheduling problems with ST and LS in real-world applications.

Keywords

Main Subjects

  1. Gupta, J. N. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the operational research society39(4), 359-364.
  2. Carlier, J., & Neron, E. (2000). An exact method for solving the multi-processor flow-shop. RAIRO-operations research34(1), 1-25.
  3. Arthanary, T. S. (1971). An extension of two machine sequencing problem. Opsearch8, 10-22.
  4. Engin, O., & Döyen, A. (2004). A new approach to solve hybrid flow shop scheduling problems by artificial immune system. Future generation computer systems20(6), 1083-1095.
  5. Tang, L., Liu, W., & Liu, J. (2005). A neural network model and algorithm for the hybrid flow shop scheduling problem in a dynamic environment. Journal of intelligent manufacturing16(3), 361-370.
  6. Zandieh, M., Ghomi, S. F., & Husseini, S. M. (2006). An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Applied mathematics and computation180(1), 111-127.
  7. Allaoui, H., & Artiba, A. (2006). Scheduling two-stage hybrid flow shop with availability constraints. Computers & operations research33(5), 1399-1419.
  8. Voß, S., & Witt, A. (2007). Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: a real-world application. International journal of production economics105(2), 445-458.
  9. Alaykýran, K., Engin, O., & Döyen, A. (2007). Using ant colony optimization to solve hybrid flow shop scheduling problems. The international journal of advanced manufacturing technology35(5), 541-550.
  10. Kahraman, C., Engin, O., Kaya, I., & Kerim Yilmaz, M. (2008). An application of effective genetic algorithms for solving hybrid flow shop scheduling problems. International journal of computational intelligence systems1(2), 134-147.
  11. Liao, C. J., Tjandradjaja, E., & Chung, T. P. (2012). An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Applied soft computing12(6), 1755-1764.
  12. Chung, T. P., & Liao, C. J. (2013). An immunoglobulin-based artificial immune system for solving the hybrid flow shop problem. Applied soft computing13(8), 3729-3736.
  13. Li, J. Q., Pan, Q. K., & Wang, F. T. (2014). A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem. Applied soft computing24, 63-77.
  14. Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied soft computing19, 93-101.
  15. Cui, Z., & Gu, X. (2015). An improved discrete artificial bee colony algorithm to minimize the makespan on hybrid flow shop problems. Neurocomputing148, 248-259.
  16. Akkoyunlu, M. C., Engın, O., & Büyuközkan, K. (2015, May). A harmony search algorithm for hybrid flow shop scheduling with multiprocessor task problems. 2015 6th international conference on modeling, simulation, and applied optimization (ICMSAO)(pp. 1-3). IEEE.
  17. Engin, O., & Engin, B. (2018). Hybrid flow shop with multiprocessor task scheduling based on earliness and tardiness penalties. Journal of enterprise information management, 31(6), 925-936.
  18. Engin, B. E., & Engin, O. (2020). A new memetic global and local search algorithm for solving hybrid flow shop with multiprocessor task scheduling problem. SN applied sciences2(12), 1-14.
  19. Sakawa, M., & Mori, T. (1999). An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and fuzzy duedate. Computers & industrial engineering36(2), 325-341.
  20. Sakawa, M., & Kubota, R. (2000). Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms. European Journal of operational research120(2), 393-407.
  21. Konno, T., & Ishii, H. (2000). An open shop scheduling problem with fuzzy allowable time and fuzzy resource constraint. Fuzzy sets and systems109(1), 141-147.
  22. Chanas, S., & Kasperski, A. (2001). Minimizing maximum lateness in a single machine scheduling problem with fuzzy processing times and fuzzy due dates. Engineering applications of artificial intelligence14(3), 377-386.
  23. Wang, C., Wang, D., Ip, W. H., & Yuen, D. W. (2002). The single machine ready time scheduling problem with fuzzy processing times. Fuzzy sets and systems127(2), 117-129.
  24. Temİz, İ., & Erol, S. (2004). Fuzzy branch-and-bound algorithm for flow shop scheduling. Journal of intelligent manufacturing15(4), 449-454.
  25. Canbolat, Y. B., & Gundogar, E. (2004). Fuzzy priority rule for job shop scheduling. Journal of intelligent manufacturing15(4), 527-533.
  26. Peng, J., & Liu, B. (2004). Parallel machine scheduling models with fuzzy processing times. Information sciences166(1-4), 49-66.
  27. Anglani, A., Grieco, A., Guerriero, E., & Musmanno, R. (2005). Robust scheduling of parallel machines with sequence-dependent set-up costs. European journal of operational research161(3), 704-720.
  28. Petrovic, S., Fayad, C., Petrovic, D., Burke, E., & Kendall, G. (2008). Fuzzy job shop scheduling with lot-sizing. Annals of operations research159(1), 275-292.
  29. Engin, O., & Gözen, Ş. E. R. I. F. E. (2009). Parallel machine scheduling problems with fuzzy processing time and fuzzy duedate: an application in an engine valve manufacturing process. Journal of multiple-valued logic & soft computing15(2), 107-123.
  30. Hu, Y., Yin, M., & Li, X. (2011). A novel objective function for job-shop scheduling problem with fuzzy processing time and fuzzy due date using differential evolution algorithm. The international journal of advanced manufacturing technology56(9), 1125-1138.
  31. Lai, P. J., & Wu, H. C. (2011). Evaluate the fuzzy completion times in the fuzzy flow shop scheduling problems using the virus-evolutionary genetic algorithms. Applied soft computing11(8), 4540-4550.
  32. Balin, S. (2011). Parallel machine scheduling with fuzzy processing times using a robust genetic algorithm and simulation. Information sciences181(17), 3551-3569.
  33. Engin, O., Yilmaz, M. K., Akkoyunlu, M. C., Baysal, M. E., & Sarucan, A. (2012). A greedy algorithm for multiobjective fuzzy flow-shop scheduling problem. In uncertainty modeling in knowledge engineering and decision making(pp. 189-194). Selcuk University Scientific Research Coordination Centre (BAP). https://doi.org/10.1142/9789814417747_0031
  34. Lei, D. (2012). Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling. Applied soft computing12(8), 2237-2245.
  35. Lei, D., & Guo, X. (2012). Swarm-based neighbourhood search algorithm for fuzzy flexible job shop scheduling. International journal of production research50(6), 1639-1649.
  36. Engin, O., Yilmaz, M. K., BAYSAL, M., & Sarucan, A. (2013). Solving fuzzy job shop scheduling problems with availability constraints using a scatter search method. Journal of multiple-valued logic & soft computing21(3-4) 317-334.
  37. Wang, L., Zhou, G., Xu, Y., & Liu, M. (2013). A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. International journal of production research51(12), 3593-3608.
  38. Li, J. Q., & Pan, Y. X. (2013). A hybrid discrete particle swarm optimization algorithm for solving fuzzy job shop scheduling problem. The international journal of advanced manufacturing technology66(1), 583-596.
  39. Li, J. Q., & Pan, Q. K. (2013). Chemical-reaction optimization for solving fuzzy job-shop scheduling problem with flexible maintenance activities. International journal of production economics145(1), 4-17.
  40. Behnamian, J., & Ghomi, S. F. (2014). Multi-objective fuzzy multiprocessor flowshop scheduling. Applied soft computing21, 139-148.
  41. Behnamian, J. (2014). Particle swarm optimization-based algorithm for fuzzy parallel machine scheduling. The international journal of advanced manufacturing technology75(5), 883-895.
  42. Palacios, J. J., González-Rodríguez, I., Vela, C. R., & Puente, J. (2014). Robust swarm optimisation for fuzzy open shop scheduling. Natural computing13(2), 145-156.
  43. Xu, Y., Wang, L., Wang, S. Y., & Liu, M. (2015). An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing148, 260-268.
  44. Wang, K., Huang, Y., & Qin, H. (2016). A fuzzy logic-based hybrid estimation of distribution algorithm for distributed permutation flowshop scheduling problems under machine breakdown. Journal of the operational research society67(1), 68-82.
  45. Yuan, F., Xu, X., & Yin, M. (2019). A novel fuzzy model for multi-objective permutation flow shop scheduling problem with fuzzy processing time. Advances in mechanical engineering11(4), 1-9.
  46. Emin Baysal, M., Sarucan, A., Büyüközkan, K., & Engin, O. (2020, July). Distributed fuzzy permutation flow shop scheduling problem: a bee colony algorithm. International conference on intelligent and fuzzy systems(pp. 1440-1446). Springer, Cham.
  47. Baysal, M. E., Sarucan, A., Büyüközkan, K., & Engin, O. (2022). Artificial bee colony algorithm for solving multi-objective distributed fuzzy permutation flow shop problem. Journal of intelligent & fuzzy systems42(1), 439-449.
  48. Engin, O., & Yılmaz, M. K. (2022). A fuzzy logic based methodology for multi-objective hybrid flow shop scheduling with multi-processor tasks problems and solving with an efficient genetic algorithm. Journal of intelligent & fuzzy systems, 42(1), 451-463.
  49. İşler, M., & Engin, O. (2021, August). Fuzzy hybrid flow shop scheduling problem: an application. International conference on intelligent and fuzzy systems(pp. 623-630). Springer, Cham.
  50. Yimer, A. D., & Demirli, K. (2009). Fuzzy scheduling of job orders in a two-stage flowshop with batch-processing machines. International journal of approximate reasoning50(1), 117-137.
  51. Bortolan, G., & Degani, R. (1985). A review of some methods for ranking fuzzy subsets. Fuzzy sets and Systems15(1), 1-19. https://doi.org/10.1016/0165-0114(85)90012-0
  52. Kane, L., Sidibe, H., Kane, S., Bado, H., Konate, M., Diawara, D., & Diabate, L. (2021). A simplified new approach for solving fully fuzzy transportation problems with involving triangular fuzzy numbers. Journal of fuzzy extension and applications2(1), 89-105.
  53. Kané, L., Diakité, M., Kané, S., Bado, H., Konaté, M., & Traoré, K. (2021). The new algorithm for fully fuzzy transportation problem by trapezoidal fuzzy number (a generalization of triangular fuzzy number). Journal of fuzzy extension and application2(3), 204-225.
  54. Binato, S., Hery, W. J., Loewenstern, D. M., & Resende, M. G. (2002). A GRASP for job shop scheduling. In Essays and surveys in metaheuristics(pp. 59-79). Springer, Boston, MA.
  55. Aiex, R. M., Binato, S., & Resende, M. G. (2003). Parallel GRASP with path-relinking for job shop scheduling. Parallel computing29(4), 393-430.
  56. Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European journal of operational research177(3), 2033-2049.
  57. Baraz, D., & Mosheiov, G. (2008). A note on a greedy heuristic for flow-shop makespan minimization with no machine idle-time. European journal of operational research184(2), 810-813.
  58. Li, X., & Zhao, H. (2009). Greedy algorithm solution of flexible flow shop scheduling problem. IJCSNS9(11), 177.
  59. Kahraman, C., Engin, O., Kaya, I., & Öztürk, R. E. (2010). Multiprocessor task scheduling in multistage hybrid flow-shops: a parallel greedy algorithm approach. Applied soft computing10(4), 1293-1300.
  60. Akgöbek, Ö., Kaya, S., Değirmenci, Ü., & Engin, O. (2011). Parallel greedy metaheuristic algorithm for solving open shop scheduling problem. NWSA eJ. New World Sci. Acad. Eng. Sci.6(1), 421-427.
  61. Pan, Q. K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. Omega44, 41-50.
  62. Karabulut, K., & Tasgetiren, M. F. (2014). A variable iterated greedy algorithm for the traveling salesman problem with time windows. Information sciences279, 383-395.
  63. Fernandez-Viagas, V., & Framinan, J. M. (2015). A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem. International journal of production research53(4), 1111-1123.
  64. Engin, O., Kahraman, C., & Yilmaz, M. K. (2009). A scatter search method for multiobjective fuzzy permutation flow shop scheduling problem: a real world application. In computational intelligence in flow shop and job shop scheduling(pp. 169-189). Springer, Berlin, Heidelberg.
  65. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Longman Publishing Co., Inc.
  66. Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers & operations research22(1), 5-13.
  67. Raja, M. A. Z., Sabir, Z., Mehmood, N., Al-Aidarous, E. S., & Khan, J. A. (2015). Design of stochastic solvers based on genetic algorithms for solving nonlinear equations. Neural computing and applications26(1), 1-23.