Document Type : Research Paper


Department of Information Technology and Operations Management, Lebanese American University (LAU), Lebanon.


Stock traders' forecasting strategies are mainly dependent on Technical Analysis (TA) indicators. However, some traders would follow their intuition and emotional aspects when trading instead of following the mathematically solid forecasting techniques of TA(s). The objective of this paper is to help traders to rationalize their choices by generating the maximum and minimum tolerances of possible prices (termed in this paper as "fuzzy spectrum") and hence reducing their "emotional" trading decisions. This would be an important aspect towards avoiding an undesired outcome. Fuzzy logic has been used in this paper to identify such tolerances based on the most popular TA(s). Fuzzification of these TA(s) was used via a modular approach of fuzzy logic and by adopting "fuzzimetric sets" described in this paper to achieve the "fuzzy spectrum" of forecasted price tolerances when buying and selling decisions. Experimental results show the success of developing the "fuzzy spectrum" based on the "fuzzy" tolerances discovered from the TA(s) outputs. As a result, this paper contributes towards a better "rationalized" decision making when it comes to buying and selling stocks in this kind of industry.


Main Subjects

  1. Fama, E. F. (1965). The behavior of stock-market prices. The journal of business38(1), 34-105.
  2. Fama, E. F. (1970). Efficient capital markets: a review of theory and empirical work. The journal of finance25(2), 383-417.
  3. Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47, 263–291.
  4. Chuang, W. I., & Lee, B. S. (2006). An empirical evaluation of the overconfidence hypothesis. Journal of banking & finance30(9), 2489-2515.
  5. Ahmad, M., & Shah, S. Z. A. (2020). Overconfidence heuristic-driven bias in investment decision-making and performance: mediating effects of risk perception and moderating effects of financial literacy. Journal of economic and administrative sciences, 38(1), 60-90.
  6. Chopra, R., & Sharma, G. D. (2021). Application of artificial intelligence in stock market forecasting: a critique, review, and research agenda. Journal of risk and financial management14(11), 526.
  7. Khayamim, A., Mirzazadeh, A., & Naderi, B. (2018). Portfolio rebalancing with respect to market psychology in a fuzzy environment: a case study in Tehran Stock Exchange. Applied soft computing64, 244-259.
  8. Park, C. H., & Irwin, S. H. (2007). What do we know about the profitability of technical analysis?. Journal of economic surveys21(4), 786-826.
  9. Gradojevic, N., & Gençay, R. (2013). Fuzzy logic, trading uncertainty and technical trading. Journal of banking & finance37(2), 578-586.
  10. Escobar, A., Moreno, J., & Múnera, S. (2013). A technical analysis indicator based on fuzzy logic. Electronic notes in theoretical computer science292, 27-37.
  11. Cremonesi, P., Francalanci, C., Poli, A., Pagano, R., Mazzoni, L., Maggioni, A., & Elahi, M. (2018). Social network based short-term stock trading system. Available at arXiv:1801.05295
  12. Hao, P. Y., Kung, C. F., Chang, C. Y., & Ou, J. B. (2021). Predicting stock price trends based on financial news articles and using a novel twin support vector machine with fuzzy hyperplane. Applied soft computing98, 106806.
  13. Dong, Q., & Ma, X. (2021). Enhanced fuzzy time series forecasting model based on hesitant differential fuzzy sets and error learning. Expert systems with applications166, 114056.
  14. Pertiwi, T., Yuniningsih, Y., & Anwar, M. (2019). The biased factors of investor’s behavior in stock exchange trading. Management science letters9(6), 835-842. DOI: 5267/j.msl.2019.3.005
  15. Vaščák, J. (2012). Adaptation of fuzzy cognitive maps by migration algorithms. Kybernetes, 41(3/4), 429-443.
  16. Richards, D. W., & Willows, G. D. (2019). Monday mornings: individual investor trading on days of the week and times within a day. Journal of behavioral and experimental finance22, 105-115.
  17. Rupande, L., Muguto, H. T., & Muzindutsi, P. F. (2019). Investor sentiment and stock return volatility: evidence from the johannesburg stock exchange. Cogent economics & finance, 7(1), 1600233.
  18. Ototsky, P., & Manenkov, S. (2011). Cognitive centres: technology for designing the future: methodology and implementation experience. Kybernetes, 40(3/4), 528-535.
  19. Marco, J. P., Arbeloa, F. J. S., & Bagdasari, E. C. (2017). Combining cognition and emotion in virtual agents. Kybernetes, 46(06), 933-946.
  20. Kouatli, I. (2018). Emotions in the cloud: a framework architecture for managing emotions with an example of emotional intelligence management for cloud computing organisations. International journal of work organisation and emotion9(2), 187-208.
  21. Duxbury, D., Gärling, T., Gamble, A., & Klass, V. (2020). How emotions influence behavior in financial markets: a conceptual analysis and emotion-based account of buy-sell preferences. The european journal of finance26(14), 1417-1438.
  22. Ge, Y., Qiu, J., Liu, Z., Gu, W., & Xu, L. (2020). Beyond negative and positive: exploring the effects of emotions in social media during the stock market crash. Information processing & management57(4), 102218.
  23. Yuan, F. (2020). Psychological cognition and preference selection in the decision-making process of financial investment. Revista argentina de clínica psicológica29(1), 1222. DOI: 24205/03276716.2020.175
  24. Sun, J., Huang, Q., & Li, X. (2019). Determination of temporal stock investment styles via biclustering trading patterns. Cognitive computation11(6), 799-808.
  25. Maciel, L., & Ballini, R. (2019). Fuzzy rule-based modeling for interval-valued data: an application to high and low stock prices forecasting. In Predictive maintenance in dynamic systems(pp. 403-424). Springer, Cham.
  26. Osman, I. H., & Anouze, A. L. (2014). A cognitive analytics management framework (CAM-Part 3): critical skills shortage, higher education trends, education value chain framework, government strategy. In Handbook of research on strategic performance management and measurement using data envelopment analysis(pp. 190-234). IGI Global. DOI: 4018/978-1-4666-4474-8.ch003
  27. Osman, I. H., Anouze, A. L., Irani, Z., Lee, H., Medeni, T. D., & Weerakkody, V. (2019). A cognitive analytics management framework for the transformation of electronic government services from users’ perspective to create sustainable shared values. European journal of operational research278(2), 514-532.
  28. Cabrera-Paniagua, D., & Rubilar-Torrealba, R. (2021). A novel artificial autonomous system for supporting investment decisions using a Big Five model approach. Engineering applications of artificial intelligence98, 104107.
  29. Kareem, S. A. (2020). Providing a model for predicting the financial behavior of investors in the iranian stock market. Eurasian journal of management & social sciences,1(3), 20-33. DOI: 23918/ejmss. v1i3p20
  30. Kouatli, I., & Arayssi, M. (2021, August). A fuzzimetric predictive analytics model to reduce emotional stock trading. International conference on intelligent and fuzzy systems(pp. 482-489). Springer, Cham.
  31. Zadeh, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.
  32. Kouatli, I. (2018). Fuzzimetric sets: an integrated platform for both types of fuzzy sets. Frontiers in artificial intelligence and applications (FAIA)309. DOI: 3233/978-1-61499-927-0-150
  33. Kouatli, I. (2018). Fuzzimetric employee evaluations system (FEES): a multivariable-modular approach. Journal of intelligent & fuzzy systems35(4), 4717-4729.
  34. Kouatli, I. (2019, June). Fuzziness control of fuzzimetric sets. 2019 IEEE international conference on fuzzy systems (FUZZ-IEEE)(pp. 1-5). IEEE. DOI: 1109/FUZZ-IEEE.2019.8858828
  35. García-Vico, Á. M., González, P., Carmona, C. J. & Del Jesus, M. J. (2019). A big data approach for the extraction of fuzzy emerging patterns. Cogn comput.
  36. Liu, P. & Qin, X. Cogn Comput (2019). A new decision-making method based on interval-valued linguistic intuitionistic fuzzy information. Cogn comput.
  37. Kouatli, I. M. (1994). A simplified fuzzy multivariable structure in a manufacturing environment. Journal of intelligent manufacturing5(6), 365-387.
  38. Kouatli, I., & Yunis, M. (2021, December). A guide to stock-trading decision making based on popular technical indicators. 2021 international conference on decision aid sciences and application (DASA)(pp. 283-287). IEEE. DOI: 1109/DASA53625.2021.9682337
  39. Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies7(1), 1-13.
  40. Sugeno, M. (1985). Industrial applications of fuzzy control. Elsevier Science Inc..
  41. Babuska, R. (2007). [Review of the book Complexity management in fuzzy systems: a rule base compression approach]. IEEE computational intelligence magazine, 2(4), 42-43. DOI: 1109/MCI.2007.906693
  42. Kouatli, I. (2008). Definition and selection of fuzzy sets in genetic‐fuzzy systems using the concept of fuzzimetric arcs. Kybernetes, 37(1), 166-181.
  43. Carrera, D. A., & Mayorga, R. V. (2008). Supply chain management: a modular fuzzy inference system approach in supplier selection for new product development. Journal of intelligent manufacturing19(1), 1-12.
  44. Junior, F. R. L., Osiro, L., & Carpinetti, L. C. R. (2013). A fuzzy inference and categorization approach for supplier selection using compensatory and non-compensatory decision rules. Applied soft computing13(10), 4133-4147.
  45. Amindoust, A., Ahmed, S., Saghafinia, A., & Bahreininejad, A. (2012). Sustainable supplier selection: a ranking model based on fuzzy inference system. Applied soft computing12(6), 1668-1677.
  46. Lin, L. Z., & Hsu, T. H. (2012). A modular fuzzy inference system approach in integrating qualitative and quantitative analysis of store image. Quality & quantity46(6), 1847-1864.
  47. Melin, P., Sánchez, D., & Castillo, O. (2012). Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Information sciences197, 1-19.
  48. Kouatli, I. (2014, August). Complexity avoidance using biological resemblance of modular multivariable structure. 2014 10th international conference on natural computation (ICNC)(pp. 508-513). IEEE. DOI: 1109/ICNC.2014.6975887
  49. Saaty, T. L. (1994). How to make a decision: the analytic hierarchy process. Interfaces24(6), 19-43.
  50. Pounder, G. A., Ellis, R. L., & Fernandez-Lopez, G. (2017). Cognitive function synthesis: preliminary results. Kybernetes, 46(2), 272-290.
  51. Mella, P. (2017). The unexpected cybernetics life of collectivities: the combinatory systems approach. Kybernetes, 46(7), 1086-1111.
  52. Lepskiy, V. (2017). Evolution of cybernetics: philosophical and methodological analysis. Kybernetes, 47(2), 249-261.
  53. Gehrig, T., & Menkhoff, L. (2006). Extended evidence on the use of technical analysis in foreign exchange. International journal of finance & economics11(4), 327-338.
  54. Czerwonka, M. (2019). Cultural, cognitive and personality traits in risk-taking behaviour: evidence from Poland and the United States of America. Economic research-ekonomska istraživanja32(1), 894-908.
  55. Bollinger, J. (2001). Bollinger on bollinger bands. McGraw Hill Education.