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Abstract 

 

1 | Introduction  

Optimization is a branch of computer science that deals with finding the optimal solution to a 

problem. It is used to find the best solution or a suitable alternative from a set of proposed solutions. 

Bio-inspired optimization methods can be used to solve problems that involve optimizing a particular 

objective function that may be constrained by a set of constraints. Unlike traditional optimization 

techniques, this algorithm generates a set of solutions at each iteration. These strategies focus on 

generating, selecting, assembling, and modifying a collection of solutions. They require more 

computation time than other metaheuristics because they maintain and modify a collection of 

solutions rather than searching for a single answer [1]-[5].  
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This paper presents an T2FIS-PSO hybrid model for developing IT2FIS fuzzy logic controllers and finding 

the best parameter values for membership functions using bio-inspired optimization techniques. The 

hybrid T2FIS-PSO strategy is expected to provide more accurate results than standard T2FIS approaches 

[6]. The type-2 fuzzy Logic System (FLS) proposed by Zadeh [7]-[9] is presented as an extension of the 

standard type-1 FLS, and then the associated ideas and computational techniques are developed [10]-[14]. 

The degrees of membership are similarly fuzzy in a type-2 fuzzy  set. In this sense, a fuzzy set of type-1 is 

a subset of a fuzzy set of type-2 , since its secondary membership function is a one-element subset [13]. 

Mendel and other scientists [13] and [14] reduced the computational complexity of the type-2  FLS domain 

by basing it on the broad type-2 FLS. It is widely accepted by academics in a variety of fields because of 

its minimal computational complexity. However, the major obstacle is the difficulty in obtaining the control 

parameters. This increases the complexity of the FLS and complicates the computation. For this reason, 

several systems recommend the use of powerful fuzzy rules. There are several established methods for rule 

selection, including fuzzy C-means, fuzzy K-means, cluster subtraction, and singular value decomposition. 

Traditional parameter setting methods have a number of drawbacks, including non-spherical convergence, 

computational cost, and difficulty to obtain. With the advancement and refinement of intelligent 

algorithms, the application of intelligent algorithms to the development of FLS, such as Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) based on FLS, has become a focus of research [6] and 

[15]. PSO has been applied to a variety of optimization problems, including mathematical functions, fuzzy 

controllers, control parameters, and planning problems [16]-[23]. Using the hybrid IT2FIS-PSO technique, 

we were able to design an optimal type-2 fuzzy logic controller that determines the optimal Membership 

Function Parameters (MF) for controlling unstable linear systems. The results of this study were validated 

by predicting arrhythmia symptoms on electrocardiograms using arrhythmia signals (ECG) [3] and [24]. 

The human body can recognize some forms of cardiac arrhythmia caused by the electrical activity of the 

heart. The word electrocardiogram (ECG) refers to biological signals. Continuous recording and 

interpretation of the ECG is critical for detecting irregularities and consequences that may develop during 

the monitoring phase of heart disease. Therefore, in today's clinical practice, the processing, storage, and 

transmission of ECG data over digital communication networks is critical [25]. ECGs are a type of chaotic 

time series that serve as a bridge between chaos theory and reality. They are the most common application 

of chaos and thus provide an entirely new domain for predicting complicated nonlinear signals. In the real 

world, numerous types of complex systems have been shown to exhibit chaotic behavior. With the rapid 

advances in chaos theory and its application approaches, time series data obtained from an observable 

chaotic system has become an extremely useful tool for understanding complicated systems. This is 

because the observed system has a wealth of dynamical information that allows the behavior of the 

complex system to be studied and analyzed by examining and evaluating the potential content of the 

chaotic time series generated. So far, numerous techniques have been offered for prediction based on chaos 

theory [26]-[28]. 

The basic objective of this work is to develop and validate an optimization procedure based on a meta-

heuristic algorithm using a type-2 fuzzy controller for monitoring ECG signals. The objective is to 

determine the optimal settings of the type-2 fuzzy  controller in conjunction with the provided optimization 

techniques. In order to ensure the smallest possible error margin in the tracking of the ECG signal, the 

control of the behavior of a system specified by a certain metric is studied. Fig.1 graphically represents the 

proposed working method PSO-FLS. Each particle represents the fuzzy rules and associated MF for the 

FLC inputs and outputs in this process. Each particle represents a possible solution. These parameters are 

needed to define the particles of the PSO algorithm and calculate the global optimal fitness. 

The structure of this paper is as follows: the second section is about materials and processes. The 

motivation and equations for the search and optimization of the PSO and IT2FIS algorithms are discussed 

in detail here, as is the proposed technique for the optimization of the type-2 fuzzy controller. Section 3 

summarizes the results of the experiments conducted with the proposed technique. Finally, conclusions 

and future work are outlined in Section 4. 
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Fig. 1. Flowchart of the fuzzy membership function optimized with PSO. 

2 | Material and Methods  

Although previous research has focused on optimizing membership functions through PSO, none of 

these studies used the experimental settings used in this study to construct metrics. Since such a 

combination is rare in the literature, we will compare the performance of different computational 

techniques on these optimization problems. In this section, we provide an overview of the important 

ideas and concepts underlying our work. 

2.1 | Particle Swarm Optimization  

PSO is a kind of stochastic optimization technique invented by Kennedy [29]. It is a population-based 

search space determined by the social behavior of a flock of birds investigating a potential search area 

[30]-[32]. The PSO method is often used for multivariate optimization problems because it is a 

population-based probability optimization strategy. When an individual or particle performs an activity, 

it independently analyzes the fitness value of its position relative to the other swarm members. The 

computation of the individual's position, the rate of progress in each dimension of the solution set, and 

the optimal fitness value is critical [32]. The fitness function is used to calculate the best solution for the 

local or global swarm based on the optimization criteria of the PSO algorithm. Eq. (1) and (2) include 

the PSO velocity equation. The position and velocity of each swarm particle are fixed. Each particle 

gradually adjusts its position depending on two factors: the 𝑝𝑏𝑒𝑠𝑡 of its nearest neighbor and the 𝑔𝑏𝑒𝑠𝑡 of 

the swarm.  

Here 𝑐1 and 𝑐2 are constant factors and 𝑤 is the moment of inertia. 𝑟1 and 𝑟2 are two random integers 

from the range [0, 1]. The PSO approach is used to determine optimal parameters for intuitionistic fuzzy 

sets of type-2. Its performance is an evaluation of IT2FIS using the recommended upper and lower 

membership functions (UMFs and LMFs) for the IT2FIS membership functions. The algorithm 

presented in Algorithm 1 shows how IT2FIS optimizes for particle swarms. 

The PSO parameters and their meanings given in Eq. (1), Eq. (2), and Algorithm 1 are listed in Table 1. 

Table 1. The PSO parameters and their meanings. 

 

 

 

 

Vi(t + 1) = w ∗ Vi(t) + c1 ∗ r1 ∗ (pbest − xi(t) + c2 ∗ r2 ∗ (gbest − xi(t)). (1) 

xi(t + 1) = xi(t) + (1 − w) ∗ Vi(t + 1). (2) 

Population_Size Initial Population Size 

Pbest Best movement. 
Gbest Best position movement. 
C1, C2 Two acceleratin constants. 
Wk, wmax, wmin Inertia, initial and final weght. 

d, d  Spread of MFs associate with upper and lower bound. 

a Tuned parameter. 
vi Velocity. 
xi Position of i th particle. 
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2.2 | Interval Type-2 fuzzy  Inference System (IT2FIS) 

Interval type-2 is a specific uniform function of a T2F MF with a single value for the second stage. An 

IT2FIS, denoted by 𝐴̃, is expressed in Eq. (3) or (4). 

Where ∫ ∫  denote the union of all acceptable 𝑥 and 𝑢. An IT2FIS is defined in terms of an UMFs with 

µ̅𝐴̃ (𝑥) and a LMFs with µ𝐴̃(𝑥). 𝐽𝑥  is just the interval of [µ̅𝐴̃ (𝑥), µ𝐴̃(𝑥)]. The UMF and LMF are determined 

using two T1F MFs representing the boundaries of the Footprint of Uncertainties (FOU). Consequently, 

µ𝐴̃(𝑥, 𝑢) = 1 and  ∀𝑢ϵ 𝐽𝑥 ⊆ [0 1]  are considered as IT2FIS membership functions. The form of MFs in 

IT2FIS is three-dimensional; the value of the third dimension is always 1. It has been shown to outperform 

T1FS in noisy and well-defined systems in real-time applications, corresponding to a case where µ𝐴̃(𝑥, 𝑢) =

1 and the integral form is shown in Fig. 2. 

Fig. 2. 3D representation of the interval type-2 membership function [33]. 

A T2F is defined by IF-THEN rules, with T2F as antecedent and consecutive sets. To create a T2F 

controller, it is necessary to understand the block structure used in T1F, since the basic blocks are identical. 

A T2F, as shown in Fig. 3, consists of a fuzzifier, a rule base, a fuzzy inference engine, and an output 

processor. A Type Reducer (TR) and a defuzzifier are included in the output processor. TR is the main 

Algorithm 1. PSO in IT2FIS. 

1. Intial papulation 

2. Iteration=0 

3. Setting papulation size, x=α,d,d  

4. Setting C1, C2, Wmax, Wmin 

5.        While (iteration<MaxNumlt) 

6.              If (xi)<Pbest then 

7.              Pbest= xi 

8.                     end if 

9.              If Pbest < gbest then 

10. gbest= Pbest 

11. end if 

12. Calculation of Eq. (1) and (2) 

13. Calculation of inertia weight (w) 

14. Calculation of new position of particle (xi(t+1)) 

15. Iteration ++ 

16. End While 

17. Return α,d,d . 

Ã = {(x, y),µÃ(x, y)| ∀xϵ X,∀uϵ Jx ⊆ [0 1]}. (3) 

Ã =  ∫
𝑥𝜖𝑋
∫
𝑢𝜖𝐽𝑥
1/(𝑥, 𝑢) 𝐽𝑥 ⊆ [0 1]. (4) 



 

 

162 

D
ir

ik
 |

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(2
) 

(2
0
2
2
) 

15
8
-1

6
8

 

 

difference between T1F and T2F systems. The TR of T2F is used to generate a T1F output set of unique 

integers. Type reduction is included as it relates to the type of membership degrees of the elements [30]. 

Fig. 3. Structure of a type-2 fuzzy  logic system. 

The stream RT of Karnik and Mendel [34] and [35] combines the output sets into a single output using 

one of their approaches, as shown in Fig. 3. The equation illustrates the mathematical expression for this 

Procedure (5). 

 

 

The left and right ends of this middle of the sets define it completely. The following set of the IT2FIS 

defines these two endpoints (𝑦𝑙, 𝑦𝑟). Here, 𝑓 i and 𝑓
i
 are the lower and upper firing levels of the i-th rule, 

and M is the number of rules fired. These points are given in Eq. (6) and (7). The outputs of the interval 

type-2 fuzzy  system are represented by 𝑦𝑙 and 𝑦𝑟. 

 

 

 

 

3 | Simulation Results 

The proposed optimization technique is used to determine the optimal settings for the type-2 fuzzy  

controller required to anticipate the behavior of the ECG signal in this study. The simulations were 

performed in MatLab®R2021 on an Intel®CoreTMi7-6700 CPU with 16GB RAM and a 3.40 GHz 

clock speed running Windows®10 (64 Bit). The goal of the fuzzy controller is to track a given signal 

with the lowest possible errors given by the controller's performance criteria. The main difference 

between dynamic and fixed parameter tuning in metaheuristic algorithms is that in dynamic tuning the 

selected parameters are changed during the iterations, leading to better solutions. The aim is to optimize 

the settings of the MFs of the type-2 fuzzy  controller for signal tracking using the PSO algorithm to 

optimize the fuzzy controller using original techniques and their modifications. In this part, the results 

of fuzzy controller optimization for ECG signal behavior prediction are presented. The approach uses 

a metaheuristic algorithm to generate a vector containing the parameters required for the MFs of the 

optimized IT2FIS controller. Metaheuristic techniques in this case are versions of the PSO algorithm 

since they dynamically change the parameters using interval type-2 fuzzy  systems. Table 2 contains the 

parameters used in the proposed model.  

Ycos(x) = [yl, yr] = ∫
y1∈[yl

1,yr
1]
…∫

y1∈[yl
M,yr

M]
∫
f1∈[f 1 ,f

1
]
…∫

fM∈[f M ,f
M
]
∕
∑ f iy iM
i=1

∑ f iM
i=1

. (5) 

yl =
∑ fl

i
yl
iM

i=1

∑ fl
iM

i=1

. (6) 

yr =
∑ fr

i
yr
iM

i=1

∑ fr
iM

i=1

. (7) 



163 

 

T
y
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 c

o
n

tr
o

ll
e
r 

d
e
si

g
n

 o
p

ti
m

iz
a
ti

o
n

 u
si

n
g

 t
h

e
 p

so
 a

p
p

ro
a
c
h

 f
o

r 
e
c
g

 p
re

d
ic

ti
o

n
 

 
Table 2. Parameters of the PSO and IT2FIS. 

 

Mean Square Error (MSE), Root Mean Square Error (RMSE), root mean square error (EM), and standard 

deviation of error (Std) are all metrics used to measure algorithm performance during optimization. 

Where N is the number of data, 𝑥̅  and  𝑦̅ are the average of the predicted and actual, 𝑥𝑖 and 𝑦𝑖 are the 

predicted and actual values, respectively. Since the FIS has no predefined fuzzy rules, it is optimized using 

PSO, a global optimization technique for learning the rules. The maximum number of rules is limited by 

the number of possible MF combinations for the inputs. This limit can be exceeded because redundant 

rules are deleted during the adaptation process. The maximum iterations are set to 15. Training errors can 

be reduced by increasing the number of iterations. Increasing the number of iterations, on the other hand, 

prolongs the fitting process and may cause the rule parameters to be overfitted to the training data. The 

behavior of the FIS has changed with the training data and parameters shown in Table 3. Result of tuning 

the FIS using the given training data and options. 

   Table 3. Result of tuning the FIS using the given training data and options. 

 

 

  

 

 

 

 

Parameer PSO Parameter IT2FIS 

Function Tolerance 1.0000e-06 And Method "prod" 
Inertia Range  [0.1000, 1.1000] Or Method "probor" 
Initial Swarm Span 2000 Implication Method "prod" 
Max Iteration 15 Aggregation Method "sum" 
Max Stal Iterations 20 Defuzzification Method "wtaver" 
Min Neighbors Fraction  0.2500 Inputs 1x4 fisvar 
Objective Limit 0 Outputs 1x1fisvar 
Seif-Adjustment Weight 1.4900 Rules 1x70 fisrule 
Social Adjustment Weight 1.4900 Type Reduction Method  
Swarm Size 'min  (100, 10*number of variables)' "Karnikmendel"  
Distance Metric  "rmse"   

MSE = 
1

N
∑(xi − yi)

2

N

i=1

. [36] and [37] (8) 

RMSE =

√
 
 
 
1

N
∑(xi − yi)2
N

i=1

. [38] (9) 

Error Mean =  
1

N
∑(xi − yi).

N

i=1

 [37] (10) 

Error St.D =

√
 
 
 

∑
(xi − x̅i)2

N− 1

N

i=1

. [39] and [40] (11) 

Interation f-count Best f (x) Mean f (x) Stall Iterations 

0 100 0.1714 0.3262 0 
1 200 0.1608 0.448 0 
2 300 0.1397 0.3931 0 
3 400 0.1345 0.3727 0 
4 500 0.1345 0.3539 1 
5 600 0.1345 0.3828 2 
6 700 0.1345 .3788 3 
7 800 0.1311 0.3629 0 
8 900 0.1189 0.3407 0 
9 1000 0.1189 0.3722 1 
10 1100 0.1127 0.3787 0 
11 1200 0.1127 0.3442 1 
12 1300 0.1127 0.3702 2 
13 1400 0.1127 0.3556 3 
14 1500 0.1127 0.3716 4 
15 1600 0.1127 0.3526 5 
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The graphical representation of the FIS created using the test data can be found in Fig. 4. 

Fig. 4. The actual generated output with the expected validation output. 

Fuzzy type-2 consists of both upper and lower membership functions. Table 1 and Fig. 5 show the results 

obtained when optimizing the upper membership functions. 

Table 4. Results obtained using optimized upper MFs of FIS. 

 

 

 

 

 

 

 

When comparing the predicted validation result of the modified FIS with the actual generated result 

using validation data and the actual produced result, it was found that changing the UMF parameters 

increased the performance of the FIS. The results obtained by adjusting the UMFs in the FIS structure 

are not reasonable. It is obvious that in this case, the functions of LMFs must be changed as well. The 

results of the functions and the graphical representations derived using the optimized FIS structure for 

both membership functions (LMFs and UMFs) can be found in Table 5 and Fig. 6, respectively. 

 

 

 

Interation f-count Best f (x) Mean f (x) Stall iterations 

0 100 0.1127 0.3257 0 
1 200 0.1127 0.3928 0 
2 300 0.1103 0.2925 0 
3 400 0.1014 0.2882 0 
4 500 0.09827 0.2707 0 
5 600 0.06759 0.2902 0 
6 700 0.06759 0.2783 1 
7 800 0.06759 0.277 2 
8 900 0.06759 0.2746 3 
9 1000 0.06285 0.2611 0 
10 1100 0.06285 0.2656 1 
11 1200 0.06285 0.2653 2 
12 1300 0.06285 0.2454 3 
13 1400 0.06285 0.2252 4 
14 1500 0.06285 0.2135 5 
15 1600 0.05985 0.1703 0 
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Fig. 5. The result of the actual, expected, error, and error histogram obtained 

with optimized upper MFs of FIS. 

  Table 5. Results obtained using optimized lower and upper MFs of FIS. 

 

 

 

 

 

 

 

Fig. 6. The result of the actual, expected, error, and error histogram obtained with 

optimized upper and lower MFs of FIS. 

 

Iteration f-count Best f (x) Mean f (x) Stall Iterations 

0 100 0.05985 0.1493 0 
1 200 0.05985 0.1368 0 
2 300 0.05491 0.1066 0 
3 400 0.05421 0.09809 0 
4 500 0.05421 0.1038 1 
5 600 0.05421 0.1179 2 
6 700 0.05421 0.09997 3 
7 800 0.05421 0.07972 4 
8 900 0.05421 0.07945 5 
9 1000 0.05345 0.0911 0 
10 1100 0.05345 0.08205 1 
11 1200 0.05212 0.07336 0 
12 1300 0.05212 0.0732 1 
13 1400 0.05212 0.07687 2 
14 1500 0.05209 0.0708 0 
15 1600 0.05206 0.06181 0 
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When both modified upper and lower parameter values are included in the tuned and trained FIS with 

validation data, performance appears to increase. Compared to type-1 MFs, type-2 MFs have additional 

tunable properties. Thus, if the training data are suitable, a tuned type-2 FIS may fit better than a tuned 

Type-1 FIS. Changing any of the FIS attributes or tuning decisions, such as the number of inputs, the 

number of MFs, the type of MFs, the optimization technique, or the number of tuning iterations, can 

yield different tuning results. Table 7 shows a statistical comparison of the performance of the 

metaheuristic algorithms used to test the proposed optimization method. The improvement in the values 

of MSE, RMSE, error-mean and error-Std shows the applicability of the proposed structure. After this 

modification, metaheuristic algorithms for type-2 fuzzy controllers were found to give satisfactory 

results on optimization problems. As can be seen in Fig. 6, we can say that there is enough statistical 

evidence that the PSO algorithm performs better in solving this problem, since it provides a small 

difference in the error in estimating the desired signal. Finally, in Table 6, we show a summary of all the 

above methods and can see that the best fuzzy controller was found by IT2FIS_PSO (UMFs and LMFs) 

with an average error of -6.4905e-04. This is important for the design of an optimal fuzzy controller 

because the goal is to find the best possible controller. 

Table 6. An overview of the results of the proposed method. 

 

 

 

 

4 | Conclusions 

Fuzzy controllers are widely used nowadays because they are able to solve problems that were once 

considered almost unsolvable. The results of parameter optimization of membership functions of type-

2 fuzzy  controllers for ECG signal estimation have been presented in this article as quite excellent. 

Moreover, it was found that the generated controller values were remarkably close to the desired signal 

trajectory. However, we used the PSO metaheuristic, which was found to be beneficial for optimizing 

the MF. The experiment used the original PSO metaheuristic in conjunction with dynamic parameter 

fitting by interval fuzzy systems of type-2. The collected results are presented in both tabular and 

graphical forms. From the results in Table 6, we can infer that parameter adjustment in the PSO 

algorithm using fuzzy logic is a viable choice for fuzzy control as these techniques provide competitive 

results. This is also evident in the simulation results, where we obtained fewer steady state errors and 

higher stability compared to the FLCs created using PSO. Therefore, we expect the hybrid method to 

perform better on increasingly difficult problems. The results show that the hybrid method performs 

better than the controls. Therefore, we can conclude that by integrating this bio-inspired method with 

others, we can improve the development of fuzzy logic controllers. In this regard, we intend to continue 

research in this area and investigate other types of problems that depend on the behavior of the 

algorithm and the use of type-1 and type-2 fuzzy logic. Various forms of fuzzy systems for dynamic 

parameter tuning in metaheuristic algorithms will be explored in future research and applied to a variety 

of control problems. In addition, it is intended to investigate multi-objective optimization techniques 

for dynamic parameter tuning using extended type-2 fuzzy systems to extend the controller to 

generalized type-2 fuzzy  controllers and obtain better results for more complicated problems. 

 MSE RMSE ErrorMean ErrorSTD 

IT2FIS 0.0140 0.1183 -0.0166 0.1171 

IT2FIS_ PSO (UMFs) 0.0037 0.0610 -0.0213 0.0572 

IT2FIS_ PSO (UMFs and LMFs) 0.0029 0.0535 -6.4905e-04 0.0535 
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