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Abstract 

 

1 | Introduction  

Fractional Problem (FP) is a decision problem arises to optimize the ratio subject to constraints. In 

real world decision situations Decision Maker (DM) sometimes may face to evaluate ratio between 

inventory and sales, actual cost and standard cost, output and employee etc., with both denominator 

and numerator are linear. If only one ratio is considered as an objective function then under linear 

constraints the problem is said to be Linear Fractional Programming (LFP) problem. The fractional 

programming problem, i.e., the maximization of a fraction of two functions subject to given 

conditions, arises in various decision making situations; for instance , fractional programming is used 

in the fields of traffic  planning [6], network flows [1], and game theory [8]. A review of various 

applications is given by Schaible [13] and [14]. Hassian et al. [21] introduced a parametric approach 

for solving multi-criteria LFP problem. Tantawy [17] introduced two approaches to solve the LFP 

problem namely; a feasible direction approach and a duality approach.  
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Odior [10] introduced an algebraic approach based on the duality concept and the partial fractions to 

solve the LFP problem. Pandey and Punnen [11] introduced a procedure based on the Simplex method 

developed by Dantzig [6] to solve the LFP problem. Gupta and Chakraborty [7] solved the LFP problem 

depending on the sign of the numerator under the assumption that the denominator is non -vanishing 

in the feasible region using the fuzzy programming approach. Chakraborty [5] studied nonlinear 

fractional programming problem with multiple constraints under fuzzy environment. Stanojevic and 

Stancu- Minasian [16] proposed a method for solving fully fuzzified LFP problem. Buckley and Feuring 

[3] studied fully fuzzified linear programming involving coefficients and decision variables as fuzzy 

quantities. Li and Chen [9] introduced a fuzzy LFP problem with fuzzy coefficients and present the 

concept of fuzzy optimal solution. Sakawa et al. [20] introduced an interactive satisficing method for 

solving multi- objective fuzzy LFP problems with fuzzy parameters both in the objective functions and 

constraints. Pop and Stancu [12] studied LFP problem with all parameters and decision variables are 

triangular fuzzy numbers. 

In this paper, fuzzy multi- objective LFP problem is introduced. The problem is converted into the crisp 

problem using the associated real number of the close interval approximation and the order relation of 

Piecewise Quadratic Fuzzy Numbers (PQFN), and hence the optimal transportation is obtained by 

applying optimal flowing method. 

The following is a summary of the rest of the paper. 

Fig. 1. Layout of remaining paper. 

2 | Preliminaries 

This section introduces some of basic concepts and results related to neutrosophic PQFN, close interval 

approximation, and their arithmetic operations are recalled. 

Definition 1. [4]. A PQFN is denoted by 𝐴𝑃̃𝑄 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5), where 𝑎1 ≤  𝑎2 ≤ 𝑎3 ≤  𝑎4 ≤  𝑎5 are 

real numbers, and is defined by  if its membership function 𝜇𝐴̃𝑃𝑄 is given by (see, Fig. 1). 

 

 

Section 2

•Introduces the piecewise quadratic fuzzy numbers and their level, as well as some 
preliminaries

Section 3
•Formulates fuzzy multi- objective linear fractional programming problem 

Section 4
• Presents an optimal flowing method for solving the problem

Section 5
• Provides a numerical example to demonstrate the proposed method

Section 6
•A comparitive study is introduced

Section 7
•The paper is summarized with recommendations for the future
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Fig. 1. Graphical representation of a Piecewise Quadratic Fuzzy Number (PQFN). 

Definition 2. [4]. An interval approximation [𝐴] = [𝐴𝛼
𝐿 , 𝐴𝛼

𝑈] of a PQFN 𝐴̃ is called closed interval 

approximation if 

Definition 3. Associated ordinary number [4]. If [𝐴] = [𝐴𝛼
𝐿 , 𝐴𝛼

𝑈] is the close interval approximation of 

PQFN, the Associated ordinary number of  [𝐴] is defined as 𝐴̂ =
𝐴𝛼
𝐿+ 𝐴𝛼

𝑈

2
. 

Definition 4. [4]. Let [𝐴] = [𝐴𝛼
𝐿 , 𝐴𝛼

𝑈], and [𝐵] = [𝐵𝛼
𝐿, 𝐵𝛼

𝑈] be two interval approximations of PQFN. Then 

the arithmetic operations are: 

I. Addition: [A] ⊕ [B] = [A α
L + Bα

L, A α
U + Bbα

U]. 

II. Subtraction: [A] ⊖ [B] = [A α
L − Bα

U,A α
U − Bα

L]. 

III. Scalar multiplication: α [A] = {  
   
 
[k A α

L ,  k A α
U ], k > 0

[ k A α
U , k A α

L ], k < 0.
 

μÃPQ
=

{  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
      

   0,      x < a1;

  
1

2

1

(a2 − a1)2
(x − a1)

2,    a1 ≤ x ≤ a2,

1

2

1

(a3 − a2)2
(x − a3)

2 + 1, a2 ≤ x ≤ a3,

1

2

1

(a4 − a3)2
(x − a3)

2 + 1,    a3 ≤ x ≤ a4,

1

2

1

(a5 − a4)2
(x − a5)

2, a4 ≤ x ≤ a5,
     

  0,   x > a5.  
     

  

A α
L = inf{x ∈ ℝ: μÃ ≥ 0.5},  and A α

U = sup{x ∈ ℝ: μÃ ≥ 0.5}.  
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IV. Multiplication: [A] ⊗ [B] 

V. Division: [A] ⊘ [B] 

VI. The order relation:  [A](≲)[B] 

 

 

It is noted that 𝑃(ℝ) ⊂ 𝐹(ℝ), where 𝐹(ℝ), and 𝑃(ℝ) are the sets of all PQFNs and close in interval 

approximation of PQFN, respectively. 

3 | Problem Statement 

Consider the following Fuzzy Multi-Objective Linear Fractional Programming (F-MOLFP) problem. 

 

               

Subject to 

 

                            

Where, 𝑀̃𝑃𝑄 = {𝑥 ∈ ℝ2: 𝐴̃𝑃𝑄𝑥 ≾ 𝑏̃𝑃𝑄, 𝑥 ≥ 0  } is the fuzzy feasible domain, 

    𝐴̃𝑃𝑄 = (𝑎𝑖̃𝑗
𝑃𝑄
)
𝑚×𝑛

, 𝑥 ∈ ℝ𝑛 and 𝑏̃𝑃𝑄 = (𝑏̃𝑖𝑃𝑄)
1×𝑚

,  𝑍̃𝑘𝑃𝑄
(𝑥) =

𝑓 ̃𝑘𝑃𝑄
(𝑥)

𝑔̃𝑘𝑃𝑄
(𝑥)
=

𝑐𝑘̃
𝑇
𝑃𝑄

𝑥+𝜁𝑘̃𝑃𝑄

𝑑 ̃𝑘
𝑇
𝑃𝑄

𝑥+𝜉𝑘̃𝑃𝑄

, 𝑐𝑘̃
𝑇 , 𝑑 ̃𝑘

𝑇   are 𝑛 − 

dimensional PQF vectors; 𝜁𝑘̃𝑃𝑄, 𝜉𝑘̃𝑃𝑄 are PQF fuzzy scalars and 𝑔̃𝑘𝑃𝑄
(𝑥) > 0; ∀𝑘 = 1, 𝐾 and for all 𝑥 ∈

𝑀̃𝑃𝑄. 

Definition 5. [19]. A point 𝑥 = {𝑥𝑗: 𝑗 = 1, 𝑛 } is said to be  fuzzy feasible solution to F-MOLFP if 𝑥 

satisfies the constraints in it. 

Definition 6. A fuzzy feasible point 𝑥 = {𝑥𝑗: 𝑗 = 1, 𝑛 } is called a fuzzy efficient solution  to  F-MOLFP  

if and only if there does not exists an  𝑥 ∈ 𝑀̃𝑃𝑄 and ⋁ 𝑍̃𝑘𝑃𝑄
(𝑥)𝑥∈𝐻̃𝑃𝑄

≤ 𝑍̃𝑘𝑃𝑄
(𝑥), where 𝐻̃𝑃𝑄 is the set of 

all fuzzy efficient solutions and ⋁ is the maximum. 

Based on the close interval approximation of PQFN, the F-MOLFP is converted into the following 

CIA-MOLFP  and MOLFP (i.e.,  (𝑃𝑘)    ), respectively as 

 

 

[
A α 
U Bα

L + A α
L  Bα

U

2
,
A α 
L Bα

L + A α
U  Bα

U

2
  ].  

{  
   
  
   
   
  
 

 [2 (
A α
L

BαL + BαU
) , 2 (

A α
U

BαL + BαU
)] , [B] > 0, Bα

L + Bα
U ≠ 0  

[2 (
A α
U

BαL + BαU
) , 2 (

A α
L

BαL + BαU
)] , [B] < 0, Bα

L + Bα
U ≠ 0 .

  

  [A](≲)[B] if  A α
L ≤ Bα

L and A α
U ≤ Bα

U or A α
L + A α

U ≤ Bα
L + Bα

U.  

  max Z̃kPQ
= (Z̃1PQ

(x), Z̃2PQ
(x), … , Z̃KPQ

(x)) ,    K ≥ 2  

  Ã PQx ≾ b̃PQ. 

x ≥ 0. 
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Subject to 

Where, [𝑍𝑘(𝑥)] =
[𝑐𝑘]

𝑇𝑥+[𝜁𝑘]

[𝑑𝑘]
𝑇𝑥+[𝜉𝑘]

, 𝑘 = 1, 2, … , 𝐾, [𝑐𝑘] = (𝑐𝑘𝛼
𝐿 , 𝑐𝑘𝛼

𝑈 ), [𝑑𝑘] = (𝑑𝑘𝛼
𝐿 , 𝑑𝑘𝛼

𝑈 ) , [𝑐 𝜁𝑘] , [𝜉𝑘],  [𝑏] = (𝑏𝛼
𝐿 , 𝑏𝛼

𝑈)and 

[𝐴] = (𝐴𝛼
𝐿 , 𝐴𝛼

𝑈) ∈ 𝑃(ℝ) (𝑃(ℝ) is the set of PQFNs. 

Subject to 

 

4 | Solution Method 

In this section, a method for finding the ideal and fuzzy efficient solution of the F-MOLFP is proposed as 

in the following steps: 

Step1. Consider the  F-MOLFP. 

Step 2. Convert the F-MOLFP into the CIA-MOLFP and hence into (𝑃𝑘).    

Step 3. Construct '' 𝑘'' single objective from the (𝑃𝑘).  

Step 4. Solve each objective of the   (𝑃𝑙), 𝑙 = 1, 2,… , 𝑟, … , 𝐾with respect to given constraints individually to 

obtain the optimal solution 𝑋𝑙
∗, 𝑙 = 1, 2, … , 𝐾 with the optimum value 𝑍𝑙

∗ which is the ideal solution of the 

MOLFP. 

Step 5. Use the optimal solution of  problem (𝑃𝑟), resulted from step4 in the problem (𝑃𝑙), 𝑙 = 1, 2, … , 𝑟 −

1, 𝑟 + 1,… , 𝐾.  

Step 6. Repeat the setp5 for all (𝑃𝑙), 𝑙 = 1, 2, … , 𝑟, … , 𝐾 to obtain the efficient solution of the MOLFP. 

5 | Numerical Example 

Consider the following problem: 

 

 

 max[Zk(x)] = ([Z1(x)], [Z2(x)],… , [ZK(x)]),K ≥ 2  

[A]x ≾ [b], 

x ≥ 0.  
 

  (𝑃𝑘)    max Ẑk(x) = (Ẑ1(x), Ẑ2(x),… , ẐK(x)) ,     K ≥ 2  

A α
L x ≤ bα

L , A α
U x ≤ bα

U, 

x ≥ 0. 

 

maxZ̃1PQ

=
(1, 4, 7, 10, 12)x1 ⊕ (8, 10,14, 15, 17 )x2 ⊕ (1, 2.5, 4, 7.5, 11.5)x3 ⊕ (1, 2, 3, 4, 6)

(10, 14, 20, 22, 24)x1 ⊕ (20, 23.5, 27.5, 29, 30)x2 ⊕ (16, 18, 20, 25, 28)x3 ⊕ (5, 10, 18, 20, 22)
. 

 

maxZ̃2PQ

=
(18, 20, 24, 28, 30)x1 ⊕ (14, 16, 18, 25, 30 )x2 ⊕ (12, 14, 19, 25, 28)x3 ⊕ (0, 1, 6, 10, 12)

(14, 16, 19, 23, 25)x1 ⊕ (16, 18, 21, 25, 27)x2 ⊕ (13, 15, 20, 25, 30)x3 ⊕ (8, 10, 15, 20, 25)
. 
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Subject to 

 

Using the close interval approximation of the PQFN, the problem (1) is converted into the following 

Subject to 

 

And hence 

 

Subject to 

 

 

  

 

 

Step 4. 𝑍1
∗ = 0.3518170 at 𝑥∗ = (𝑥1

∗ , 𝑥2
∗ , 𝑥3

∗ ) = (0, 2.136364,0), and 𝑍2
∗ = 1.02580 at 𝑥∗ = (𝑥1

∗ , 𝑥2
∗ , 𝑥3

∗ ) =

(2.473684, 0,0). 

Step 5. Using the solution 𝑥∗ = (𝑥1
∗ , 𝑥2

∗ , 𝑥3
∗ ) = (0, 2.136364,0) into the second problem Z2 with respect to 

the given constraints, we have 𝑍2
∗ = 0.809903. The efficient solution is (𝑍̂1, 𝑍̂2) = (0.3518170,1.02580 ).  

similarly, use the solution 𝑥∗ = (𝑥1
∗ , 𝑥2

∗ , 𝑥3
∗ ) = (2.473684, 0,0) into Z1 with respect to the given constraints, 

we obtain 𝑍1
∗ = 0.341291. The efficient solution is (𝑍̂1, 𝑍̂2) = (0.341291,0.809903 ).   

Therefore, the ideal solution is (𝑍1
∗ , 𝑍2

∗ ) = (0.3518170,1.02580 ), and the set of all efficient solution for  

(𝑍̂1, 𝑍̂2) are (0.3518170,1.02580 ) and (0.341291,0.809903 ).  

(8, 10, 17, 19, 25)x1 ⊕ (12, 14, 16, 22, 24 )x2 ⊕ (18, 20, 25, 27, 30)x3

≤ (35, 38, 45,47, 50 ), 

(0.01, 0.03, 0,07, 0.09, 0.11)x1 ⊕ (0.03, 0.05, 0.08, 0.1, 0.15 ) x2

⊕ (0.01, 0.02, 0.06, 0.07,0.09 )x3 ≤ (0.5, 0.7, 0.9163, .95, 1.0), 

       (4, 6, 10, 13, 15)x1 ⊕ (0, 5, 10, 15, 18 )x2 ⊕ (6, 8, 11, 14, 20)x3 ≤ (25, 30, 35, 40, 48), 

x1, x2, x3 ≥ 0. 

 

maxZCIA =
[4, 10]x1 ⊕ [10, 15 ]x2 ⊕ [2.5, 7.5]x3 ⊕ [2, 4]

[14, 22]x1 ⊕ [23.5, 29.5]x2 ⊕ [18, 25]x3 ⊕ [10, 20]
. 

 

maxZ2CIA
=
[20, 28]x1 ⊕ [16, 25 ]x2 ⊕ [14, 25]x3 ⊕ [1, 10]

[16, 23]x1 ⊕ [18, 25]x2 ⊕ [15, 25]x3 ⊕ [10,20]
. 

 

[10, 19]x1 ⊕ [14, 22 ]x2 ⊕ [20, 27]x3 ≤ [38, 47 ],  

[ 0.03,0.09 ]x1 ⊕ [ 0.05, 0.1 ] x2 ⊕ [ 0.02, 0.07]x3 ≤ [0.7, 0.95],  

[6, 13]x1 ⊕ [5, 15 ]x2 ⊕ [8, 14]x3 ≤ [30, 40],  

x1, x2, x3 ≥ 0.  

maxẐ1 =
7x1 + 12.5x2 + 5x3 + 3

18x1 + 32.5x2 + 21.5x3 + 15
.  

maxẐ2 =
24x1 + 20.5x2 + 19.5x3 + 5.5

19.5x1 + 21.5x2 + 20x3 + 15
.  

                 10x1 + 14x2 + 20x3 ≤ 38, 

                   19x1 + 22x2 + 27x3 ≤ 47, 

                   0.03x1 + 0.05 x2 + 0.07x3 ≤ 0.7, 

                   0.09x1 + 0.1 x2 + 0.07x3 ≤ 0.95, 

                   6x1 + 5x2 + 8x3 ≤ 30, 

                  13x1 + 15x2 + 14x3 ≤ 40, 

                   x1, x2, x3 ≥ 0. 
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In close interval approximation of  piecewise quadratic fuzzy: the ideal solution is (𝑍1

∗ , 𝑍2
∗ ) =

([0.281410,0.59872 ], [0.65640,1.59873 ]), and the set of all efficient solution for  (𝑍̂1, 𝑍̂2) are 

([0.281410,0.65640]: [0.59872,1.59873  ]) and ([0.15983,0.64387 ]: [0.465635,1.10225 ]). 

6 | Comparative Study 

In this section, the proposed approach is compared with some existing literature to illustrate the advantages 

of the proposed approach. Table 1 investigates this comparison in the case of some parameters. 

Table 1. Comparison of different researcher's contributions. 

 

 

 

 

 

7 | Conclusions and Future Works 

In this paper, a new algorithm for solving fuzzy multi- objective LFP has proposed which based purely on 

the Hungarian method. The idea of the algorithm is to find the ideal solution and the set of all efficient 

solutions. The advantage of it helps the DM to handle the real life problem. Therefore, future work may 

include the  study of the problem in different uncertainty environment as neutrosophic, stochastic, etc. 
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