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Abstract 

 

1 | Introduction  

Industry 4.0 concept, which is proposed firstly in 2011 by Kagermann et al. [8] and published as a 

manifesto in 2013 by ACATECH (German Academy of Science and Engineering), is a collective term 

that contains contemporary automation systems, data exchange, and production technologies. It 

describes production systems that accord the consumer requirements instantly and automation 

systems that stay in touch with each other continuously [17]. Industry 4.0 can be described as in which 

all units that are directly or indirectly associated with production, are worked each other having digital 

data, software, and information technologies integration [15]. According to Thames and Schaefer 

[16], smart systems that have autonomic self-properties will drive manufacturing ecosystems with the 

implementation of Industry 4.0, which causes an accelerated growth in productivity and 

unprecedented levels of operational efficiencies. Mrugalska and Wyrwicka [12] determined possible 
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benefits of Industry 4.0 implementations as increasing the flexibility of business processes, elimination 

of failures in the demand chain, decision-making process optimization with instant end-to-end visibility, 

increased resource productivity, and efficiency, creating value opportunities, and reduction of energy 

and personal costs. Although there are many studies in the literature that mention the potential benefits 

of Industry 4.0 applications, no study has been found that examines existing applications and reveals 

these effects. To fill this gap in the literature, this study aims to perform an efficiency analysis to reveal 

the effects of current practices of Industry 4.0 applications. 

Data Envelopment Analysis (DEA) is an adopted efficiency measurement system that has been 

researched and used for many years. DEA which can take place in different fields of application can also 

be used with fuzzy numbers in the application areas where it has unknown cases, obscurity, randomness. 

Measuring the efficiency of Industry 4.0 implementations involves high uncertainty with its 

unpredictable rapidly developing manner and its unmeasurable side effects. Industry 4.0 tools are 

frequently updated, and the gains it brings are constantly changing (increasing) and therefore it becomes 

difficult to measure these gains. The increase in the gains obtained by the combination of different 

applications of Industry 4.0 tools can also make measurement difficult and bring uncertainty in the 

evaluation process. The main aim of fuzzy logic and set theory is to model thinking and decision-making 

mechanisms in uncertain environments with inaccurate information [20]. Fuzzy sets enable analysts to 

define linguistic variables that have uncertain and ambiguous information to involve uncertainty in the 

analysis. Therefore, in this paper, it is decided to carry out a comprehensive study including DEA and 

fuzzy DEA to measure the efficiency of Industry 4.0 implementations for a real case. To be able to apply 

fuzzy algorithms for output-oriented DEA, fuzzy output-oriented CCR (Constant Return to Scale 

model) algorithm and fuzzy output-oriented BCC (Variable Return to Scale model) algorithm are 

proposed. In addition, the results of DEA and Fuzzy DEA methods are compared to determine the 

effect of uncertainty for Industry 4.0 implementations. 

This paper will make important contributions to the literature by being the first quantitative academic 

study to measure the effects of Industry 4.0 applications on productivity. In addition, it shows how fuzzy 

factors can influence decision-making by comparing fuzzy and classical DEA results. The rest of the 

paper is organized as follows: In Section 2, the methods used in the paper are detailed. In Section 3, the 

information about the real case and the application details are given. Then the results of the application 

are discussed in Section 4 and the paper is concluded in Section 5. 

2 | Literature Review 

The subject of the efficiency of Industry 4.0 has been investigated by various authors. Most of the studies 

have been done in recent years and they are focused on the understanding and conceptualization of 

Industry 4.0. Costa et al. [6] simulated three different Industry 4.0 implementations in a flexible flow 

shop for production activity control. Liu et al. [10] proposed an industrial blockchain concept that 

integrates  IoT, M2M, and efficient consensus algorithms and illustrated a blockchain-based application 

between the cooperating partners in four emerging product lifecycle stages. Cicconi and Raffaeli [5] 

determined Industry 3.0 technologies to support defect analysis for mechanical workpieces and 

proposed a knowledge-based tool to support the configurations of the quality control chain. Sorkun [15] 

investigated the Industry 4.0 enabling technologies in logistics operations using the fuzzy-total 

interpretative structure modeling. Dalmarco et al. [7] examined the challenges and opportunities of 

adopting Industry 4.0 from the perspective of technology provider companies using a research method 

based on interviews. Malik and Khan [11] presented an optimized IoT-based Job Shop Scheduler 

Monitoring System which will improve the efficiency of the whole shop floor. Kumar and Iyer [9] made 

exploratory research to explore the benefits of IIoT in engineering and manufacturing industries. 

When efficiency analysis and Industry 4.0 are investigated together in the literature, it is seen that a 

limited number of studies have been carried out. Arora et al. [1] analyzed several factors hindering the 

growth of the agricultural supply chain and several industry 4.0 technologies. They presented a priority 
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list that provides a ranking based on the relative efficiency of technologies' advances in addressing barriers. 

Woo et al. [19] investigated existing smart manufacturing and smart factories in the shipbuilding industry 

and developed a new framework for smart shipyard maturity level assessment using DEA. Pinheiro and 

Putnik [14] investigated the effects on the hierarchical structures of organizations to assess the possible 

benefits for the efficiency of the organizations resulting from the implementation of Industry 4.0. 

In the literature review, it is seen that all papers focused on the effects of Industry 4.0 agreed that there 

will be an improvement in production systems with the utilization of Industry 4.0 tools, but no publication 

has been identified with efficiency impact analysis by empirical evaluations. Therefore, the main driver of 

this paper is to measure the effects of Industry 4.0 implementations on the manufacturing systems. 

3 | Methodology 

Efficiency measurement methods are mostly classified as ratio analysis, parametric techniques, and non-

parametric techniques. In this study, DEA and FDEA which are non-parametric techniques, are used to 

determine the efficiency effect of Industry 4.0 applications. 

3.1 | Data Envelopment Analysis 

DEA which is one of the nonparametric methods is a structured method based on the principles of linear 

programming for measuring the relative effectiveness of units (DMUs) that are responsible for converting 

inputs into outputs. The efficiency of a Decision-Making Unit (DMU) in DEA is obtained by dividing the 

weighted sum of outputs by the weighted sum of inputs. The DMUs in which the objective function value 

is calculated to 1, are defined as active DMU, The DMUs in which the objective function value is not equal 

to 1, are defined as inactive DMU. The best DMUs form the efficiency frontier with the envelope algorithm 

and the effectiveness of other DMUs is measured according to their distance from this limit. In the 

envelope algorithm, DMU observations are drawn into an envelope by drawing an effective boundary with 

the use of algorithms and there is no observation beyond this limit [6] and[19]. Different DEA models are 

defined according to the way of enveloping and the distance from inactive units to the effective production 

limit [13]. 

According to the envelope type, there are two DEA models; Constant Return to Scale (CCR) model which 

was developed by Charnes et al. [4] in 1978, and Variable Return to Scale model which was developed by 

Banker et al. [2] (BCC) in 1984. According to the distance of inactive units to the effective production 

limit, there are two types of algorithms. The input-oriented model investigates how much input 

composition should be reduced to achieve the same output level most effectively without changing output 

level and the output-oriented model investigates how much output composition should be increased to 

achieve the same input level most effectively without changing input level. 

3.2 | Fuzzy Data Envelopment Analysis 

Data envelopment models are based on linear programming basics. The classical boundaries of DEA 

models that are created by classical mathematics are not able to overcome uncertain information, which 

could be clarified with fuzzy set theory, and in this way, the uncertainty could be included in the decision 

processes. When some of the observations are blurred, the objective function and constraints in the 

decision process become blurred. As data envelopment models are based on linear programming basics, 

fuzzy data envelopment problems are based on fuzzy linear programming techniques [21]. 

DEA methods that are using fuzzy set theory, are generally classified under five headlines in the literature, 

the tolerance approach, the fuzzy ranking approach, the possibility approach, the α-level-based approach, 

and Interval DEA (IDEA) approach. In this paper, the IDEA approach is determined as the efficiency 

measurement method to be used.  
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A pair of IDEA models are proposed by Wang et al. [18] for dealing with imprecise data such as interval 

data, ordinal preference information, fuzzy data, and their mixture. In these models, the efficiency scores 

are obtained as interval numbers and a minimax regret approach is used to rank the interval numbers. 

To avoid the use of different efficient frontiers in measuring the effectiveness of different DMUs, the 

IDEA model is based on interval arithmetic, which is always using the same set of constraints (a unified 

and fixed efficient frontier), was developed. 

As it is mentioned in Secion 2.1, four basic data envelopment model algorithms are input-oriented CCR, 

output-oriented CCR, input-oriented BCC, and output-oriented BCC. The classical and fuzzy models 

for these four DEA model algorithms are given below. 

3.2.1 | Input oriented model – CCR input algorithm 

In the crisp case, the model is given in Eq. (1) where 𝐸0  represents the efficiency of 𝑜𝑡ℎ DMU, 𝑛 

represents the number of DMUs, 𝑚 and 𝑠 represent the number of inputs and outputs, respectively, 𝑢𝑟  

represents 𝑟𝑡ℎ  output’s weight value of 𝑜𝑡ℎ DMU, 𝑣𝑖represents  𝑖𝑡ℎ input’s weight value of 𝑜𝑡ℎ DMU, 𝑥𝑖𝑜 

represents  𝑖𝑡ℎ input quantity of 𝑜𝑡ℎ  DMU, 𝑦𝑟𝑜 represents 𝑟𝑡ℎ output quantity of 𝑜𝑡ℎ DMU: 

In the fuzzy case of the model, the efficiency of 𝑜𝑡ℎ DMU is determined by an interval fuzzy number 

𝐸̃𝑜 = [𝐸𝑜
𝐿, 𝐸𝑜

𝑈] where 𝐸𝑜
𝐿 and 𝐸𝑜

𝑈  represent lower and upper levels of the efficiency of 𝑜𝑡ℎ DMU, 

respectively. The upper level of efficiency is calculated using Eq. (2) [18]: 

where 𝑦𝑟𝑜
𝑈  represents the upper bound of 𝑟𝑡ℎ output quantity of 𝑜𝑡ℎ DMU, 𝑥𝑖𝑜

𝐿  represents the lower bound 

of 𝑖𝑡ℎ input quantity of 𝑜𝑡ℎ DMU. The lower level of efficiency is calculated using Eq. (3) [18]: 
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where 𝑦𝑟𝑜

𝐿  represents the lower bound of 𝑟𝑡ℎ output quantity of 𝑜𝑡ℎ DMU, 𝑥𝑖𝑜
𝑈  represents the upper bound 

of 𝑖𝑡ℎ input quantity of 𝑜𝑡ℎ DMU. As it is stated and proved in [19] using the same constraint for Eq. (2) 

and Eq. (3) determines a fixed production frontier for all the DMUs with fuzzy inputs and outputs. 

3.2.2 | Output oriented model–CCR output algorithm 

In the crisp case, the output-oriented CCR algorithm is given as in Eq. (4) as follows: 

In the literature review, it is seen that there is not any proposed algorithm for IDEA approach for output 

oriented CCR algorithm. Thus, the algorithms that are given in Eq. (5) and Eq. (6) are proposed for the 

output-oriented fuzzy CCR using the same assumptions of [18]. In the fuzzy case of the output-oriented 

CCR algorithm, the upper level of the efficiency of 𝑜𝑡ℎ DMU can be calculated using Eq. (5): 

The lower level of the efficiency of 𝑜𝑡ℎ DMU in fuzzy case of output-oriented CCR algorithm can be 

calculated using Eq. (6): 

 

 

 

 

 In Eq. (5) and Eq. (6), the same constraint is used to determine a fixed upper bound for the inputs. 

3.2.3 | Input oriented model–BCC input algorithm 

In the crisp case, input-oriented BCC algorithm is given in Eq. (7) where 𝑢𝑜 represents unrestricted variable 

of 𝑜𝑡ℎ DMU. 
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 In the fuzzy case, same as previously determined algorithms first lower and upper levels of the efficiency 

of 𝑜𝑡ℎ DMU are calculated using Eq. (8) and Eq. (9), respectively: 

 

 

 

 

 

3.2.4 | Output oriented model – BCC output algorithm 

In the crisp case, output-oriented BCC algorithm is given in Eq. (10) where 𝑣𝑜 represents unrestricted 

variable of 𝑜𝑡ℎ DMU. 

 

 

 

 

To the best of our knowledge, there is not any paper that proposed algorithms for output oriented fuzzy 

BCC algorithms in the literature. The upper level of the efficiency of 𝑜𝑡ℎ DMU in the fuzzy case of 

output-oriented BCC algorithm can be calculated using Eq. (11). 

 

 

 

 

Eq. (12) shows the calculation of the lower level of the efficiency of 𝑜𝑡ℎ DMU in the fuzzy case of output-

oriented BCC algorithm. 
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In the evaluation of the efficiency of the interval data, in which the final efficiency scores for each DMU 

are defined by an interval, a minimax regret-based approach that is proposed by Wang et al. [18] is used to 

sort and compare the effectiveness of the different DMUs. 

Input oriented. The maximum efficiency loss of all DMUs is calculated using Eq. (13). Relative lowest 

efficient DMU with the highest efficiency loss is obtained with DMU removal iterations of lowest 

efficiency loss. 

Output oriented. The maximum efficiency loss of all DMUs is calculated using Eq. (14). Relative highest 

efficient DMU with the highest efficiency loss is obtained with DMU removal iterations of lowest 

efficiency loss. 

 

4 | Application in Home Appliances Sector 

In this study, 44 machines of a company that is the leader of the sector according to many indicators 

including market share are examined. The factory to be examined within the scope of the research belongs 

to a group of companies, which supplies innovative white goods in 43 factories to consumers through 80 

companies in 48 countries. 

From the end of 2018, the company has started to implement the Industry 4.0 applications for the 

machines that were identified as bottlenecks (production capacity constraint). The company has decided 

to invest in the “Instantaneous System Condition Monitoring” and “Personnel Warning Systems” for the 

Preventive Maintenance Activity of the 3 of 44 machines that have the production capacity constraint. For 

a single machine 52 analog pressure sensors, 10 analog temperature sensors, 5 pieces of oil level sensors, 

16 pcs laser distance sensors and 1 optical sensor are added. The working conditions of the machines are 

monitored instantaneously with the advanced precision measurement systems and the algorithms that are 

created specifically for the machine are provided to warn the machine without any downtimes (within the 

scope of the algorithm) by foreseeing the possible causes of stopping. In this study, machines (DMUs) that 

have Industry 4.0 applications are analyzed and denoted as M5, M12, and M26. 

To avoid the effects of pandemics and to find out the real effect of Industry 4.0 implementations in the 

manufacturing process, data of 2018 and 2019 are used for the analysis. 

4.1 | Definition of Variables 

In the literature, a mathematical study on measuring the effects of Industry 4.0 applications could not be 

determined, however, Turanoglu Bekar and Kahraman [3] examined total productive maintenance by 

FDEA. The variables used in this literature (denoted with “*” in the tableau) is expanded and final input 

and output variables are determined in Table 1 as follows: 

 

 

R(i. DMU) = max [max (Other DMUs ′upper level efficiency(ϴk
U))

− i. DMU ′s lower level efficiency(ϴk
L), 0]. 

(13) 

(i. DMU) = max [max (Other DMUs ′ lower level efficiency(ϴk
L))

− i. DMU ′s upper level efficiency(ϴk
U), 0]. 

(14) 
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Table 1. Input and output variables. 

 

 

 

 

 

 

  

 

 

 

In DEA, unit differences are eliminated by using weights according to the minimization of inputs and 

maximization of outputs. By this information, the variables to be used in the study were selected and 

their units were scaled. 

Data control. In the study, Cronbach Alpha reliability analysis is performed in terms of internal 

consistency of statistical attitude scale. Reliability in terms of internal consistency is made to determine 

whether a single measurement tool measures the psychological conceptual structure in a consistent way 

by making a single application [22]. For the 2018 data set, Cronbach’s alpha is found as 0.790, Cronbach's 

alpha based on standardized items is found as 0.895 for 18 items. In the 2019 data set, Cronbach’s alpha 

is found as 0.744, Cronbach's alpha based on standardized items is found as 0.745 for 18 items. 

4.2 | Classical Data Envelopment Analysis 

In this subsection, four basic classical DEA algorithms are applied to data. The results of M5, M12, and 

M26 which are the Industry 4.0 machines are detailed to point out the effect of Industry 4.0 

implementations. 

4.2.1 | Classical data envelopment analysis: CCR–input 

CCR-input-oriented classical DEA results and efficiency variations of the machines for 2018 and 2019 

are given in Table 2. 

 Table 2. CCR – input-oriented classical DEA results and efficiency variations. 

 

Inputs 
Variable No. Variable Description Unit 

X1 Average Machine Operator Quantity Unit 

X2 Workpiece Technical Complexity Value Between 1-10  
X3 Workpiece Managerial Complexity Value Between 1-10 
X4 Machine Operator absenteeism Rate * (%) Percent 
X5 Machine Operator Turn-Over Rate * (%) Percent 
X6 1 / Machine Operator Working Year * 1/Year 
X7 100 – Operator New Ideas Generated and Implemented * Between 1-100 
X8 100 – Level of 5S Point * Between 1-100 
X9 Availability of Maintenance Personnel * Between 1-100 
X10 Competence of Maintenance Personnel * Between 1-100 

Outputs 
Variable No. Variable Description Unit 

Y1 Machine Available Working Time Hour/Month 

Y2 Machine OEE(Overall Equipment Effectiveness) Rate (%) Percent 
Y3 Workpiece Quantity Per Hour Piece/Hour 
Y4 Machine Autonomous Maintenance Level Between 1-100 
Y5 100 – Machine Work Accident Quantity * 100-Unit 
Y6 100 / Machine Average Breakdown Quantity * 100/Unit 
Y7 100 – Machine Mean Time to Repair (MTTR) * 100-Minute 
Y8 Mean Time Between Failure (MTBF) * Hour 

2018 - CCR-I Model Classical 
DEA Result 

2019 - CCR-I Model Classical 
DEA Result 

Classical DEA CCR-I Model 2018 - 
2019 Efficiency Variation 

DMU Efficiency rate DMU Efficiency rate DMU Efficiency rate 

M5 62,9% M5 100% M5 37,1% 
M12 66,4% M12 92,4% M12 26,0% 
M26 77,1% M26 100,0% M26 22,9% 
All 
machines 
average 

92,4% All 
machines 
average 

97,8% All machines 
average 
variation 

5,4% 
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According to the results, in 2019 the average relative efficiency of 44 machines increased by 5.4%. 

Machines M5, M12, and M26 are Industry 4.0 machines, their relative efficiency increased by 37.1%, 26%, 

and 22.9% respectively, and in 2019, M5 and M26 passed to the active border. 

4.2.2 | Classical data envelopment analysis: CCR–output 

CCR–output-oriented classical DEA results and efficiency variations of the machines for 2018 and 2019 

are given in Table 3. 

Table 3. CCR – output-oriented classical DEA results and efficiency variations. 

 

According to these results in 2019, the average relative efficiency of 44 machines increased by 7.2%. 

Machines M5, M12, and M26 are Industry 4.0 applied machines and their relative efficiency increased by 

59.1%, 42.5%, and 29.7% respectively. In 2019, M5 and M26 passed to the active border. 

4.2.3 | Classical data envelopment analysis: BCC–input 

BCC – input-oriented classical DEA results and efficiency variations of the machines for 2018 and 2019 

are given in Table 4. 

Table 4. CCR – input-oriented classical DEA results and efficiency variations. 

 

According to these results in 2019, the average relative efficiency of 44 machines increased by 4.2%. 

Machines M5, M12, and M26 are Industry 4.0 machines and their relative efficiency increased by 35.2%, 

26%, and 21.9% respectively. In 2019, M5 and M26 passed to the active border. 

4.2.4 | Classical data envelopment analysis: BCC–output 

BCC–output-oriented classical DEA results and efficiency variations of the machines for 2018 and 2019 

are given in Table 5. 

According to these results in 2019, the average relative efficiency of 44 machines increased by 0.2%. 

Machines M5, M12, and M26 are machines with Industry 4.0 applications. According to the 2018 BCC-O 

model, the efficiency of the inactive M5 increased by 3.1% in 2019 and passed to the active border. 

 

 

2018 - CCR-O Model 
Classical DEA Result 

2019 - CCR-O Model 
Classical DEA Result 

Classical DEA CCR-O Model 2018 - 
2019 Efficiency Variation 

DMU Efficiency rate DMU Efficiency rate DMU Efficiency rate 

M5 159,1% M5 100,0% M5 59,1% 
M12 150,7% M12 108,2% M12 42,5% 
M26 129,7% M26 100,0% M26 29,7% 
All 
machines 
average 

109,6% All 
machines 
average 

102,4% All machines 
average 
variation 

7,2% 

2018 - BCC-I Model Classical 
DEA Result 

2019 BCC-I Model Classical 
DEA Result 

Classical DEA BCC-I Model 2018 - 
2019 Efficiency Variation 

DMU Efficiency rate DMU Efficiency rate DMU Efficiency rate 

M5 64,8% M5 100,0% M5 35,2% 
M12 66,4% M12 92,4% M12 26,0% 
M26 78,1% M26 100,0% M26 21,9% 
All 
machines 
average 

94,1% All 
machines 
average 

98,3% All machines 
average 
variation 

4,2% 
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Table 5. BCC – output-oriented classical DEA results and efficiency variations. 

 

4.3 | Fuzzy Data Envelopment Analysis 

In this subsection, four basic fuzzy IDEA algorithms are applied to data. To fuzzify the crisp data, for 

quantitative variables (X1, X4, X5, X6, X7, Y1, Y2, Y3, Y5, Y6, Y7, and Y8) one standard deviation is 

subtracted and added to DMU value and for qualitative data (X2, X3, X8, X9, X10, and Y4) 10% of 

average is subtracted and added to DMU value to determine lower and upper boundary data, 

respectively. To measure the efficiency with IDEA type, upper and lower limit data must be adapted to 

the defined equations. For this purpose, the upper limit values of the output data and the lower limit 

values of the input data are used for the upper boundary activity equation. When measuring the lower 

limit activity values, the lower limit values of the output data and the upper limit values of the input data 

are used. 

4.3.1 | Fuzzy data envelopment analysis: CCR–input oriented analysis results 

CCR–input-oriented FDEA results and relative efficiency changes for 2018 and 2019 are given in Table 

6. 

Table 6. CCR – input-oriented FDEA results and efficiency changes. 

 

In 2018, the machines with the lowest relative activity of 44 machines are respectively; M5, M12, M39 

and M26. As mentioned at the beginning of the study, M5, M12, and M26 are also the machines that 

are applied to Industry 4.0 applications as of 2019. 

In 2019, the machines with the lowest relative efficiency of 44 machines are M3 and M39. M5, M12, 

and M26 were removed from the list of the lowest efficient machines. Even, M26 which was one of the 

lowest efficiency machines is at the effective boundary according to the FDEA CCR-I model as of 2019. 

As can be seen in M5 and M12 machines, efficiency improvement is 33.6% and 23.2% respectively. 

4.3.2 | Fuzzy data envelopment analysis: CCR-output oriented analysis results 

CCR–output-oriented FDEA results and relative efficiency changes for 2018 and 2019 are given in Table 

7. 

2018 - BCC-O Model 
Classical DEA Result 

2019 - BCC-O Model 
Classical DEA Result 

Classical DEA BCC-O Model 2018 - 
2019 Efficiency Variation 

DMU Efficiency rate DMU Efficiency rate DMU Efficiency rate 

M5 103,1% M5 100,0% M5 3,1% 
M12 100,0% M12 100,0% M12 0,0% 
M26 100,0% M26 100,0% M26 0,0% 
All 
machines 
average 

100,3% All 
machines 
average 

100,1% All machines 
average 
variation 

0,2% 

 2018 - FDEA CCR-I 
Results 

2019 - FDEA CCR-I 
Results 

FDEA CCR-I 2018 - 2019 Efficiency 
Variation 

DMU Lower 
bound 
technical 
efficiency 
rate 

Upper 
bound 
technical 
efficiency 
rate 

Lower 
bound 
technical 
efficiency 
rate 

Upper 
bound 
technical 
efficiency 
rate 

Lower 
bound 
technical 
efficiency 
variation 

Upper bound 
technical 
efficiency 
variation 

Min. 
variation 

M5 66.3% 59.2% 99.8% 99.8% 33.6% 40.6% 33.6% 
M12 69.8% 62.0% 93.0% 91.8% 23.2% 29.7% 23.2% 
M26 79.4% 73.9% 100.0% 100.0% 20.6% 26.1% 20.6% 
All 
machines 
average 

93.9% 89.9% 98.3% 96.6% 4.4% 6.7% 4.4% 
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 Table 7. CCR – input oriented classical DEA results and efficiency variations. 

 

 

 

 

 

In 2018, the machines with the lowest relative activity of 44 machines are respectively; M5, M12, M39, and 

M26.  

In 2019, the machines with the lowest relative efficiency of 44 machines are M3 and M39. M5, M12, and 

M26 were removed from the list of the lowest efficient machines. Even, M26 which is one of the lowest 

efficiency machines in 2018, is at the effective boundary according to the FDEA CCR-O model as of 2019. 

As can be seen in M5 and M12 machines, efficiency improvement is 50.7% and 35.7%, respectively. 

4.3.3 | Fuzzy data envelopment analysis: BCC-input oriented analysis results 

BCC-input oriented FDEA results and relative efficiency changes for 2018 and 2019 are given in Table 8. 

Table 8. BCC-input oriented FDEA results and efficiency changes. 

 

 

 

 

 

In 2018, the machines with the lowest relative activity of 44 machines are respectively; M5, M12, M39, and 

M26.  

In 2019, the machines with the lowest relative efficiency of 44 machines are M3 and M25. M5, M12, and 

M26 were removed from the list of the lowest efficient machines. Even, M26 which is one of the lowest 

efficiency machines in 2018, is at the effective boundary according to the FDEA BCC-I model as of 2019. 

As can be seen in M5 and M12 machines, efficiency improvement is 31.5% and 23.2% respectively. 

4.3.4 | Fuzzy data envelopment analysis: BCC-output oriented analysis results 

BCC – output-oriented FDEA results and relative efficiency changes for 2018 and 2019 are given in Table 

9.  

 

 

 2018 - FDEA CCR-I 
Results 

2019 - FDEA CCR-I 
Results 

FDEA CCR-I 2018 - 2019 
Efficiency Variation 

DMU Lower 
bound 
technical 
efficiency 
rate 

Upper 
bound 
technical 
efficiency 
rate 

Lower 
bound 
technical 
efficiency 
rate 

Upper 
bound 
technical 
efficiency 
rate 

Lower 
bound 
technical 
efficiency 
variation 

Upper 
bound 
technical 
efficiency 
variation 

Min. 
variation 

M5 150.9% 168.9% 100.2% 100.2% 50.7% 68.7% 50.7% 
M12 143.3% 161.2% 107.5% 109.0% 35.7% 52.2% 35.7% 
M26 125.9% 135.2% 100.0% 100.0% 25.9% 35.2% 25.9% 
All 
machines 
average 

107.6% 113.4% 101.9% 103.8% 5.7% 9.6% 5.7% 

 2018 FDEA BCC-I 
Results 

2019 FDEA BCC-I 
Results 

Relative Efficiency Variation 

DMU Lower 
bound 
technical 
efficiency 
rate 

Upper 
bound 
technical 
efficiency 
rate 

Lower 
bound 
technical 
efficiency 
rate 

Upper 
bound 
technical 
efficiency 
rate 

Lower 
bound 
technical 
efficiency 
variation 

Upper 
bound 
technical 
efficiency 
variation 

Min. 
variation 

M5 68.3% 60.4% 99.8% 99.8% 31.5% 39.4% 31.5% 
M12 69.8% 62.0% 93.0% 91.8% 23.2% 29.7% 23.2% 
M26 80.3% 75.7% 100.0% 100.0% 19.7% 24.3% 19.7% 
All 
machines 
average 

95.1% 91.5% 98.5% 97.9% 3.4% 6.4% 3.4% 
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Table 9. BCC – output-oriented classical DEA results and efficiency variations. 

 

 

 

 

 

In 2018, the machines with the lowest relative activity of 44 machines are respectively; M5, M34, and 

M39.  

In 2019, the machines with the lowest relative efficiency of 44 machines are M3, M7, and M34. As of 

2019, the M5 which has the lowest relative efficiency in 2018, is at the effective boundary according to 

the FDEA BCC-O model. M5 has a 2.02% efficiency improvement. 

In addition, the sensitivity analysis is performed. It is seen that any of the input parameters and output 

parameters do not change the lowest efficient DMU for all of the algorithms used in the study when a 

single variable is removed. 

5 |  Discussions 

 In determining the efficiency measurement method of this study, there are three basic parting of the 

ways: efficiency analysis method, logic type selection (crisp, fuzzy), and working algorithm selection.  

Method selection; has been carried out comprehensively because it contains unknowns and it has not 

been specialized in both theoretical and practical studies yet. As a result of the method search, it is 

decided to work with Interval type FDEA studies. To reveal the effect of the unknown, classical DEA 

studies are conducted and it is found appropriate to compare these two methods. Thus, it is aimed to 

reveal the exact efficiency effect. 

Classical DEA results. According to the classical DEA results of 2018 and 2019, the efficiency of 44 

machines shows an average improvement of at least 4.2% for all machines (The output-oriented BCC 

algorithm can be excluded because it cannot clearly show the relative separation of machine-specific 

relative to data). There are inherent differences in input-output-oriented or CRR-BCC enveloping 

algorithms. In the Classical DEA, the M5 and M26 machines have moved to the efficient frontier, 

regardless of the model. 

Relative productivity of M12 is increased minimum of 26%. From 2018 to 2019, the efficiency increase 

for these three machines is between 21.9% and 59.1%. 

FDEA results. According to the FDEA results of 2018 and 2019, the efficiency of 44 machines shows 

an average improvement of at least 3.4% for all machines (The output-oriented BCC algorithm can be 

excluded because it cannot clearly show the relative separation of machine-specific relative to data). 

There are inherent differences in input-output-oriented or CRR-BCC enveloping algorithms. In the 

FDEA, the M26 has moved to the efficient frontier, regardless of the model. 

Relative productivity of M5 and M12 is increased minimum of 31.5% and 23.2% respectively. From 

2018 to 2019, the efficiency increase for these three machines is between 19.7% and 50.7%. 

 2018 FDEA BCC-O 
Results 

2019 FDEA BCC-O 
Results 

Relative Efficiency Variation 

DMU Lower 
bound 
technical 
efficiency 
rate 

Upper 
bound 
technical 
efficiency 
rate 

Lower 
bound 
technical 
efficiency 
rate 

Upper 
bound 
technical 
efficiency 
rate 

Lower 
bound 
technical 
efficiency 
variation 

Upper 
bound 
technical 
efficiency 
variation 

Min. 
variation 

M5 103.1% 102.0% 100.0% 100.0% 3.1% 2.02% 2.02% 
M12 100.0% 100.0% 100.0% 100.0% 0.0% 0.00% 0.00% 
M26 100.0% 100.0% 100.0% 100.0% 0.0% 0.00% 0.00% 
All 
machines 
average 

100.3% 100.1% 100.1% 100.0% 0.2% 0.04% 0.04% 
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Classical DEA-FDEA comparison-the uncertainty factor. According to the results of FDEA and 

Classic DEA, M5, M12, and M26 machines which have been applied to Industry 4.0 applications have a 

minimum 19.7% increase in 2019, regardless of the DEA model.  

According to the data of 2018, the relative lowest efficiencies are M5, M12, M39, M26, respectively, 

regardless of the Classic, FDEA, or model. 

According to 2019 data, the lowest relative efficiency is in the M3, M39, M25 machines, although they 

differ according to the Classic, FDEA models. 

According to Classical DEA of 2019, the M5 and M26 which have Industry 4.0 applications, are among 

the most efficient machines with the highest efficiency in the efficient frontier with the highest efficiency. 

This situation applies only to M26 in FDEA. M5 and M12 are not within the active boundary (efficient 

frontier) even if their efficiency increased minimum of 23.2%. The fact that the full event status of any 

machine is different in FDEA and Classic DEA is expected in terms of application. Similar differences can 

be observed in M23, M24, M32, M33. These differences are occurred due to the uncertainty factor. Because 

classical DEA does not contain uncertainty, it has worked with crisp sets. However, FDEA (IDEA) works 

with interval data so it contains limited uncertainty that is converting qualitative comments to quantitative. 

6 | Conclusion 

Industry 4.0 studies require costly investments. This factor is also the basis of the lack of implementation. 

For this reason, companies want to make a detailed feasibility analysis and especially to see the effects of 

pilot applications before implementation. In this study, an application road map for efficiency impact 

analysis of Industry 4.0 applications is presented in the home appliance manufacturing sector, which can 

be used to find out the real effect of the applications. 

As stated at the beginning of the study, Industry 4.0 applications contain high uncertainty. It is also 

understood that the uncertainty factor is critical to have successful implementations of new technologies. 

In the case of analysis involving uncertainties, the decision to conclude with the classical DEA will result 

in an effective interpretation of an inactive (M5) DMU as in practice. In this paper, it is shown that FDEA 

studies have more clear results in the areas of uncertainty and categorical evaluations. 

The other objective of this study is to compare input and output-oriented DEA algorithms. The paper 

shows that these algorithms have similar results, but the order of the DMUs may differ. The limitation of 

the study is that the effects of constantly changing/developing industry 4.0 applications are measured with 

discrete data. Despite this, DEA can show the positive effect of these practices on productivity. For further 

research, it is suggested to analyze the results of Industry 4.0 implementations from a broader perspective 

including the effects on demand, cost of production, and customer satisfaction. It is clear how Industry 

4.0 practices will affect our use of resources. The research can also be expanded by working with different 

sectors and machine groups. 
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