Document Type : Research Paper


1 Department of Mathematics, Government College University, Lahore 54000, Pakistan.

2 Department of Mathematics and Applied Mathematics, University of Pretoria 0002, South Africa.

3 Department of Computer Science, University of Illinois at Springfield, One University Plaza, Springfield, IL 62703, USA.


The q-Rung Orthopair Fuzzy Soft Set (q-ROFSS) theory is a significant extension of Pythagorean fuzzy soft set and intuitionistic fuzzy soft set theories for dealing with the imprecision and uncertainty in data. The purpose of this study is to improve and apply this theory in decision-making. To achieve this purpose, we firstly propose some Bonferroni Mean (BM) and Weighted Bonferroni Mean (WBM) aggregation operators for aggregating the data. Some desired properties are presented in detail and the existing aggregation operators are used as distinct cases of our proposed operators. Further, a decision-making analysis is presented based on our proposed operations and applied to decision-making in COVID-19 diagnosis. The preferred way is discussed to protect maximum human lives from COVID-19. A numerical example is given to support the claim. The experimental results demonstrate the proposed operators have an ability to make a precise decision with imprecision and uncertain information which will find a broad application in the decision-making area.


Main Subjects

  1. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87–96.
  3. De, S. K., Biswas, R., & Roy, A. R. (2000). Some operations on intuitionistic fuzzy sets. Fuzzy sets and systems114(3), 477-484.
  4. Garg, H. (2017). Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Engineering applications of artificial intelligence60, 164-174.
  5. Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applications37(4-5), 19-31.
  6. Maji, P. K., Biswas, R., & Roy, A. R. (2001). Intuitionistic fuzzy soft sets. Journal of fuzzy mathematics9(3), 677-692.
  7. Maji, P. K., Biswas, R. K., & Roy, A. (2001) Fuzzy soft sets. Journal of fuzzy mathematics, 9, 589-602.
  8. Bora, M., Neog, T. J., & Sut, D. K. (2012). Some new operations of intuitionistic fuzzy soft sets. International journals of soft computing and engineering2(4), 2231-2307.
  9. Xu, Z., & Yager, R. R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets. International journal of general systems35(4), 417-433.
  10. Arora, R., & Garg, H. (2017). A robust intuitionistic fuzzy soft aggregation operators and its application to decision making process. Scientia iranica E.
  11. Arora, R., & Garg, H. (2018). Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Scientia iranica25(1), 466-482.
  12. Garg, H. (2016). A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. International journal of intelligent systems31(9), 886-920.
  13. Garg, H. (2016). A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems. Applied soft computing38, 988-999.
  14. Xu, L., Liu, Y., & Liu, H. (2019). Some improved q-rung orthopair fuzzy aggregation operators and their applications to multiattribute group decision-making. Mathematical problems in engineering2019, 1-18.
  15. Liu, P. (2013). Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE transactions on fuzzy systems22(1), 83-97. DOI:1109/TFUZZ.2013.2248736
  16. Liu, P., & Wang, P. (2018). Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐attribute decision making. International journal of intelligent systems33(2), 259-280.
  17. Wei, G. (2016). Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making. International journal of machine learning and cybernetics7(6), 1093-1114.
  18. Wei, G., Alsaadi, F. E., Hayat, T., & Alsaedi, A. (2016). Hesitant fuzzy linguistic arithmetic aggregation operators in multiple attribute decision making. Iranian journal of fuzzy systems13(4), 1-16. DOI: 22111/ijfs.2016.2592
  19. Xu, Z. (2007). Intuitionistic fuzzy aggregation operators. IEEE transactions on fuzzy systems15(6), 1179-1187. DOI:1109/TFUZZ.2006.890678
  20. Zhang, X., Liu, P., & Wang, Y. (2015). Multiple attribute group decision making methods based on intuitionistic fuzzy frank power aggregation operators. Journal of intelligent & fuzzy systems29(5), 2235-2246. DOI:3233/IFS-151699
  21. Yager, R. R. (2009). On generalized Bonferroni mean operators for multi-criteria aggregation. International journal of approximate reasoning50(8), 1279-1286.
  22. Garg, H., & Arora, R. (2018). Bonferroni mean aggregation operators under intuitionistic fuzzy soft set environment and their applications to decision-making. Journal of the operational research society69(11), 1711-1724.
  23. Liu, P., Chen, S. M., & Liu, J. (2017). Some intuitionistic fuzzy interaction partitioned Bonferroni mean operators and their application to multi-attribute group decision making. Information sciences411, 98-121.
  24. Liu, P., & Liu, J. (2018). Some q‐rung orthopai fuzzy Bonferroni mean operators and their application to multi‐attribute group decision making. International journal of intelligent systems33(2), 315-347.
  25. Liu, P., & Wang, Y. (2020). Multiple attribute decision making based on q-rung orthopair fuzzy generalized Maclaurin symmetic mean operators. Information sciences518, 181-210.
  26. Xu, Z., & Yager, R. R. (2010). Intuitionistic fuzzy Bonferroni means. IEEE transactions on systems, man, and cybernetics, part B (cybernetics)41(2), 568-578. DOI:1109/TSMCB.2010.2072918
  27. Zhu, B., Xu, Z., & Xia, M. (2012). Hesitant fuzzy geometric Bonferroni means. Information sciences205, 72-85.
  28. Yager, R. R. (2013). Pythagorean membership grades in multicriteria decision making. IEEE transactions on fuzzy systems22(4), 958-965. DOI:1109/TFUZZ.2013.2278989
  29. Peng, X. D., Yang, Y., Song, J., & Jiang, Y. (2015). Pythagorean fuzzy soft set and its application. Computer engineering41(7), 224-229.
  30. Yager, R. R. (2016). Generalized orthopair fuzzy sets. IEEE transactions on fuzzy systems25(5), 1222-1230. DOI: 1109/TFUZZ.2016.2604005
  31. Liu, Y., Gayle, A. A., Wilder-Smith, A., & Rocklöv, J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of travel medicine, 1-4. DOI: 1093/jtm/taaa021
  32. Chen, H., Guo, J., Wang, C., Luo, F., Yu, X., Zhang, W., ... & Zhang, Y. (2020). Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The lancet395(10226), 809-815.
  33. Garg, H., Deng, Y., Ali, Z., & Mahmood, T. (2022). Decision-making strategy based on Archimedean Bonferroni mean operators under complex pythagorean fuzzy information. Computational and applied mathematics41(4), 1-40.
  34. Mahmood, T., Ali, Z., Baupradist, S., & Chinram, R. (2022). Analysis and applications of bonferroni mean operators and TOPSIS method in complete cubic intuitionistic complex fuzzy information systems. Symmetry14(3), 533.
  35. Chen, T., & Ye, L. (2022). A novel decision-making method for selecting superintendent based on a q-rung dual hesitant fuzzy power partitioned bonferroni mean operator. Symmetry14(3), 590.
  36. Hait, S. R., Mesiar, R., Gupta, P., Guha, D., & Chakraborty, D. (2022). The Bonferroni mean-type pre-aggregation operators construction and generalization: application to edge detection. Information fusion80, 226-240.
  37. Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of ambient intelligence and humanized computing11(2), 663-674.
  38. Hussain, A., Ali, M. I., Mahmood, T., & Munir, M. (2020). q‐Rung orthopair fuzzy soft average aggregation operators and their application in multicriteria decision‐making. International journal of intelligent systems35(4), 571-599.