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Abstract 

 

1 | Introduction  

A study of rigorous scientific tools that help in making certain decisions in real-life problems has 

attracted the attention of artificial intelligent designers. Decision-making analysis is a significant need 

for a personal or collective. The analysis becomes increasingly complex with the increasing 

uncertainty and vagueness in input data coming either from individuals or from engineering or health 

industry. In such problems, the basic and the foremost problems are to design a rational mechanism 

to prefer one object over the other. In some sensitive real-world problems such as pandemic like the 

Spanish flu or COVID-19, the science of decision-making becomes even more relevant as it has a 

direct impact on human lives. An essential data required to decide the preference of one option over 

the other to save a maximum number of lives is itself ambiguous, imprecise and uncertain.  
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For several decades, researchers have been working out different techniques and methods to deal with 

data uncertainties. The first notable step in this direction can be traced back form 1965 when Zadeh [1] 

initiated the concept of a fuzzy set and applied this concept successfully to overcome the flaws in a 

mathematical model of separating useable units from downstate units. After this successful idea, 

Atanassov [2] introduced the intuitionistic fuzzy set theory by extending the idea of Zadeh. For a 

systematic treatment of this subject, we refer the readers to [3] and [4]. Certain limitations are due to the 

definition of a membership function for each specific object, the lacking of appropriate parameterization 

under consideration which varies from situation to situation. The corresponding analysis based on the 

intuitionistic fuzzy set does not help the decision-makers to reach an appropriate decision. To overcome 

these difficulties, Molodtsov [5] presented the idea of a soft set to deal with the data where uncertainty 

is due to the inadequacy of involved parameters. The notions of Fuzzy Soft Sets (FSSs) and Intuitionistic 

Fuzzy Soft Sets (IFSSs) in [6] and [7] can be viewed as an extension of soft sets. A study of certain 

operations for intuitionistic FSSs was carried out in [8]. These investigations are being applied 

successfully in decision-making analysis especially in formulating the aggregation operators. In 2006, Xu 

and Yager [9] defined some important aggregation operators for aggregating the data in the decision-

making process. Later on, several approaches have been used by researchers for aggregating the data 

given in different forms for dealing with uncertainty [10]-[20]. 

Aggregation operators have been extensively used in decision-making processes with the main focus 

on the attributes of the objects, not on the interrelationship of data items. There are several real-life 

problems where the interrelationship between the different objects becomes vital, for instance when a 

decision maker takes a decision based on thoughts of life risk and cost in a certain assignment, the 

importance is given to the risk than the cost. Yager [21] presented the idea of BM operator and its 

generalizations. BM operators have the ability to capture the features of the interrelationship between 

different objects. Afterward, Bonferroni mean operators have been extended by employing different 

approaches [22]-[27]. 

The concepts of intuitionistic fuzzy and intuitionistic FSSs theory do not constitute a suitable 

framework to deal with several problems in decision-making process. For instance, when the sum of 

the membership and non-memberships degree exceeds than 1, the existing theories mentioned afore 

are not applicable. Therefore, to overcome such problems Yager [28] introduced the notion of 

Pythagorean Fuzzy Set (PFS) and then Peng et al. [29] defined a Pythagorean Fuzzy Soft Set (PFSS). 

Yager [30] presented the notion of q-Rung Orthopair Fuzzy Sets (q-ROFSs). According to his idea, the 

sum of q-th power of both membership and non-membership is less than or equal to 1. So, the q-

ROFSs are well suited to deal with imprecise data. Therefore, solving any decision-making problem 

using the tools of q-ROFSs are more efficient than those available in the literature. However, there are 

some complicated decision-making problems which cannot be handled using the techniques developed 

by q-ROFSs theory.  

In Wuhan, China, an alarmingly contagious pandemic broke out in December 2019. It has been 

recognized as a zoonotic coronavirus. It has now become a great threat to the world. As discussed in 

[31], the generative number of COVID-19 is higher compared to the SARS coronavirus. Chen et al. 

[32] reviewed the clinical features and intrauterine vertical probable spread of COVID-19 infection in 

pregnant women. So, in COVID-19 scenario to save maximum human lives under some worst 

conditions is a big challenge for medical experts because they face the huge data in uncertain form. 

There is always a need to deal with vagueness of data in an efficient way according to the suggestions 

by different experts which is a complex decision-making problem. To deal with such complicated 

problems, the Bonferroni mean is very useful tool for group decision-making problems when 

arguments are interrelated to each other as Bonferroni mean can capture the interrelationship of the 

individual arguments. Recently, many authors proposed different decision-making techniques using 

Bonferroni mean operator. For more details we refer [33]-[36]. Motivated by this characteristic of 

Bonferroni mean, we define Bonferroni mean operator in q-rung orthopair fuzzy soft framework to 

deal such sensitive complicated problem. 
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The purpose of this paper is to present the concepts of aggregation operators called q-Rung Orthopair 

Fuzzy Soft Bonferroni-Mean (q-ROFSBM) operator and weighted q-rung orthopair fuzzy soft Bonferroni 

mean operator. Some basic properties of such operators are also presented. Finally, we employ our 

investigation for making appropriate decisions to secure maximum lives affected by coronavirus-oriented 

disease. We deliver a numerical example to illustrate the discussion made in this paper. 

This paper is organized as follows: Section 2 contains basis concepts needed in the sequel. In Section 3, 

we define score function and hesitancy function for the ranking of q-Rung Orthopair Fuzzy Soft Numbers 

(q-ROFSNs). Moreover, we define q-rung orthopair fuzzy soft Bonferroni mean operator and discuss 

some of its important properties. Weighted q-rung orthopair fuzzy soft Bonferroni mean operator and its 

special cases are also discussed. In Section 4, we present a decision-making approach related to COVID-

19 pandemic and show its capability in dealing with the vague data. In Section 5, a comparative study of 

the proposed approach is given with the existing methods in this direction. Finally, in Section 6, the 

conclusion and the scope of future research are outlined and discussed. 

2 | Preliminaries 

Definition 1 ([5]). Let 𝐸 be the set of parameters, 𝐴 ⊂ 𝐸 and U a universal set. A soft set can be identified 

by a pair(𝐹,𝐴), provided  𝐹 ∶ 𝐴 ⟶ 𝑃𝑈 , and  𝑃𝑈  is the collection of all subsets of 𝑈. 

Definition 2 ([6]). Let 𝐸 be the set of parameters, 𝐴 ⊂ 𝐸 and U a universal set. The pair (𝐹, 𝐴) is called an 

intuitionistic fuzzy soft set, if  𝐹: 𝐴 ⟶ IF𝑈 , where IF𝑈  is the collection of all intuitionistic fuzzy subsets 

of 𝑈. 

Definition 3 ([7]). Let 𝐸 be the set of parameters, 𝐴 ⊂ 𝐸 and U a universal set. The pair (𝐹, 𝐴) is called a 

fuzzy soft set, given   𝐹:𝐴 ⟶ 𝐹𝑈 , where 𝐹𝑈  is a set of all fuzzy subsets of 𝑈. 

Definition 4 ([28]). Let 𝑋 be a universe, a PFS is defined on as follows: 

 

where 𝜇𝑘 ∶ 𝑋 ⟶ [0, 1], 𝑎𝑛𝑑 𝜈𝑘 ∶ 𝑋 ⟶ [0, 1] are membership and non-memberships degrees of the 

elements of 𝑋 with the condition that 0 ≤ 𝜇𝑘(𝑥𝑖)
2 + 𝜈𝑘(𝑥𝑖)

2 ≤ 1. The degree of hesitancy is given by 𝐼𝑘(𝑥𝑖) = 

(1 − 𝜇𝑘(𝑥𝑖)2 + 𝜈𝑘(𝑥𝑖)
2)

1

2. 

Definition 5 ([38]). Let 𝑋 be a universe, Fermatean fuzzy set is defined as follows: 

 

where 𝜇𝑘 ∶ 𝑋 ⟶ [0, 1], 𝑎𝑛𝑑 𝜈𝑘 ∶ 𝑋 ⟶ [0, 1] are membership and non-memberships degrees of the 

elements of 𝑋 with the condition that 0 ≤ 𝜇𝑘(𝑥𝑖)
3 + 𝜈𝑘(𝑥𝑖)

3 ≤ 1. The degree of hesitancy is given by 𝐼𝑘(𝑥𝑖) = 

(1 − 𝜇𝑘(𝑥𝑖)
3 + 𝜈𝑘(𝑥𝑖)

3)
1

3. 

Definition 6 ([30]). Let 𝑋 be a universe, 𝐸 a set of parameters. If PFS𝑈  denotes the set of all Pythagorean 

fuzzy sets of 𝑋 and 𝐴 ⊂ 𝐸, then a pair (𝐹, 𝐴) is called (PFSS) provided 𝐹 ∶ 𝐴 ⟶ PFS𝑈 . This means that 

for any 𝑒𝑘 ∈ 𝐴, the PFSS is defined as 𝐹𝑒𝑘
(𝑥𝑖) = { 〈𝑥𝑖, 𝜇𝑒𝑘

(𝑥𝑖), 𝜈𝑒𝑘
(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋}, where 𝜇𝑘 ∶ 𝑋 ⟶

[0, 1], and 𝜈𝑘 ∶ 𝑋 ⟶ [0, 1] are membership and non-memberships degrees of the elements of 𝑋 with the 

condition that 0 ≤ 𝜇𝑘(𝑥𝑖)
2 + 𝜈𝑘(𝑥𝑖)

2 ≤ 1. The degree of hesitancy is given as 𝐼𝑘(𝑥𝑖) = (1 − 𝜇𝑘(𝑥𝑖)
2 + 𝜈𝑘(𝑥𝑖)

2)
1

2. 

Definition 7 ([31]). Let 𝑋 be a universe, the q-ROFS is defined as 𝐹𝑘(𝑥𝑖) = { 〈𝑥𝑖, 𝜇𝑘(𝑥𝑖), 𝜈𝑘(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋}, 

where 𝜇𝑘 ∶ 𝑋 ⟶ [0, 1], and 𝜈𝑘 ∶ 𝑋 ⟶ [0, 1] are membership and non-memberships degrees of elements of 

F(xi) = { 〈xi, μF(xi), νF(xi)〉: xi ∈ X}.  

F(xi) = { 〈xi, μF(xi), νF(xi)〉: xi ∈ X}.  
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𝑋 with the given condition by 0 ≤ 𝜇𝑘(𝑥𝑖)
𝑞 + 𝜈𝑘(𝑥𝑖)

𝑞 ≤ 1,   (𝑞 ≥ 1). The degree of the hesitancy is given as 

𝐼𝑘(𝑥𝑖) = (𝜇𝑘(𝑥𝑖)
𝑞 + 𝜈𝑘(𝑥𝑖)

𝑞 − 𝜇𝑘(𝑥𝑖)
𝑞𝜈𝑘(𝑥𝑖)

𝑞)
1

𝑞. 

Definition 8 ([22]). Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a set of alternatives. For arbitrary real numbers 𝜆1, 𝜆2 >

0, a Bonferroni mean operator is defined as 

 

Note that 𝐵𝑀𝜆1,𝜆2(𝑥1, 𝑥2, … , 𝑥𝑛) fulfils the followings: 

I. 𝐵𝑀𝜆1,𝜆2(0,0,0,… ,0) = 0. 

II. 𝐵𝑀𝜆1,𝜆2(𝑥, 𝑥,… , 𝑥) = 𝑥, if 𝑥𝑖 = 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. 

III. 𝐵𝑀𝜆1,𝜆2(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 𝐵𝑀𝜆1,𝜆2(𝑦1, 𝑦2, … , 𝑦𝑛) if 𝑥𝑖 ≤ 𝑦𝑖. 

IV. 𝑚𝑖𝑛{𝑥𝑖} ≤ 𝐵𝑀𝜆1,𝜆2(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 𝑚𝑎𝑥{𝑥𝑖}. 

3 | q-Rung Orthopair Fuzzy Soft Bonferroni Mean Operators 

This section is devoted to present the new generalized aggregation operators for solving the decision-

making problems in the setting of (q-ROFSSs). More specifically, we define average operators namely, 

q-ROFSBM and Weighted q-Rung Orthopair Fuzzy Soft Bonferroni-Mean (Wq-ROFSBM) operators 

for collection 𝛺 of q-ROFSNs 𝛼𝑖𝑘(𝑖 = 1, 2, 3,… , 𝑛  & 𝑘 = 1, 2, 3, … ,𝑚) and the weight vectors are denoted 

by 𝜂𝑖 and 𝜉𝑘 satisfy the condition that 𝜂𝑖 , 𝜉𝑘 > 0  ∑ 𝜂𝑖 = 1𝑛
𝑖=1  and ∑ 𝜉𝑘

𝑛
𝑖=1 =1. 

Definition 9 ([39]). Let 𝑋 be a universe, 𝐸  set of parameters. If q − ROFS𝑈  denotes the set of all q-

ROFSs of 𝑋 and 𝐴 ⊂ 𝐸. Then the pair (𝐹, 𝐴) is called q-Rung Orthopair Fuzzy Soft Sets (q-ROFSSs), 

where 𝐹 ∶ 𝐴 ⟶ q − ROFS𝑈 .  That is, for any 𝑒𝑘 ∈ 𝐴 the q-ROFSS is identified by 𝐹𝑒𝑘
(𝑥𝑖) =

{ 〈𝑥𝑖, 𝜇𝑘(𝑥𝑖), 𝜈𝑘(𝑥𝑖)〉: 𝑥𝑖 ∈ 𝑋}, where 𝜇𝑘 ∶ 𝑋 ⟶ [0, 1], and 𝜈𝑘 ∶ 𝑋 ⟶ [0, 1] are membership and non-

memberships degrees of the elements of 𝑋 with the following condition 0 ≤ 𝜇𝑘(𝑥𝑖)
𝑞 + 𝜈𝑘(𝑥𝑖)

𝑞 ≤

1,   (𝑞 ≥ 1). The degree of hesitancy is given by 𝐼𝑘(𝑥𝑖) = (𝜇𝑘(𝑥𝑖)
𝑞 + 𝜈𝑘(𝑥𝑖)

𝑞 − 𝜇𝑘(𝑥𝑖)
𝑞𝜈𝑘(𝑥𝑖)

𝑞)
1

𝑞. For the sake of 

simplicity, we denote 𝐹𝑒𝑘
(𝑥𝑖) by 𝛼𝑖𝑘 =  〈𝜇𝑖𝑘, 𝜈𝑖𝑘〉 and call it q-ROFSN. 

Remark. Note that 

 If we take 𝑞 = 2 in the above definition, it becomes a PFSS defined by Peng et al. [29].  

 For 𝑞 = 1 in the above definition, it becomes an IFSS defined by Maji et al. in [6] and [7].  

For applications of q-ROFSN in decision-making problems, we need to know how to rank the q-

ROFSNs. 

Definition 10. Define a score function for q-ROFSN 𝛼𝑖𝑘 = 〈𝜇𝑖𝑘, 𝜈𝑖𝑘〉 by 

 

Note that 𝑆(𝛼𝑖𝑘) ∈ [0, 1]. Let 𝛼11 =  〈0.8, 0.3〉 and 𝛼12 =  〈0.4, 0.5〉 be two q- ROFSNs then by Eq. (1) 

for q=3 we have 𝑆(𝛼11) = 0.7425 and 𝑆(𝛼12) = 0.6495. So, 𝛼12 < 𝛼11 as 𝑆(𝛼12) < 𝑆(𝛼11).   

However, in some cases, the score function does not help rank the q- ROFSNs. For instance, if  𝛼11 =

 〈0.8, 0.6〉 and 𝛼12 =  〈0.5, 0.3〉 are two q-ROFSNs then by Eq. (1) for q=1 we have 𝑆(𝛼11) = 0.6 =

 𝑆(𝛼12). Here it is not possible to examine which one is the smaller. In such situations, another type of 

function called accuracy function 𝜌 of 𝛼𝑖𝑘 can be used for ranking of q- ROFSNs. 

BMλ1,λ2(x1, x2, … , xn) = (
1

n(n − 1)
∑xi

λ1xj
λ2

n

i,j=1
i≠j

)
1

λ1+λ2 . 
 

S(αik) =
1

2
(1 + μik

q − νik
q).       (1) 
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Definition 11. ([15]). The accuracy function 𝜌 of 𝛼𝑖𝑘 = 〈𝜇𝑖𝑘, 𝜈𝑖𝑘〉 is defined as follows 

Note that,  𝜌(𝛼𝑖𝑘)  ∈ [0, 1].  For instance, let 𝛼11 and 𝛼12 be two q- ROFSNs. Suppose that by Eq. (2) for 

some value of q, we have 𝜌 (𝛼12) < 𝜌(𝛼11) then 𝛼12 < 𝛼11. For 𝜌 (𝛼11) = 𝜌(𝛼12) we have 𝛼11 = 𝛼12. 

 For ranking in the case 𝜌 (𝛼11) = 𝜌(𝛼12), we suggest a definition based on the hesitancy degree. We define 

a hesitancy function as follows: 

Definition 12. The hesitancy function 𝜑 of 𝛼𝑖𝑘 = 〈𝜇𝑖𝑘, 𝜈𝑖𝑘〉 is defined as follows 

Note that 𝜑(𝛼𝑖𝑘) ∈ [0, 1]. Unlike the above, the larger value of 𝜑(𝛼𝑖𝑘) makes the 𝛼𝑖𝑘 is smaller. For instance, 

let 𝛼11 and 𝛼12 be two q- ROFSNs. Then by Eq. (3) for some value of q,  𝜑(𝛼11) < 𝜑(𝛼12) imply that 𝛼12 <
𝛼11. 

3.1 | Basic Operations for q- ROFSNs 

Definition 13. Let 𝛼11 = 〈𝜇11, 𝜈11〉 and 𝛼12 = 〈𝜇12, 𝜈12〉 be any two q- ROFSNs and 𝜆 be any real number 

which is positive, then the following is some basic operations on q- ROFSNs:  

 𝛼11 ∨ 𝛼11 = 〈 𝑚𝑎𝑥{𝜇11, 𝜇12}, 𝑚𝑖𝑛{ 𝜈11, 𝜈12} 〉. 

 𝛼11 ∧ 𝛼11 = 〈 𝑚𝑖𝑛 {𝜇11, 𝜇12}, 𝑚𝑎𝑥{ 𝜈11, 𝜈12} 〉. 

 𝛼11 ⊕ 𝛼12 = 〈 (1 − (1 − 𝜇11
𝑞)(1 − 𝜇12

𝑞))
1

𝑞 , 𝜈11𝜈12〉 = 〈(𝜇11
𝑞 + 𝜇12

𝑞 − 𝜇11
𝑞𝜇12

𝑞)
1

𝑞 , 𝜈11𝜈12〉. 

 𝛼11 ⊗ 𝛼12 = 〈𝜇11𝜇12, (1 − (1 − 𝜈11
𝑞)(1 − 𝜈12

𝑞))
1

𝑞 〉 = 〈𝜇11𝜇12, (𝜈11
𝑞 + 𝜈12

𝑞 − 𝜈11
𝑞𝜈12

𝑞)
1

𝑞 〉. 

 𝜆𝛼11 = 〈 (1 − (1 − 𝜇11
𝑞)𝜆)

1

𝑞 , 𝜈11
𝜆〉. 

 𝛼11
𝜆 = 〈 𝜇11

𝜆, (1 − (1 − 𝜈11
𝑞)𝜆)

1

𝑞 〉. 

 𝛼11
𝑐 = 〈𝜈11, 𝜇11〉.    

Remarks. 

 All operations expressed in the definition above yield also q-ROFSNs. 

 Commutative and associative laws hold in both operations under addition and multiplication expressed in definition 

1. 

3.2 | Representation of q-ROFSS in Matrix Form 

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚} be the universal set and 𝐴 = { 𝑒1, 𝑒2, … , 𝑒𝑛}  the set of parameters. If (𝐹, 𝐴) is a q-

ROFSS over 𝑋 and 𝑒𝑖 ∈ 𝐴, then there exist membership and non-membership degrees 𝜇𝑖𝑘 and  𝜈𝑖𝑘, 

respectively with 0 ≤ 𝜇𝑘(𝑥𝑖)
𝑞 + 𝜈𝑘(𝑥𝑖)

𝑞 ≤ 1,   (𝑞 ≥ 1). Moreover, 𝐹𝑒𝑘
(𝑥𝑖) =  𝛼𝑖𝑘 =  〈𝜇𝑖𝑘, 𝜈𝑖𝑘〉, we can write q-

ROFS matrix 𝑀𝑚×𝑛 of (𝐹, 𝐴) over 𝑋 is given as 𝑀𝑚×𝑛 = [ 〈𝜇𝑖𝑘, 𝜈𝑖𝑘〉 ]𝑚×𝑛 i.e. 

 

ρ(αik) = μik
q + νik

q.             (2) 

φ(αik) = (μik
q + νik

q − μik
qνik

q)
1
q.               (3) 

            e1        …    em             

Mm×n =
x1
⋮

xm

[

α11 ⋯ α1n
⋮ ⋱ ⋮

αm1 ⋯ αmn

]. 
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We represent the decision matrix by table as 

 Table 1. Representation of q-ROFSS. 

 

 

 

 

3.3 | q-Rung Orthopair Fuzzy Soft Bonferroni-Mean Operator 

Definition 14. For any class of q-ROFSNs 𝛼𝑖𝑘 =  〈𝜇𝑖𝑘, 𝜈𝑖𝑘〉 for (𝑖 = 1, 2, 3, … , 𝑛 & 𝑘 = 1, 2, 3,… ,𝑚), the 

q-rung orthopair fuzzy soft Bonferroni mean (q-ROFSBM) is an operator   

q-𝑅𝑂𝐹𝑆𝐵𝑀 ∶  𝛺𝑛  ⟶ 𝛺 is given by 

  

 

 

where 𝜆1, 𝜆2 > 0 are  real numbers and 𝛺 is set of all q-ROFSNs. 

Theorem 1. The aggregated values by applying q-ROFSBM operator on a collection of q-ROFSNs 

𝛼𝑖𝑘 =  〈𝜇𝑖𝑘, 𝜈𝑖𝑘〉 for (𝑖 = 1, 2, 3,… , 𝑛  & 𝑘 = 1, 2, 3,… ,𝑚) is still q-ROFSN and given as follows: 

 

 

 

 

 

 

  

Proof. The prove of this theorem is much lengthy but one can prove it by using the rule of mathematical 

induction on 𝑚 and 𝑛. To illustrate the proof, we show its validity for  𝑛 = 2. Indeed, 

 

 

where 𝜆1, 𝜆2 > 0. By using the value, we have 

(𝐅,𝐀)     𝐞𝟏                           𝐞𝟐            ……………….                                                         𝒆𝒏 
x1 〈μ11, ν11〉                〈μ12, ν12〉   ……………….    〈μ1n, ν1n〉  
𝑥2 〈μ21, ν21〉              〈μ22, ν22〉 ………………. 〈μ2n, ν2n〉  

    . 

    . 

    . 
   xm       

        .                                    . 
        .                                    . 
        .                                    . 
        .                                    . 
〈μm1, νm1〉          〈μm21, νm2〉……………….        

              . 
              . 
              . 
              . 
〈μmn, νmn〉 

 

q − ROFSBMλ1,λ2(α11, α12, … , αmn)

=  

(  
   
   
   
   
 
 

1

mn(n − 1)(m − 1)
∑∑(αik

λ1 ⊗ αjl
λ2)

n

i,j=1
i≠j

m

k,l=1
k≠l

)  
   
   
   
   
 
 1
λ1+λ2

,  
(4) 

q − ROFSBMλ1,λ2(α11, α12, … , αmn)

=  〈

(  
   
   
   
   
   
   
 

(  
   
   
   
   
 
 

1 − ∏∏(1 − (μik
λ1μjl

λ2)
q
)

1
mn(n−1)(m−1)

n

i,j=1
i≠j

m

l,k=1
l≠k

)  
   
   
   
   
 
 1
q

)  
   
   
   
   
   
   
 1
λ1+λ2

,

  1 −

(  
   
   
   
   
   
   
 

(  
   
   
   
   
 
 

1 − ∏∏(1 − (1 − νik

q
)
λ1

(1 − νjl

q
)
λ2

)

1
mn(n−1)(m−1)

n

i,j=1
i≠j

m

l,k=1
l≠k

)  
   
   
   
   
 
 1
q

)  
   
   
   
   
   
   
 1
λ1+λ2

〉  . 
(5) 

q − ROFSBMλ1,λ2(α11, α12, … , αmn)

=  

(  
   
   
   
   
 
 

1

mn(n − 1)(m − 1)
∑∑(αik

λ1 ⊗ αjl
λ2)

n

i,j=1
i≠j

m

l,k=1
l≠k

)  
   
   
   
   
 
 1
λ1+λ2

, 
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Now 

 

 

Hence  

 

 

 

 

 

 

q − ROFSBMλ1,λ2(α11, α12, … , αmn) =  

(  
   
   
   
   
 
 

1

2m(m − 1)
∑∑(αik

λ1 ⊗ αjl
λ2)

2

i,j=1
i≠j

m

l,k=1
l≠k

)  
   
   
   
   
 
 1
λ1+λ2

 

= 
(  
   
   
   
  
 

1

2m(m − 1)
∑[(α1k

λ1 ⊗ α2l
λ2) ⊕ (α2k

λ1 ⊗ α1l
λ2)]

m

l,k=1
l≠k

)  
   
   
   
  
 1
λ1+λ2

. 

 

(α1k

λ1 ⊗ α2l
λ2) ⊕ (α2k

λ1 ⊗ α1l
λ2) = 〈 𝜇

1𝑘

𝜆1 𝜇
2𝑙

𝜆2 , (  
   
 

(1 − (1 − 𝜈1𝑘
𝑞 )

𝜆1
)

𝑞

𝑞
+ (1 − (1 − 𝜈2𝑙

𝑞 )
𝜆2
)

𝑞

𝑞
− (1 − (1 −

𝜈1𝑘
𝑞 )

𝜆1
)

𝑞

𝑞
(1 − (1 − 𝜈2𝑙

𝑞 )
𝜆2
)

𝑞

𝑞

)  
   
 1

𝑞

 〉 ⊕   

〈μ2k
λ1μ1l

λ2 , (  
   
 

(1 − (1 − ν2k

q
)
λ1

)

q

q
+ (1 − (1 − ν1l

q
)
λ2

)

q

q
− (1 − (1 − ν2k

q
)
λ1

)

q

q
(1 − (1 −

ν1l

q
)
λ2

)

q

q

)  
   
 1

q

 〉   

= 〈 μ1k
λ1μ2l

λ2 , (1 − (1 − ν1k

q
)
λ1

(1 − ν2l

q
)
λ2

)

1

q
 〉 ⊕ 〈 μ2k

λ1μ1l
λ2 , (1 − (1 − ν2k

q
)
λ1

(1 − ν1l

q
)
λ2

)

1

q
 〉   

= 〈(1 − (1 − (μ1k
λ1μ2l

λ2)
q
)(1 − (μ2k

λ1μ1l
λ2)

q
))

1

q , (1 − (1 − ν1k

q
)
λ1

(1 − ν2l

q
)
λ2

)

1

q
(1 − (1 −

ν2k

q
)
λ1

(1 − ν1l

q
)
λ2

)

1

q
 〉  

=  〈(  
   
 

1 − ∏ (1 − (μik
λ1μjl

λ2)
q
)2

i,j=1
i≠j

)  
   
 1

q

, 1 − (  
   
 

1 − ∏ (1 − (1 − νik

q
)
λ1

(1 − νjl

q
)
λ2

) 2
i,j=1
i≠j

)  
   
 1

q

〉. 

 

(  
   
 

1

2m(m−1)
∑ ∑ (αik

λ1 ⊗ αjl
λ2)2

i,j=1
i≠j

m
l,k=1
l≠k

)  
   
 1

λ1+λ2

= 〈
(  
   
   
  
 

(  
   
 

1 − ∏ ∏ (1 −2
i,j=1
i≠j

m
l,k=1
l≠k

(μik
λ1μjl

λ2)
q
)

1

2m(m−1)

)  
   
 1

q

)  
   
   
  
 1

λ1+λ2

, 1 −
(  
   
   
   
 

(  
   
 
 

1 − ∏ ∏ (1 − (1 − νik

q
)
λ1

(1 −2
i,j=1
i≠j

m
l,k=1
l≠k

νjl

q
)
λ2

)

1

2m(m−1)

)  
   
 
 1

q

)  
   
   
   
 1

λ1+λ2

〉. 
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Similarly, one can prove in general by using mathematical induction on 𝑛 and 𝑚. 

Example 1. Let 𝐷 = {𝑑1, 𝑑2, 𝑑3} denote the team of three doctors who give their preference to describe 

the “patient of coronavirus” by the symptoms over the set of parameters 𝑒1 =cough, 𝑒2 = temperature, 

𝑒3 = infection of the respiratory system. Correspondingly, the q-ROFSS in matrix form describes the 

“patient of coronavirus” to the medical officer, who decides about the admission of a patient to a 

hospital. The q-ROFSS is given as follows: 

 

For simplicity we have 𝜆1, = 𝜆2 = 1,    𝑞 = 2. 

 

 

 

Similarly, we have  

 

 

Hence, by using Eq. (5), we have 2-𝑅𝑂𝐹𝑆𝐵𝑀1,1(𝛼11, 𝛼12, … , 𝛼33) = 〈0.5857, 0.1876〉.  

3.4 | Special Cases of Proposed q-ROFSBM Operator 

Here some special cases are given of q-ROFSBM operator for different values of 𝑞 which are followings: 

         e1               e2               e3 

(F,A) =
d1

d2

d3

[  
   
 〈0.7, 0.3〉 〈0.3, 0.5〉 〈0.8, 0.3〉
〈0.4, 0.3〉 〈0.4, 0.5〉 〈0.7, 0.4〉
〈0.5, 0.4〉 〈0.7, 0.6〉 〈0.4, 0.6〉

]  
   
 

. 

 

          

∏∏(1 − (μikμjl)
2
)

1
3.3(3−1)(3−1)

3

i,j=1
i≠j

3

l,k=1
l≠k

= (1 − ((μ11)(μ22))
2
)

1
36

× (1 − ((μ11)(μ23))
2
)

1
36

× …

× (1 − ((μ33)(μ22))
2
)

1
36

 

= (1 − ((0.7)(0.4))
2
)

1
36

× (1 − ((0.7)(0.7))
2
)

1
36

× …× (1 − ((0.7)(0.4))
2
)

1
36

= 0.8822.  

  (  
   
 
 

1 − ∏ ∏ (1 − (μikμjl)
2
)

1

3.3(3−1)(3−1)3
i,j=1
i≠j

3
l,k=1
l≠k

)  
   
 
 

= 1 − 0.8822 = 0.1177. 

(  
   
   
   
   
 
 

1 − ∏∏(1 − (μikμjl)
2
)

1
3.3(3−1)(3−1)

3

i,j=1
i≠j

3

l,k=1
l≠k

)  
   
   
   
   
 
 1
4

= (0.1177)
1
4 = 0.5857. 

 

1 −

(  
   
   
   
   
   
   
 

(  
   
   
   
   
 
 

1 − ∏∏(1 − (1 − νik
2 )(1 − νjl

2))

1
3.3(3−1)(3−1)

3

i,j=1
i≠j

3

l,k=1
l≠k

)  
   
   
   
   
 
 1
2

)  
   
   
   
   
   
   
 1
2

= 0.1876.  
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 For 𝑞 = 2 in Eq. (5) then the projected operator condenses to PFS Bonferroni-mean operator. 

 For 𝑞 = 1 in Eq. (5) then the projected operator condenses to IFS Bonferroni-mean operator as discussed by Garg in 

[22]. 

3.5 | Properties of Proposed q-ROFSBM Operator 

From the Theorem 3, it is observed that our proposed q-ROFSBM satisfies the properties namely, 

idempotent property, boundedness property, monotonicity property which are design as fellows  

Theorem 2 (Idempotent Property). If 𝛼𝑖𝑘 = 𝛼, ∀  𝑖, 𝑘. Let 𝛼 = 〈𝜇, 𝜈〉 then q −

ROFSBM𝜆1,𝜆2(𝛼11, 𝛼12, … , 𝛼𝑚𝑛) = 𝛼. 

Proof.  

 Hence proved.  

 

 

 

q − ROFSBMλ1,λ2(α11, α12, … , αmn) = q − ROFSBMλ1,λ2(α, α,… , α) 

=  〈
(  
   
   
 
 

(  
   
 

1 − ∏ ∏ (1 − (μλ1μλ2)q)
1

mn(n−1)(m−1)n
i,j=1
i≠j

m
l,k=1
l≠k

)  
   
 1

q

)  
   
   
 
 1

λ1+λ2

,

  1 −
(  
   
   
 
 

(  
   
 

1 − ∏ ∏ (1 − (1 − νq)λ1(1 − νq)λ2)
1

mn(n−1)(m−1)n
i,j=1
i≠j

m
l,k=1
l≠k

)  
   
 1

q

)  
   
   
 
 1

λ1+λ2

〉   

=

 〈

((1 − ∏ ∏ (1 − (𝜇𝜆1+𝜆2)𝑞)
1

𝑚𝑛(𝑛−1)(𝑚−1)𝑛
𝑖,𝑗=1
𝑖≠𝑗

𝑚
𝑙,𝑘=1
𝑙≠𝑘

)

1

𝑞

)

1

𝜆1+𝜆2

,

 1 − ((1 − ∏ ∏ (1 − (1 − 𝜈𝑞)𝜆1+𝜆2)
1

𝑚𝑛(𝑛−1)(𝑚−1)𝑛
𝑖,𝑗=1
𝑖≠𝑗

𝑚
𝑙,𝑘=1
𝑙≠𝑘

)

1

𝑞

)

1

𝜆1+𝜆2

〉.   

= 〈((1 − (1 − 𝜇(𝜆1+𝜆2)𝑞))

1
𝑞

)

1
𝜆1+𝜆2

, 1 − (1 − (1 − (1 − 𝜈𝑞)𝜆1+𝜆2)
1
𝑞)

1
𝜆1+𝜆2

〉  

= 〈(𝜇(𝜆1+𝜆2)𝑞)
1

𝑞(𝜆1+𝜆2), (1 − ((1 − 𝜈𝑞)𝜆1+𝜆2)
1
𝑞)

1
𝜆1+𝜆2

〉 = 〈𝜇, 𝜈〉 = 𝛼. 
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Theorem 3 (Boundedness). Let 𝛽 = ⟨
min
𝑘

min
𝑖

{𝜇𝑖𝑘},    
max
𝑘

max
𝑖 {𝜈𝑖𝑘}⟩ and 𝛾 =

⟨
max
𝑘

max
𝑖

{𝜇𝑖𝑘},    
min
𝑘

min
𝑖

{𝜈𝑖𝑘}⟩ then   𝛽 ≤ q − ROFSBM𝜆1,𝜆2(𝛼11, 𝛼12, … , 𝛼𝑚𝑛) ≤ 𝛾. 

Proof. For our easiness we write 𝜎 =
1

𝑚𝑛(𝑚−1)(𝑛−1)
. Here for all 𝑖, 𝑘 we have  

 

 

If and only if   (𝑚𝑖𝑛
𝑘

 𝑚𝑖𝑛
𝑖

{𝜇𝑖𝑘})
(𝜆1+𝜆2)𝑞 ≤  (𝜇𝑖𝑘

𝜆1𝜇𝑗𝑙
𝜆2)

𝑞
≤     (

𝑚𝑎𝑥
𝑘  

𝑚𝑎𝑥
𝑖

{𝜇𝑖𝑘})
(𝜆1+𝜆2)𝑞. 

If and only if (1 −    (
max
𝑘  

max
𝑖

{𝜇𝑖𝑘})
(𝜆1+𝜆2)𝑞)

𝜎
≤ (1 − (𝜇𝑖𝑘

𝜆1𝜇𝑗𝑙
𝜆2)

𝑞
)
𝜎

≤ (1 −    (min
𝑘

 min
𝑖

{𝜇𝑖𝑘})
(𝜆1+𝜆2)𝑞)

𝜎

. 

if and only if 

 

 

 

 

If and only if  

 

 

 

This implies that  

Further, 

If and only if 

In most of real-life problems, it is natural to study the weight of the experts and parameter. 

𝑖 if and only if (1 − (1 −    𝑚𝑖𝑛
𝑘

 𝑚𝑖𝑛
𝑖

{𝜈𝑖𝑘})
(𝜆1+𝜆2)𝑞)

𝜎

≤ (1 − (1 − 𝜈𝑖𝑘
𝑞)𝜆1(1 − 𝜈𝑖𝑘

𝑞)𝜆2)
𝜎
≤ (1 − (1 −

   
𝑚𝑎𝑥
𝑘  

𝑚𝑎𝑥
𝑖 {𝜈𝑖𝑘})

(𝜆1+𝜆2)𝑞)
𝜎
. 

   min
k

 min
i

{μik} ≤ μik ≤    
max
k  

max
i

{μik}.  

∏∏(1 −    (
max
k  

max
i

{μik})
(λ1+λ2)q)σ

n

i,j=1
i≠j

≤

m

l,k=1
l≠k

∏∏(1 − (μik
λ1μjl

λ2)
q
)σ

n

i,j=1
i≠j

≤

m

l,k=1
l≠k

 

∏∏(1 −    (min
k

 min
i

{μik})
(λ1+λ2)q)σ

n

i,j=1
i≠j

m

l,k=1
l≠k

. 

 

   (min
k

 min
i

{μik})
(λ1+λ2)q

≤ 1 − ∏∏(1 − (μik
λ1μjl

λ2)
q
)
σ

n

i,j=1
i≠j

≤

m

l,k=1
l≠k

   (
max
k  

max
i

{μik})
(λ1+λ2)q.  

 min
k

 min
i

{μik} ≤

(  
   
   
   
   
   
   
 

(  
   
   
   
   
 
 

1 − ∏∏(1 − (μik
λ1μjl

λ2)
q
)

1
mn(n−1)(m−1)

n

i,j=1
i≠j

m

l,k=1
l≠k

)  
   
   
   
   
 
 1
q

)  
   
   
   
   
   
   
 1
λ1+λ2

≤  
max
k  

max
i

{μik}.            

(6) 

   min
k

 min
i

{νik} ≤ νik ≤    
max
k  

max
i {νik}.  

1 −    
max
k  

max
i {νik})

(λ1+λ2)q ≤ (1 − νik
q)λ1(1 − νik

q)λ2 ≤ 1 −    min
k

 min
i

{νik})
(λ1+λ2)q.  
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 If and only if 

If and only if 

 

If and only if 

Therefore we have 

If we take 𝛿 = 𝑞 − 𝑅𝑂𝐹𝑆𝐵𝑀𝜆1,𝜆2(𝛼11, 𝛼12, … , 𝛼𝑚𝑛) = 〈𝜇𝛿, 𝜈𝛿〉,  and 

𝛽 = ⟨
𝑚𝑖𝑛
𝑘

𝑚𝑖𝑛
𝑖

{𝜇𝑖𝑘},    
𝑚𝑎𝑥
𝑘

𝑚𝑎𝑥
𝑖 {𝜈𝑖𝑘}⟩ and 𝛾 = ⟨

max
𝑘

max
𝑖

{𝜇𝑖𝑘},    
min
𝑘

min
𝑖

{𝜈𝑖𝑘}⟩ then combining the Eqs. (6) 

and (7), we get  

   min
𝑘

 min
𝑖

{𝜇𝑖𝑘} ≤ 𝜇𝛿 ≤    
max
𝑘  

max
𝑖

{𝜇𝑖𝑘}.  and      min
𝑘

 min
𝑖

{𝜈𝑖𝑘} ≤ 𝜈𝛿 ≤    
max
𝑘  

max
𝑖 {𝜈𝑖𝑘}.  

By definition of score function according to the Eq. (1), we have 

  

 

 

∏∏(1 − (1 −    min
k

 min
i

{νik})
(λ1+λ2)q)

σ
n

i,j=1
i≠j

m

l,k=1
l≠k

≤∏∏(1 − (1 − νik
q)λ1(1 − νik

q)λ2)
σ

n

i,j=1
i≠j

m

l,k=1
l≠k

≤∏∏(1 − (1 −    
max
k  

max
i {νik})

(λ1+λ2)q)
σ

n

i,j=1
i≠j

m

l,k=1
l≠k

. 

 

1 − (1 −    min
k

 min
i

{νik})
(λ1+λ2)q

≤ ∏∏(1 − (1 − νik
q)λ1(1 − νik

q)λ2)
σ
≤

n

i,j=1
i≠j

m

l,k=1
l≠k

1 − (1

−    
max
k  

max
i {νik})

(λ1+λ2)q. 

 

(1 −    
max
k  

max
i {νik})

(λ1+λ2)q

≤ 1 − ∏∏(1 − (1 − νik
q)λ1(1 − νik

q)λ2)
σ
≤

n

i,j=1
i≠j

m

l,k=1
l≠k

(1

−    min
k

 min
i

{νik})
(λ1+λ2)q. 

 

   min
k

 min
i

{νik} ≤ 1 −

(  
   
   
   
   
   
   
 

(  
   
   
   
   
 
 

1 − ∏∏(1 − (1 − νik

q
)
λ1

(1 − νjl

q
)
λ2

)

1
mn(n−1)(m−1)

n

i,j=1
i≠j

m

l,k=1
l≠k

)  
   
   
   
   
 
 1
q

)  
   
   
   
   
   
   
 1
λ1+λ2

≤    
max
k  

max
i {νik}.   

(7) 

S(δ) =
1

2
(1 + μδ

q − νδ
q) ≤

1

2
(1 +    (

max
k  

max
i

{μik})
q − (   min

k
 min

i
{νik})

q
)  = S(γ).      (7.a) 

S(δ) =
1

2
(1 + μδ

q − νδ
q) ≥

1

2
(1 +    (min

k
 min

i
{μik})

q − (   
max
k  

max
i {νik})

q
) = S(β).   (7.b) 
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By Eqs. (7.a) and (7.b) we have 𝑆(𝛽) ≤ 𝑆(𝛿) ≤ 𝑆(𝛾), therefore, 𝛽 ≤ 𝛿 ≤ 𝛾. Hence the result. 

Theorem 4 (Monotonicity). Let 𝛽𝑖𝑘 be any collection of q-ROFSNs with 𝛼𝑖𝑘 ≤ 𝛽𝑖𝑘 for all 𝑘, 𝑖. Then 

q − ROFSBM𝜆1,𝜆2(𝛼11, 𝛼12, … , 𝛼𝑚𝑛) ≤ q − ROFSBM𝜆1,𝜆2(𝛽11, 𝛽12, … , 𝛽𝑚𝑛). 

Proof. The proof is similar to the proof of Theorem 3, so we overlook the proof. 

3.6 | Weighted q-Rung Orthopair Fuzzy Soft Bonferroni Mean Operator 

In most of real-life problems, it is natural to study the weight of the experts and parameters during the 

decision-making investigation. In this way, the governing person may get a extra precise consequences 

rendering to the current circumstances. Keeping in view this fact, based on the q-ROFSBM aggregation 

operator defined in the Section 3.3, we define a novel aggregation operator according to the weightage 

of the experts and the limitations called Wq-ROFSBM. 

Definition 15. For any group of data of q-ROFSNs 𝛼𝑖𝑘 for (𝑖 = 1, 2, 3,… , 𝑛 & 𝑘 = 1, 2, 3, … ,𝑚),  with 

weight vectors of the selected parameters and the experts 𝜂 = (𝜂1, 𝜂2, … , 𝜂𝑛)
𝑇  and ξ = (𝜉1, 𝜉2, … , 𝜉𝑚)𝑇 

respectively such that 𝜂𝑖 > 0 ∑ 𝜂𝑖 = 1𝑛
𝑖=1  and 𝜉𝑘 > 0, ∑ 𝜉𝑘 = 1𝑚

𝑘=1 , the Wq-ROFSBM is an operator 𝑊𝑞 −

𝑅𝑂𝐹𝑆𝐵𝑀 ∶  𝛺𝑛  ⟶ Ω is given by 

 

 

 

where 𝜆1, 𝜆2 > 0  and Ω is the set of all q-ROFSNs. 

Theorem 5. The aggregated value by applying Wq-ROFSBM operator on a collection of q-ROFSNs 

𝛼𝑖𝑘 =  〈𝜇𝑖𝑘, 𝜈𝑖𝑘〉 for (𝑖 = 1, 2, 3,… , 𝑛  & 𝑘 = 1, 2, 3,… ,𝑚) with weight vectors of the selected parameters 

and the experts  𝜂 = (𝜂1, 𝜂2, … , 𝜂𝑛)
𝑇 and ξ = (𝜉1, 𝜉2, … , 𝜉𝑚)𝑇 respectively is still q-ROFSN and is given 

by 

 

Proof. The proof is alike to the proof of Theorem 3, so we omit the proof. 

3.7 | Special Cases of the Proposed Wq-ROFSBM Operator 

The aggregation operator defined by Eq. (9) is a more generalized operator for aggregation of the data 

in daily life problems involving vagueness for decision-making analysis. Special cases of our proposed 

operators are given below: 

 

Wq − ROFSBMλ1,λ2(α11, α12, … , αmn)

=  

(  
   
   
   
   
 
 

1

mn(m − 1)(n − 1)
∑∑(ξk(ηiαik))

λ1 ⊗ (ξl(ηjαjl))
λ2

n

i,j=1
i≠j

m

l,k=1
l≠k

)  
   
   
   
   
 
 1
λ1+λ2

 ,   
(8) 

Wq − ROFSBMλ1,λ2(α11, α12, … , αmn)

=  〈

(  
   
   
   
   
 
 

1 − ∏∏((1 − 1 − (1 − μik

q
)
ξkηi

)λ1) 1 − (1 − μjl

q
)
ξlηj

)λ2)

1
mn(n−1)(m−1)

n

i,j=1
i≠j

m

l,k=1
l≠k

)  
   
   
   
   
 
 1
λ1+λ2

,

  1 −

(  
   
   
   
   
 
 

1 − ∏∏(1 − (1 − (νik

ξkηi)q)
λ1

(1 − (νjl

ξlηj
)q)

λ2

)

1
mn(n−1)(m−1)

n

i,j=1
i≠j

m

l,k=1
l≠k

)  
   
   
   
   
 
 1
λ1+λ2

〉. 
(9) 
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I. For 𝑞 = 2 and 𝜆2 ⟶ 0 in Eq. (9), the projected operator condenses in weighted PFS mean. 

II. For 𝑞 = 2,  𝜆1 = 2 and 𝜆2 ⟶ 0 in Eq. (9), the projected operator condenses in weighted PFS square-

mean. 

III. For 𝑞 = 2, 𝜆1 = 1 and 𝜆2 ⟶ 0 in Eq. (9), the projected operator condenses in weighted PFS average 

operator. 

IV. For 𝑞 = 1 and 𝜆2 ⟶ 0 in Eq. (9), the projected operator condenses in weighted IFS mean. 

V. For 𝑞 = 1,  𝜆1 = 2 and 𝜆2 ⟶ 0 in Eq. (9), the projected operator condenses in weighted IFS square-

mean. 

VI. For 𝑞 = 1, 𝜆1 = 1 and 𝜆2 ⟶ 0 in Eq. (9), the projected operator condenses in weighted IFS average 

operator. 

VII. For 𝑞 = 1 𝑎𝑛𝑑 𝜆1 = 𝜆2 = 1 in Eq. (9), the projected operator condenses in weighted IFS interrelated 

square-mean. 

Note that the cases (iv-vii) discussed by [22] are special cases of our projected operators. 

4 | Application of a Proposed Approach to Save Maximum Lives by 

Covid-19 

Coronaviruses are intimate of the viruses that reason diseases such as severe acute respiratory syndrome, 

common cold. At the end of 2019, a new virus was recognized as the source of a syndrome epidemic that 

invented in China. The caused disease is so-called coronavirus sickness (COVID-19). Many cases 

of COVID-19 have been testified all over the world, with the U.S. Public health-groups, such as WHO 

and U.S. The Centers for Disease-Control (CDC) and prevention, are nursing the condition and post 

informs on their sites. WHO stated it a worldwide disease in March 2020. The said groups have also 

delivered approvals for avoiding and considering the illness. Every welfare group and any NGO which is 

working for the prevention of COVID-19 want to save maximum lives. For this purpose, every group of 

experts has their suggestions. This problem depends on many factors such as age factor, the density of 

COVID-19 in each area, people’s health, disease resistance in the human body and many more. In the case 

of a large number of COVID-19 patients appear for treatment; the first aim is to find ways to save 

maximum lives. For this, some are suggesting that doctors should adopt those patients who could be 

recovered more easily, like the young population and those people who have maximum resistance in their 

body against any disease. The children and old people should be their second choice and then the patients 

of other diseases like diabetes, cancer and harmful disease should be their last choice so that maximum 

lives could be saved in this difficult time. Given the fact that there is no authentic data available to deal 

with the virus, every group has its own set of strategies to handle the COVID-19 patients. This creates 

uncertainty for decision makers and this makes it too much difficult for those groups to make the decision 

those are working against COVID-19. This is a decision-making problem. Our proposed method has ability 

to solve this type of sensitive decision-making problem according to the weightage of experts and major 

parameters for COVID-19. 

4.1 | Proposed Methodology 

Let 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑡} be set of alternatives and 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} the set of specialists with their weight 

vectors 𝜂𝑖 > 0 such that ∑ 𝜂𝑖 = 1𝑛
𝑖=1 . Let 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚} set of constraints with the weight vectors are 

𝜉𝑘 > 0, satisfying ∑ 𝜉𝑘 = 1𝑚
𝑘=1 . The experts give their partialities afterward assessing the substitutions over 

the considered constraints in terms of q-ROFSNs 𝛼𝑖𝑘 for (𝑖 = 1, 2, 3,… , 𝑛  & 𝑘 = 1, 2, 3,… ,𝑚). There are 

five steps which are summarizing for resolving the decision-analysis problem in the q-ROFSS environment 

by the defined operator. 

Step 1. According to each alternative collect the information in term of q-ROFSNs which is given in matrix 

form by the experts as follows: 
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Step 2. We normalize the given decision matrix by converting the value of cost type (C) into profit type 

(B) where necessary, by using this formula 

  

 

where 𝛼𝑖𝑘
𝑐 of  𝛼𝑖𝑘 =  〈𝜇𝑖𝑘, 𝜈𝑖𝑘〉 is defined as 𝛼𝑖𝑘

𝑐 =  〈𝜈𝑖𝑘, 𝜇𝑖𝑘〉. 

Step 3. According to a given decision matrix aggregate the values (𝑏𝐾𝑖
) equivalent to each alternate by 

using the projected aggregation operator Wq-ROFSBM, specified in Eq. (9). Here 𝑏𝐾𝑖
denote the 

aggregated value of 𝐾𝑖.  

Step 4. Compute the ordering of aggregated q-ROFSNs by the Eqs. (1)-(3).  

Step 5. In view of order, rank the alternatives. 

4.2 | Numerical Approach to Propose Problem 

From the start of 2020, COVID-19 has become a serious problem everywhere in the world. Each 

government is trying to overcome this epidemic disease but many problems are faced by each 

organization that is working against it. The main reason to overcome this disease is that large numbers 

of patients cannot be admitted to hospitals immediately. The hospitals are overloaded and the number 

of doctors and surgical instruments required to meet the situation is not proportional. So, in very short 

time clinical inspection of a huge number of peoples are not possible. But the problem is still that 

Coronavirus spreads quickly and sometimes people carry the virus without showing any symptoms. The 

spread of a pandemic disease depends on two effects; how many people in each case are infected and 

how many times it requires for the contamination among people to spread. The first term is called the 

imitation number and the other is the time interval. The minimum time interval-propagation of COVID-

19 means emergent epidemics will grow quickly and could be hard to break. So, to overcome the 

problem that which type of steps are required to save the maximum number of people is a complex 

decision-making problem. 

We suggest that a method in q-rung orthopair fuzzy soft setting has the potential to handle the 

uncertainty about this epidemic and could be useful in making the decision to save maximum lives. The 

boards of medical specialists decide to admit a patient in a hospital or quarantine for treatment. But the 

symptoms of COVID-19 are in the majority of people. The head of the medical board is a decision 

maker and he will decide to admit a suspect in the hospital by the recommendations of the medical 

experts. The suffered population is in different stages of their ages 𝐴 = { 𝐾1 = 1 − 15 𝑦𝑒𝑎𝑟𝑠 𝑜𝑙𝑑, 𝐾2 = 16 −

25 𝑦𝑒𝑎𝑟𝑠 𝑜𝑙𝑑, 𝐾3 = 25 − 40 𝑦𝑒𝑎𝑟𝑠 𝑜𝑙𝑑, 𝐾4 = 𝑎𝑏𝑜𝑣𝑒 40} will be inspected by doctors 𝐷 = {𝑑1, 𝑑2, 𝑑3}  having 

weights vector 𝜂 = (0.3, 0.5, 0.2)𝑇. The doctors recommend the patient according to some parameters 

{ 𝑝1 = infection in the respiratory system, 𝑝2 = fever, 𝑝3 =  cough, 𝑝4 = pneumonia } having the 

weights vector 𝜉 = (0.3, 0.1, 0.1, 0.5)𝑇. Supposed on their recommendation the decision maker allocates 

bed in the hospital according to the seriousness of this harmful disease. In this regard, the doctors 

inspect the patients and give their preference in terms of q-ROFSNs. The main procedure of the 

proposed approach is given below in the following steps. 

e1…    em 

M =
d1
⋮

dn

[

α11 ⋯ α1m
⋮ ⋱ ⋮

αn1 ⋯ αnm

]. 
 

zik = {
αik       ek ∈ B
αik

c      ek ∈ C 
,  
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 Table  2. q-ROFS matrix for 𝐊𝟏 . 

 

 

Table 3. q-ROFS matrix for 𝐊𝟐 . 

 

 

Table 4. q-ROFS matrix for 𝐊𝟑 . 

 

 

Table 5. q-ROFS matrix for 𝐊𝟒 . 

 

 

Step 1. The doctors give their evaluation values to each alternate  𝐾𝑖 = (𝑖 = 1, 2, 3, 4) under inspection along 

with the set of parameters { 𝑝1, 𝑝2, 𝑝3, 𝑝4} in terms of q-ROFSNs and given in matrix Tables 2 to 5. 

Step 2. All recommendations given by the doctors are of the same type, so here no need to normalize the 

data. 

Step 3. According to given values, we aggregate the values consistent to each alternate by using the 

projected aggregation mean Wq-ROFSBM, given in Eq. (9), for q=3 and 𝜆1 = 𝜆2 = 2. We get 𝑏𝐾1
=

〈0.4523, 0.4915〉, 𝑏𝐾2
= 〈0.6415, 0.0271〉, 𝑏𝐾3

= 〈0.4699, 0.0740〉,  and 𝑏𝐾4
= 〈0.2943, 0.7496〉. 

Step 4. Compute the score function of each aggregated number by the Eq. (1) as follows: 

Step 5. Given calculated score function, the ordering of the alternatives is as follows , 𝐾2 ≻ 𝐾3 ≻ 𝐾1 ≻

𝐾4where " ≻ " denoted the preference for alternatives. By this one can conclude that the best alternative is 

𝐾2, so the population lies in 𝐾2 can get recover in a shorter time than other alternatives. Hence, by giving 

the preference to 𝐾2 maximum lives could be saved.  

Our proposed Wq-ROFSBM has a potential to capture the desired properties among arguments 

interrelationship in such problems which cannot be handled with weighted intuitionistic or weighted 

Pythagorean fuzzy soft Bonferroni mean operators. For an instant, in many daily life problems in which 

uncertainty occurs in such a way that the total of membership-degree and non-membership degrees are 

greater than 1. Also, as the values of 𝜆1and 𝜆2 increase, the scores of each alternate by Wq-ROFSBM 

operator will also rise. But the grade order of given alternatives remains the same in each case. Moreover, 

in special cases of Wq-ROFSBM in which one of 𝜆1 or  𝜆2 becomes zero, then Wq-ROFSBM operator 

cannot imprisonment the interrelation between the arguments. For expediency, we take the value of 

𝜆1and 𝜆2 equal for the sake of simplicity in the calculation process. Thus, the governing person can choose 

the suitable alternate easily rendering to the situations in the decision-making process. 

(𝐊𝟏 , 𝐀) 𝐩𝟏                      𝐩𝟐                      𝐩𝟑                       𝐩𝟒  

 d1 
d2 
d3 

〈0.4, 0.3〉       〈0.5, 0.4〉      〈0.3, 0.4〉      〈0.7, 0.2〉 
〈0.6, 0.2〉       〈0.4, 0.3〉      〈0.9, 0.5〉      〈0.8, 0.3〉 
〈0.7, 0.4〉       〈0.3, 0.2〉      〈0.5, 0.4〉      〈0.6, 0.2〉 

(𝐊𝟐 , 𝐀) 𝐩𝟏                      𝐩𝟐                      𝐩𝟑                       𝐩𝟒  

 d1 
d2   

d3 

〈0.6, 0.2〉       〈0.4, 0.3〉      〈0.4, 0.2〉      〈0.7, 0.2〉 
〈0.7, 0.3〉       〈0.5, 0.2〉      〈0.5, 0.2〉      〈0.8, 0.1〉 
〈0.8, 0.2〉       〈0.6, 0.7〉      〈0.6, 0.3〉      〈0.6, 0.2〉 

(𝐊𝟑 , 𝐀) 𝐩𝟏                      𝐩𝟐                      𝐩𝟑                       𝐩𝟒  

 d1 
d2   

d3 

〈0.4, 0.3〉       〈0.5, 0.4〉      〈0.4, 0.3〉      〈0.6, 0.1〉 
〈0.5, 0.3〉       〈0.3, 0.2〉      〈0.5, 0.1〉      〈0.7, 0.2〉 
〈0.7, 0.4〉       〈0.3, 0.2〉      〈0.5, 0.4〉      〈0.6, 0.2〉 

(𝐊𝟒 , 𝐀) 𝐩𝟏                      𝐩𝟐                      𝐩𝟑                       𝐩𝟒  

d1 
d2 
 d3 

〈0.3, 0.2〉       〈0.6, 0.2〉      〈0.6, 0.2〉      〈0.4, 0.3〉 
 〈0.4, 0.1〉       〈0.7, 0.2〉      〈0.4, 0.7〉      〈0.6, 0.2〉 
       〈0.5, 0.3〉       〈0.8, 0.3〉      〈0.9, 0.2〉      〈0.7, 0.4〉 

S(bK1
) = 0.4868, S(bK2

) = 0.6319, S(bK3
) = 0.5516 & S(bK4

) = 0.3020.  
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5 |  Comparative Study 

To show the significance and impact of the proposed approach in this paper, a comparison with 

comparable existing methods is presented.  Note that different aggregation operators considered in [22] 

and [26] fail when the assigned value of membership of an element is 0.9 and non-membership is 0.7 

because 0.9 + 0.7 > 1. So, in this case, Bonferroni means operators (aggregation operators) do not serve 

the purpose. The same is true for the operators given in [10] and [19]. Moreover, the operators defined 

in [10] and [19] become the special case of our proposed operator defined in Eq. (9) if we take 𝑞 = 1,

𝜆1 = 1 and 𝜆2 = 0. Similarly, for 𝑞 = 2, 𝜆1 = 1 and 𝜆2 = 0, the operator defined in [14] is a special case 

of our proposed operator. For  𝜆1 = 1 and 𝜆2 = 0 , our operator reduced to an operator given in [16].  

Moreover, operators defined in most of the literature mentioned above and in [24], are without prior 

knowledge of characterization of the individuals and hence are not appropriate to deal with imprecise 

data for a decision maker. The operator given in [38] is based on parameterization. However, it reduces 

to our proposed operator if we take 𝜆1 = 1 and 𝜆2 = 0  in the Eq. (9). In a decision-making process when 

the arguments are interrelated to each other, the Bonferroni mean can capture the interrelationship of 

the individual arguments but the operators defined in [38] fail to deal with such situation. The advantage 

of operators presented in this paper lies in the fact that they have a potential to solve real-life problems 

by using their parameterizations properties when the arguments of the individuals are interrelated to 

each other. Hence, the developed concepts are more appropriate for solving the decision-making 

problems than existing operators in the setting of q-rung orthopair FSSs.  

 6 | Conclusions 

The q-ROFSS theory is a very effective tool for considering the imprecision and uncertainty problems 

under consideration by the expert’s recommendations and parameterization factors involved in any 

phenomena. We proposed aggregation operators namely Bonferroni mean and Weighted Bonferroni 

Mean (WBM)  aggregation operator for aggregating the data in real-life problems in which sensitivity of 

decision is very important such as arising in the face of epidemic of COVID-19. In such sensitive 

problems, uncertainties occur at a very high level, so to deal with such decision-making process, the 

more generalized version of the existing operators are introduced. The study carried out in this direction 

is supported with the help of examples. Since the Bonferroni mean is a very useful tool for group 

decision-making problems when arguments are interrelated to each other as Bonferroni mean can 

capture the interrelationship of the individual arguments. For future research, one may use the defined 

q-rung orthopair Bonferroni fuzzy soft matrix and weighted q-rung orthopair fuzzy Bonferroni fuzzy 

soft matrices for data representation which could provide the optimum q-rung orthopair fuzzy soft 

constant. These constants then can be used to define q-rung orthopiar fuzzy soft differential equations 

which provide an effective way in decision making problems. Moreover, by utilizing the q-rung orthopair 

fuzzy soft constants, one can develop the system of q-rung orthopair fuzzy soft differential equations 

to study the dynamical process with nonlinear uncertain and vague data.  
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