Document Type : Research Paper


LaREQuaD, FSEGT, University of ElManar, Tunisia.


Under the additional assumption that the errors are normally distributed, the Ordinary Least Squares (OLS) method is the maximum likelihood estimator. In this paper, we propose, for a simple regression, an estimation method alternative to the OLS method based on a so-called Gaussian membership function, one that checks the validity of the verbal explanation suggested by the observer. The fuzzy estimation approach demonstrated here is based on a suitable framework for a natural behavior observed in nature. An application based on a group of MENA countries in 2015 is presented to estimate the employment poverty relationship.


Main Subjects

  1. Arabpour, A. R., & Tata, M. (2008). Estimating the parameters of a fuzzy linear regression model. Iranian journal of fuzzy systems, 5(2), 1-19.
  2. Belhadj, B. (2011). A new fuzzy unidimensional poverty index from an information theory perspective. Empirical economics, 40(3), 687-704.
  3. Belhadj, B., & Kaabi, F. (2021). The relationship between employment and poverty using fuzzy regression. In Analysis of socio-economic conditions(pp. 264-275). Routledge.
  4. Bourbonnais, R. (2021). Econométrie. Dunod. (In French).
  5. Diamond, P. (1988). Fuzzy least squares. Information sciences, 46(3), 141-157.
  6. Diamond, P., & Tanaka, H. (1998). Fuzzy regression analysis. In Fuzzy sets in decision analysis, operations research and statistics(pp. 349-387). Springer, Boston, MA.
  7. D'Urso, P., & Gastaldi, T. (2000). A least-squares approach to fuzzy linear regression analysis. Computational statistics and data analysis, 34(4), 427-440.
  8. D'Urso, P., & Chachi, J. (2022). OWA fuzzy regression. International journal of approximate reasoning142, 430-450.
  9. Hong, D. H., & Yi, H. C. (2003). A note on fuzzy regression model with fuzzy input and output data for manpower forecasting. Fuzzy sets and systems, 138(2), 301-305.
  10. Hong, D. H., Hwang, C., & Ahn, C. (2004). Ridge estimation for regression models with crisp inputs and Gaussian fuzzy output. Fuzzy sets and systems, 142(2), 307-319.
  11. Imeni, M. (2020). Fuzzy logic in accounting and auditing. Journal of fuzzy extension and applications, 1(1), 69-75.
  12. Kim, K. J., & Chen, H. R. (1997). A comparison of fuzzy and nonparametric linear regression. Computers and operations research, 24(6), 505-519.
  13. Kaufmann, A., &Gupta, M. M. (1991). Introduction to fuzzy arithmetic: theory and applications. Van Nostrand Reinhold.
  14. Leandry, L., Sosoma, I., & Koloseni, D. (In Press). Basic fuzzy arithmetic operations using α–cut for the Gaussian membership function. Journal of fuzzy extension and applications.
  15. Majid, N. (2001). Les travailleurs pauvres dans les pays en développement. Revue internationale du travail140(3), 323-343.
  16. Pandit, M., Chaudhary, V., Dubey, H. M., & Panigrahi, B. K. (2015). Multi-period wind integrated optimal dispatch using series PSO-DE with time-varying Gaussian membership function based fuzzy selection. International journal of electrical power & energy systems73, 259-272.
  17. Raab, M., Seibert, D., & Keller, A. (2008). Unbiased global illumination with participating media. In Monte Carlo and Quasi-Monte Carlo methods 2006(pp. 591-605). Springer, Berlin, Heidelberg.
  18. Radhakrishna, V., Aljawarneh, S. A., Veereswara Kumar, P., & Janaki, V. (2019). ASTRA-A Novel interest measure for unearthing latent temporal associations and trends through extending basic Gaussian membership function. Multimedia tools and applications, 78(4), 4217-4265.
  19. Tanaka, H. (1987). Fuzzy data analysis by possibilistic linear models. Fuzzy sets and systems, 24(3), 363-375.
  20. Tanaka, H., & Ishibuchi, H. (1991). Identification of possibilistic linear systems by quadratic membership functions of fuzzy parameters. Fuzzy sets and systems, 41(2), 145-160.
  21. Tanaka, H., Uejima, S., & Asai, K. (1982). Linear regression analysis with fuzzy model. IEEE transactions systems man and cybernetics, 12(6), 903–907.
  22. Yang, M. S., & Liu, H. H. (2003). Fuzzy least-squares algorithms for interactive fuzzy linear regression models. Fuzzy sets and systems, 135(2), 305-316.
  23. Zadeh, L. (1965). Probability theory and fuzzy logic are complementary rather than competitive. Technometrics, 37(3), 271–276.