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Abstract 

 

1 | Introduction  

The simple linear regression concerns sample points with one independent variable and one 

dependent variable and finds a linear function (a non-vertical straight line) that, as accurately as 

possible, predicts the dependent variable values as a function of the independent variable. One of the 

most used regression methods is the Ordinary Least Squares (OLS) method [4].  

OLS is a type of linear least squares method for estimating the unknown parameters in a linear 

regression model. The OLS estimator is consistent when the regressors are exogenous and, by the 

Gauss Markov theorem, optimal in the class of linear unbiased estimators when the errors are 

homoscedastic and serially uncorrelated. Under these conditions, the method of OLS provides 

minimum-variance mean-unbiased estimation when the errors have finite variances. Under the 

additional assumption that the errors are normally distributed, OLS is the maximum likelihood 

estimator. The errors after modeling, however, should be normal to draw a valid conclusion by 

hypothesis testing. 
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Our data can be normal or not; we can check data distributions to understand their behaviors. Our data 

might not be normal for a reason. Usually, in such cases, you may want to transform it or use other 

analysis methods (e.g., generalized linear models or nonparametric methods).  

Belhadj [2] proves using the theory of fuzzy subsets that any dependent or independent variable follows 

a particular real behavior. In particular, according to this author, poverty can have a trapezoidal behavior. 

However, the analysis and estimation of regression must change depending on the behavior of the 

regression variables. For example, Belhadj and Kaabi [3] proposed a method for estimating a simple 

regression where the behavior of the dependent variable is trapezoidal. 

This paper aims to develop further and refine another case study on the same strand of research of [3]. 

First, we assume our data is normal and set the so-called Gaussian membership functions. They are 

fuzzy versions of the classic Gaussian distribution, those who verify the validity of the verbal explanation 

suggested by the observer. Secondly, we construct fuzzy mathematical modelings of a simple linear 

regression model using these Gaussian membership functions. Fuzzy modeling approaches 

demonstrated here are based on mimicking a natural behavior observed in nature. Fuzzy modeling 

approaches demonstrated here change according to the distribution of our data. It keeps reality, unlike 

the OLS and any other estimation method, in its entirety.  

This paper is structured as follows: Section 2 presents some unique properties of Gaussian distribution 

and briefly presents the OLS method using the normal distribution. Section 3 shows the difference 

between the Gaussian distribution and membership function. Section 4 puts forward an alternative 

estimation method called fuzzy regression using Gaussian membership functions. In this section, 

estimators of a linear fuzzy regression model are constructed, and the consistency of these estimators is 

established. Section 5 illustrates the use of this proposed method to estimate the employment poverty 

relationship in MENA in 2015. Section 6 concludes. 

2 | Gaussian Distribution, OLS Method 

A Gaussian distribution, said normally distributed, is a continuous probability distribution for a real-

valued random variable. Its probability density function [4] is  

m is the mean and also its median and mode, while the parameter σ is its standard deviation.  

The normal distribution is important in analytic studies. It is the only distribution with zero cumulants 

beyond the mean and variance. It is also the continuous distribution with the maximum entropy for a 

specified mean and variance. And is the only distribution where the mean and variance calculated from 

a set of independent draws are independent of each other. The normal distribution is a subclass of the 

elliptical distributions. It is symmetric about its mean and is non-zero over the entire real line. It is one 

of the few stable distributions with probability density functions that can be expressed analytically. Many 

results and methods, such as propagation of uncertainty and least squares parameter fitting, can be 

derived analytically in explicit form when the relevant variables are normally distributed. 

Let the model = + +
i i i

y a bx ε . The variable that is supposed to be normally distributed is just the 

prediction error 
i

ε . Prediction error should follow a normal distribution with a mean of 0. The 

confidence interval and variable significance calculation are based on this assumption [4]. For example, 

the effect of unemployment on poverty based on a 5% significance level requires following a normal 

( )

2
1 x m

2 σ1
x e , x R .

σ 2π

 − −
 
 =    
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distribution with a mean of 0. If the error distribution significantly deviates from the mean 0 normal 

distribution, the effect may not actually be significant enough to explain poverty. 

The least squares estimates in the case = + +
i i i

y a bx ε are given by simple formulas [4]: 

 

 

 

The OLS estimators â and b̂ are Best Linear Unbiased Estimator (BLUE) and Consistent. 

3 | Gaussian Membership Function 

Fuzzy sets (see, e.g. [11], [21] for application of this approach) are extensions of the classical sets whose 

elements have degrees of membership [23]. In fuzzy set theory, classical bivalent sets are usually called 

crisp sets. The fuzzy set theory allows describing situations in which the data are imprecise. Fuzzy sets 

handle such situations by attributing degrees to which elements belong to a set, called membership 

function, having intervals [0,1]. 

The membership function fully defines the fuzzy set. It measures the degree of similarity of an element to 

a fuzzy set. Membership functions can: either be chosen by the user arbitrarily, based on the user's 

experience. Or be designed using machine learning methods (e.g., artificial neural networks, genetic 

algorithms). Membership functions have different shapes, mainly Triangular, Trapezoidal, and Gaussian 

forms [14]. 

Fig. 1. Gaussian membership function. 

In fuzzy logic, the Gaussian membership function is a generalization of the Gaussian distribution for 

classical sets. It represents the degree of truth often confused with probability. However, it is conceptually 

distinct because fuzzy truth represents membership in vaguely defined sets, not the likelihood of some 

event or condition. The general form of the Gaussian membership function is ( )
 −

−  
 =

2
x m

σ

Τ
μ x e (Fig. 1). For 

an element x of X , ( )Τ
μ x quantifies the grade of membership of the element x to the fuzzy set Τ (Fig. 

1). The value 0 means that x  is not a member of the fuzzy set; the value 1 indicates that x is fully a member 

of the fuzzy set. The values between 0 and 1 characterize fuzzy members, which belong to the fuzzy set 

only partially. The Gaussian membership function is employed in several domains (e.g., [16]-[18]). 

i i i i
i i i

2

2

i i
i i

n x y x y

b̂ ,

n x x

−

=
 

−  
 

  

 

 
 

ˆâ y bx.= −   
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4 | Fuzzy Linear Regression Models 

A fuzzy linear regression model was first introduced by [21]. He formulated a linear regression model 

with fuzzy response data, crisp predictor data, and fuzzy parameters as a mathematical programming 

problem. Their approach was later improved to give birth to many other methods: linear-programming-

based methods said possibilistic approach (e.g. [1], [6], [9], [10], [19], [20]), fuzzy least-squares methods 

(e.g. [5], [7], [8], [22]) and fuzzy minimizing method said dissemblance method [3]. 

Fuzzy simple linear regression is different from simple linear regression in the sense that it is a no 

statistical method [12]. However, in some cases, we may need to consider that the relationship expressed 

as = + +
i i i

y a bx ε may be fuzzy. Indeed, three cases are possible:  

In the case where the predictor variable is fuzzy, but the parameters are crisp:  

The case of a crisp predictor and fuzzy parameters:  

 

 

 

And finally, the case of a fuzzy predictor and fuzzy parameters:  

where ith , i 1 , ..., n ,= are fuzzy responses. 

In this section, we retain a curve representing the modification of the confidence interval from 0 to 1. 

It may have a deflection in its slope, resulting in a flat region, as shown in Fig. 2. This curve is an L-R 

Gaussian membership function with a flat. 

Fig. 2. L-R Gaussian fuzzy number with a flat. 

We estimate Model (2) parameters when unknown parameters are L-R Gaussian fuzzy numbers with a 

flat. The Model (2) was also treated by [3] using Trapezoidal fuzzy numbers.                         

We choose four significant numbers to represent the L-R Gaussian fuzzy number nonunimodally. Let 

( )= − +S m σ,m,m,m σ an L-R Gaussian fuzzy number with a Flat where −m σ and +m σ are the left 

and right "end" points of the corresponding bell, and m and m are the left and right "middle" points 

(Fig. 2). 

The membership of the fuzzy response
i

y of the Model (2) is as follows: 

i i i
y a bx +ε .= +  (1) 

i i i
y a bx +ε .= +  (2) 

i i i
y a bx +ε ,= +  (3) 
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We suppose that the parameters of the Model (2), a  and b̂ are L-R Gaussian fuzzy numbers with a flat, 

where ( )= − +
a a

a a σ ,a,a ,a σ  and ( )= − +
b b

b b σ ,b,b ,b σ .  Then according to the [13]:  

 

from which we have  

 

 

 

 

4.1 | Error's Gaussian Membership Function  

Starting from Model (2), we can write: 

 

for the term to the right of Eq. (6), it's about the subtraction of Gaussian fuzzy numbers, which is written 

as follows: 

 

which corresponds to 

( ) ( ) ( ) ( ) ( )( )i i a b i i i a b i
y a bx m σ a σ b σ x ,m a bx ,m a bx ,m σ a σ b σ x .− + = − − + − + − − − − + − − − −   

Now using Eq. (4), let     α 0 , 1 ,  

( )
 −
 −
 
 

 
 

=  
 
 

2

i

α
u m

σ
α e , 

( )
=

α
α m , 

( )
=

α
α m , 

( )
 −
 −
 
 

 
 

=  
 
 

2

i

α
u m

σ
α e , from which   

 

 

( )

2

i

i
2

i

u m

σ

i

y i i

u m

σ

i

e ,       u m,

μ u = 1 ,                     m u m,

e ,          m u .

 −
− 
 
 

 −
− 
 
 



 −  


 



  +


 (4) 

( ) ( ) ( ) ( ) ( )( )a b a b
a bx a σ b σ x,a bx, a bx, a σ b σ x ,+ = − + − + + + + +   

( ) ( )

( ) ( )( )

( ) ( )

( ) ( )( )

2

i a b i

a b

i

2

i a b i

a b

u a σ b σ x

σ σ

i i a b ia bx

i i i

u a σ b σ x

σ σ

u R :

μ u e        u a σ b σ x

                 1                                      a bx u a bx

                  = e      

 − − + −
 −
 + 
 

+

 − − + −
 −
 + 
 

 

= −   − + −

= +   +

( ) ( )a b i i
  a σ b σ x u .− + −   +

 (5) 

( ) ( ) ( )
i i i

ε i iy  a bx
μ ε μ ε .

− +
=  (6) 

( ) ( ) ( ) ( )( )
iii i

i i y ia bxy  a bx
μ ε = μ a bx μ y ,

ε
i

+− +
+   (7) 

( ) ( ) ( ) ( )( )
2 2

i i

α α α α

iα 1i 2i 3i 4i

u m u m

σ σ

y y ,y ,y ,y

    α e ,m,m,α e .

   − −
− −   
   
   

=

 
 

= − −
 
  

 (8) 
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Now using Eq. (5), we obtain 

( ) ( )( )
( )

 − − + −
 −
 + 
 

 
 
 =
 
 
 

2

i a b i

a b

α
u a σ b σ x

σ σ

α e , ( )
( )

= +
α

i
α a bx , ( )

( )
= +

α

i
α a bx , 

( ) ( )( )
( )

 − − + −
 −
 + 
 

 
 
 =
 
 
 

2

i a b i

a b

α
u a σ b σ x

σ σ

α e , from which 

We must then have  

( )( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )α α α α α α α α α α α α α α α α

iα i 1i 2 i 3 i 4 i 1i 2 i 3 i 4 i 1i 4 i 2 i 3 i 3 i 2 i 4 i 1iα
y a bx y , y , y , y ν ,ν ,ν ,ν y ν , y ν , y ν , y ν . − + = − = − − − −

    

Thus if we define 
( ) ( )

( ) ( )( ) − − + −
   − − −  +   
   − = − + −

2
2

i a b i
i

a b

u a σ b σ x
u m

σ σα α σ

1i 4 i
y ν α e α e ,  

( ) ( )

( ) ( )( ) − − + −
   − − −  +   
   − = − + −

2
2

i a b i
i

a b

u a σ b σ x
u m

σ σα α σ

4 i 1i
y ν α e α e , from which we have 

The estimate of a  and b of Model (2) consists of solving the following minimization problem: 

 

 

 

Using Eq. (7), Eq. (11) becomes 

 

 

We show that to solve Eq. (12) is to solve the following system 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 2

i a b i i a b i

a b a b

α α α α

i 1i 2i 3i 4iα

u a σ b σ x u a σ b σ x

σ σ σ σ

i i

a bx ν , ν , ν , ν

                  α e ,a bx , a bx , α e .

   − − + − − − + −
   − −
   + +   
   

+ =

 
 

= − + + + − + 
 
  

 (9) 

( )

( ) ( )( )

( ) ( )

( ) ( )( )

2

i a b i

a b

i a b i

a b

u m σ a σ b σ x

σ σ σ

ε i i a b i

i i i

u m σ a σ b σ x

σ σ σ

u R :

μ u e        u m σ a σ b σ x

          1                                             m a bx u m a bx

           = e

 − − − − − −
 −
 + + 
 

 − + − + − +
 −
 + +
 

 

= −   − − − − −

= − −   − −

( ) ( )

2

a b i i
        m σ a σ b σ x u



+ − + − +   +

 (10) 

( )
i

ε
minμ a, b . (11) 

( ) ( ) ( )( )
ii ii

ε i y ia bx
minμ a, b =min μ u μ u .

ε
i

+
  (12) 

( ) ( )( )( )
( )

2
n

i a b ii 1

2

a b

u m σ a σ b σ x
a, b 0 .

σ σ σ

=
− − − + − +

   =

+ +


 (13) 

( ) ( )( )( )
( )

2
n

i a b ii 1

2

a b

u m σ a σ b σ x
a, b 0.

σ σ σ

=
− − − + − +

   =

+ +


 (14) 
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We prove that the error's membership function ( )

iε
μ a,b is also the (L)-R hatched area of Fig. 3, given by 

the difference between the membership function of the observed value, ( )
iy i

μ u , and the membership 

function of the estimated value of 
i

y , ( )+ i
ia bx

μ u . Therefore, solving Eq. (12) is equivalent to minimizing 

the hatched areas of Fig. 3, hence the following method. 

4.2 | Fuzzy Numbers Gaps Square Method 

Starting from Eqs. (8) and (9), we define =i 1, ..., n  two Gaussian fuzzy numbers A and B, as follows:

 =  1i 2 i 3 i 4 i
A y , y , y , y  and  =  1i 2 i 3 i 4 i

B ν ,ν ,ν ,ν . Or, from Eq. (4),      α 0 , 1     

 −
 −
 
 =  = − +

2

iu m

σ

i
α e u σ log α m , 

 −
 −
 
 =  = − +

2

iu m

σ

i
α e u σ log α m ,  = − + − +

  α
A σ log α m,σ log α m . And 

from Eq. (5), ( ) ( )( ) ( ) ( ) ( )( ) ( ) = − + − + + − − + − + + −
  α a b i a b a b i a b

B a σ b σ x σ σ log α , a σ b σ x σ σ log α .  

Note that, in the right of Fig. 2, A  and B  intersect at the following two points (Fig. 3)  

( ) ( )( ) ( )− + = − + − + + −
a b i a b

σ log α m a σ b σ x σ σ log α , gives 

= +
i

m a bx  gives  

We then have 

Always on the right, if we proceed to integrate ( )α α
Rδ A ,B from =α 0  to =α 1 , we obtain a distance 

( )Rδ A,B by the summation of distances: ( ) ( )
=

= 
1

α αα 0
Rδ A,B Rδ A ,B dα.   

It is a distance between two Gaussian fuzzy numbers A and B. 

The calculation of Eq. (17) shows 

And, 

 

 

( ) ( )( )
( )( )

2

a b i

a b

a σ b σ x m

σ σ σ

1
α e .

 − + − −
 −
  − +
 =  

(15) 

2
α 1.=  (16) 

( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( )

α α

4i 4i a b i a b

a b i a b

y ν σ logα m a σ b σ x σ σ logα

               m a σ b σ x σ σ σ logα.

− = − + − − + − − + −

= − − + − + − + −
  

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1

1

α

a b i a bα 0

1

a b i a bα

Rδ A,B m a σ b σ x σ σ σ logα dα

                      m a σ b σ x σ σ σ logα dα

=

 = − − + − + − + −
  

 + − − + − + − + −
  





 (17) 

( ) ( ) ( )( ) ( )( )1

1

1α 1

a b i a bα 0 α 0
Rδ A,B m a σ b σ x α α σ σ σ logα dα.

=

        = − − + − + + − + −              

( ) ( ) ( )( ) ( )( )1

1

α 1

a b i a bα 0 α

π
Rδ A,B m a σ b σ x α α σ σ σ .

2=

      = − − + − + + − +      
 (18) 



 

 

286 

B
e
lh

a
d

j 
|

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 3

(4
) 

(2
0
2
2
) 

2
7
9
-2

8
9

 

 

For Gaussian fuzzy numbers A and B, the distance ( )Rδ A,B is the sum of areas hatched in Fig. 3. 

Fig. 3. R Gaussian fuzzy number with a flat. 

The estimate of a and b of Model (2) consists of solving the following minimization problem: 

Problem (19) is equivalent to the Problem (14). Its resolution consists of solving the System (20). 

The solution of Eq. (20) is 

Which gives   

And 

This paper's fuzzy estimators of the linear regression proposed are solutions to reality modeling. They 

may be of some use because of the complexity of phenomena, such as the social economy and the 

influence of various uncertain factors existing in the boundary environment around the phenomena. As 

justification for the proposed fuzzy modeling, we estimate the employment poverty relationship among 

a group of MENA countries in the following section in 2015. This estimation justifies the relationship 

unclear between poverty and unemployment. 

( ) ( )2 2

i i

min Rδ A,B min Rδ a, b  .=   (19) 

( )

( )

2

2

Rδ a, b
=0,

a
 

Rδ a, b
=0.

b











 

 (20) 

( )

( )

a b a b

2 2

a b a b

π
a+bX= σ σ σ m nσ Xσ ,

2
π

aX+bX = σ σ σ X mX Xσ X σ .
2


− − + + +



 − − − + +


 (21) 

( ) a

b2

X

2mX 1 n Xσ
b σ .

σ

− + −
= +  (22) 

( )
( ) ( )2 2 2 2

X a X

b 2

X

m σ 2X σ n π 2 σ 1 n X
π

a σ σ .
2 σ

  
+ + − − −   

   
= − +  

(23) 



287 

 

F
u

z
z
y
 s

im
p

le
 l

in
e
a
r 

re
g

re
ss

io
n

 u
si

n
g

 G
a
u

ss
ia

n
 m

e
m

b
e
rs

h
ip

 f
u

n
c
ti

o
n

s 
m

in
im

iz
a
ti

o
n

 p
ro

b
le

m
 

 
5 | Employment Poverty Relationship Using Fuzzy Numbers Gaps 

Square Method 

We start from the observation that employment and the access that the poor have to decent earning 

opportunities will be crucial determinants of poverty reduction. This observation brings us back to 

estimating the relationship between the poverty headcount ratio at $1.90 and the unemployment rate in 

2015 for a group of developing countries from the MENA region.  

The estimation of this relation by the OLS method shows the following results  

Looking at the results of Eq. (24), we find that the application of the OLS method show, as [23], a negative 

relationship which can be explained by: the unemployment rate is generally higher in developing middle-

income countries. In comparison, the poverty rate is higher in developing low-income countries [23]. But 

we show below that by changing the method, the result changes. 

We retain the same sample from Eq. (24) and apply the fuzzy numbers gaps square method. We calculate, 

however, the solutions Eq. (22) and Eq. (23). We, therefore, obtain the following results. 

Table 1. Employment poverty relationship using the fuzzy numbers gaps square method. 

 

 

=2R SSR / SST where SSR is the sum of squares due to regression, SST is the total sum of squares 

As shown in Table 1, the value of the constant term depicts that when the unemployment rate is assumed 

to be zero, the incidence of poverty will still be visible, thus insinuating that the unemployment rate is not 

the only factor responsible for the incidence of poverty. 

We also find that the parameter measuring unemployment is not always negative as in Eq. (24). The 

relationship between the incidence of poverty and unemployment is positive in the right-Gaussian-fuzzy-

number Fig. 2, but in the left-Gaussian-fuzzy-number, the relationship is negative. These results justify the 

relationship unclear between poverty and unemployment. However, being unemployed usually results in 

falling in one's living standard due to the absence of income, and one can be employed and still be poor. 

The relationship between the incidence of poverty and unemployment is, then, subject to the linked labor 

force and income statistics path tracing. For example, the problem of interpretation becomes complicated 

among workers who experience an employment problem but whose family income does not fall below the 

poverty level. 

However, the realistic depiction of the phenomenon is critical. For many natural effects, including fog, 

steam, smoke, and fire, a recent survey by [25] gives an overview of the best-known methods for 

importance sampling. Our approach illustrates an alternative importance sampling strategy that can yield 

more robust estimators. It is based on variable distribution to calculate the relationship between them 

validly. 

 

( )( )
( )

i i

2

P 17,37 0,81U

       2,89 1,94

  R 0,201;  N 23;  t values in parentheses .

= −

−

= =

 (24) 

 a  b  2R  
The left-Gaussian-fuzzy-
number-estimates 

23,45 
(3,06) 

-0,58 
(-2,03) 

0,879 

The right-Gaussian-fuzzy-
number-estimates 

14,06 
(3,97) 

0,43 
(3,77) 

0,901 
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Both positive and negative relationship between unemployment and poverty then returns to the 

distribution of each variable. A possible situation shows that MENA's 'working poor' still live in poverty. 

The study results show that the employment rate has a statistically significant impact on reducing non-

extreme poverty for the MENA sample. The results confirm that, in the right part of the distribution, a 

one-unit increase in the employment rate results in a fall in the poverty headcount ratio by about 43% 

for the MENA sample. Therefore, in the right part of the distribution, employment is a vector to lift 

out of poverty because job quality is sufficient, including adequate earnings, job security, and safe 

working environments. In the left part of the distribution, the working poverty rate reveals the 

proportion of employed people living in poverty despite being employed, implying that their 

employment-related incomes are insufficient to lift out of poverty and ensure decent living conditions. 

The relationship between employment and poverty depends significantly on the extent to which decent 

work is ensured in the labor market. This means that having a job is not enough to keep out of poverty, 

pointing to job quality issues, particularly the inadequacy of earnings. 

6 | Conclusion  

In this paper, we propose new non-statistical methods - fuzzy regressions - as alternative methods of 

ordinary regression analysis. These methods deal with fuzziness; they estimate the parameters of a fuzzy 

simple regression model for the case of fuzzy parameters using Gaussian membership functions 

nonunimodally.  

These methods are desirable since they are based on an integral abstraction of reality while keeping the 

same process as the classical linear regression. Moreover, the calculation technique for these methods 

keeps a Gaussian distribution in a real context. We can, in future work, extend our methodology for the 

case where predictor and parameters are fuzzy. 
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