Document Type : Research Paper

Authors

1 Department of Electrical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dasht-e Azadegan, Khuzestan, Iran.

2 Department of Mathematicsو Behbahan Khatam Alanbia University of Technology, Behbahan, Ahvaz, Iran.

Abstract

Complex nature of the current market is often caused by uncertainties, data uncertainties, their manner of use, and differences in managers' viewpoints. To overcome these problems, Hesitant Fuzzy Sets (HFSs) can be useful as the extension of fuzzy set theory, in which the degree of membership of an element can be a set of possible values and provide greater flexibility in design and, thus, model performance. The power of this application becomes clear when different decision-makers tend to independently record their views. In most real-world situations, there are several goals for managers to achieve the desired performance. Therefore, in this study, a description of the solution of the Hesitant Fuzzy Linear Programming (HFLP)  problem for solving hesitant fuzzy multi-objective problems is considered. In the following, the multi-objective and three-level supply chain management problem is modeled with the hesitant fuzzy approach. Then, with an example, the flexibility of the model responses is evaluated by the proposed method. The hesitant fuzzy model presented in this study can be extended to other supply chain management problems.

Keywords

Main Subjects

  1. Hugos, M. H. (2018). Essentials of supply chain management. John Wiley & Sons.
  2. Clark, A. J., & Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem. Management science6(4), 475-490. https://doi.org/10.1287/mnsc.6.4.475
  3. Gümüs, A. T., & Güneri, A. F. (2007). Multi-echelon inventory management in supply chains with uncertain demand and lead times: literature review from an operational research perspective. Proceedings of the institution of mechanical engineers, part b: journal of engineering manufacture221(10), 1553-1570. https://doi.org/10.1243/09544054JEM889
  4. Kumar, M., Vrat, P., & Shankar, R. (2004). A fuzzy goal programming approach for vendor selection problem in a supply Chain. Computers & industrial engineering46(1), 69-85. https://doi.org/10.1016/j.cie.2003.09.010
  5. Kumar, M., Vrat, P., & Shankar, R. (2006). A fuzzy programming approach for vendor selection problem in a supply chain. International journal of production economics101(2), 273-285. https://doi.org/10.1016/j.ijpe.2005.01.005
  6. Baykasoǧlu, A., & Goecken, T. (2008). A review and classification of fuzzy mathematical programs.Journal of intelligent & fuzzy systems19(3), 205-229. https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs00392
  7. Amirkhan, M., Norang, A., & Tavakkoli-Moghaddam, R. (2015). An interactive fuzzy programming approach for designing a multi-echelon, multi-product, multi-period supply chain network under uncertainty considering cost and time. Production and operations management6(1), 127-148. (In Persian). https://jpom.ui.ac.ir/article_19842.html
  8. Bashiri, M., & Sherafati, M. (2013). Advanced bi-objective closed loop supply chain network design considering correlated criteria in fuzzy environment. Journal of industrial engineering research in production systems, 1(1), 25-36. (In Persian). https://ier.basu.ac.ir/article_494.html?lang=en
  9. Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied mathematical modelling36(8), 3433-3446. https://doi.org/10.1016/j.apm.2011.10.007
  10. Bashiri,, Sherafati, M., & Farshabaf, A. (2014). Direct solution approach for designing supply chain network with fuzzy variables. Journal of supply chain management, 16(44), 66-73. (In Persian). https://scmj.ihu.ac.ir/article_203535.html
  11. Nasseri, H., Morteznia, M., & Mirmohseni, M. (2017). A new method for solving fully fuzzy multi objective supplier selection problem. International journal of research in industrial engineering6(3), 214-227.
  12. Ahmad, F., Alnowibet, K. A., Alrasheedi, A. F., & Adhami, A. Y. (2022). A multi-objective model for optimizing the socio-economic performance of a pharmaceutical supply Chain. Socio-economic planning sciences79, 101126.
  13. Marzband, A. (2020). Precise services and supply chain prioritization in manufacturing companies using cost analysis provided in a fuzzy environment. Journal of fuzzy extension and applications1(1), 42-59. https://doi.org/10.22105/jfea.2020.248187.1006
  14. Ghasempoor Anaraki, M., Vladislav, D. S., Karbasian, M., Osintsev, N., & Nozick, V. (2021). Evaluation and selection of supplier in supply Chain with fuzzy analytical network process approach. Journal of fuzzy extension and applications2(1), 69-88. https://doi.org/10.22105/jfea.2021.274734.1078
  15. Shafi Salimi, P., & Edalatpanah, S. A. (2020). Supplier selection using fuzzy AHP method and D-Numbers. Journal of fuzzy extension and applications1(1), 1-14. https://doi.org/10.22105/jfea.2020.248437.1007
  16. Ghahremani Nahr, J., & Zahedi, M. (2021). Modeling of the supply chain of cooperative game between two tiers of retailer and manufacturer under conditions of uncertainty. International journal of research in industrial engineering10(2), 95-116. https://doi.org/10.22105/riej.2021.276520.1190
  17. Nasiri, A., Mansory, A., & Mohammadi, N. (2022). Evaluating of effective factors on green supply Chain management using statistical methods and SWARA approach. International journal of research in industrial engineering11(2), 165-187. https://doi.org/10.22105/riej.2022.309927.1257
  18. Torra,, & Narukawa, Y. (2009). On hesitant fuzzy sets and decision. 2009 IEEE international conference on fuzzy systems(pp. 1378-1382). IEEE. DOI: 10.1109/FUZZY.2009.5276884
  19. Torra, (2010). Hesitant fuzzy sets. International journal of intelligent systems25(6), 529-539. https://doi.org/10.1002/int.20418
  20. Ahmad, F., Adhami, A. Y., & Smarandache, F. (2018). Single valued neutrosophic hesitant fuzzy computational algorithm for multiobjective nonlinear optimization problem. Neutrosophic sets and systems22, 76-86.
  21. Bharati, S. K. (2018). Hesitant fuzzy computational algorithm for multiobjective optimization problems. International journal of dynamics and control6(4), 1799-1806. https://doi.org/10.1007/s40435-018-0417-z
  22. Ahmad, F., & John, B. (2022). Modeling and optimization of multiobjective programming problems in neutrosophic hesitant fuzzy environment. Soft computing26(12), 5719-5739.
  23. Xia, M., & Xu, Z. (2011). Hesitant fuzzy information aggregation in decision making. International journal of approximate reasoning52(3), 395-407. https://doi.org/10.1016/j.ijar.2010.09.002
  24. Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science17(4), B-141-164. https://doi.org/10.1287/mnsc.17.4.B141
  25. Ranjbar, M., & Effati, S. (2019). Symmetric and right-hand-side hesitant fuzzy linear programming. IEEE transactions on fuzzy systems28(2), 215-227. DOI: 1109/TFUZZ.2019.2902109
  26. Santos, H., Bedregal, B., Santiago, R., Bustince, H., & Barrenechea, E. (2015). Construction of typical hesitant triangular norms regarding Xu-Xia-partial order. 2015 conference of the international fuzzy systems association and the european society for fuzzy logic and technology (IFSA-EUSFLAT-15)(pp. 953-959). Atlantis Press. https://doi.org/10.2991/ifsa-eusflat-15.2015.134
  27. Farhadinia, B. (2014). A series of score functions for hesitant fuzzy sets. Information sciences277, 102-110.
  28. Lai, Y., & Hwang, C. L. (1994). Fuzzy multiple objective decision making. In Fuzzy multiple objective decision making(pp. 139-262). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57949-3_3