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Abstract 

 

1 | Introduction 

Fuzzy graphs were introduced by Rosenfeld [26]. Rosenfeld [26] has described the fuzzy analog of 

several graph theoretic concepts like paths, cycles, trees, and connectedness and established some of 

their properties. Bhutani and Rosenfeld [9] have introduced the concept of strong arcs. Akram [1] 

also does several works on fuzzy graphs, Akram and Dudek [2], Akram et al. [3], Manjusha and 

Sunitha [16], Narayan and Sunitha [28], Mathew and Sunitha [14], and Rashmanlou et al. [5]. Global 

domination in graphs was discussed by Sampathkumar [7]. Somasundaram and Somasundaram [25] 

discussed domination in fuzzy graphs. They defined domination using effective edges in fuzzy graphs 

[19], [25]. Nagoorgani and Chandrasekharan [21] explained domination in fuzzy graphs using strong 

arcs. Manjusha and Sunitha [15], [16] discussed some concepts of domination and total domination 

in fuzzy graphs using strong arcs. Akram [1] did related works on bipolar fuzzy graphs, Akram et al. 

[3], Akram and Waseem [4], and Nagoorgani et al. [22]. This paper discusses global domination in 

fuzzy graphs using strong arcs. 
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2 | Preliminaries 

It is pretty well-known that graphs are simply models of relations. A graph is a convenient way of 

representing information involving the relationship between objects. Vertices and relations by edges 

represent the objects. When there is vagueness in the description of the objects, their relationships, or 

both, it is natural that we must design a 'fuzzy graph model.' It briefly summarises some basic definitions 

in fuzzy graphs presented in [8], [9], [12], [15], [17], [20], [21], [23], [25], [26]. 

A fuzzy graph is denoted by , where  is a node-set,  and  are mappings defined as 

  and   , where  and  represent the membership values of a node and an 

arc respectively. For any fuzzy graph,   . We consider fuzzy graph  with no loops 

and assume that  is finite and nonempty,  is reflexive (i.e.  , for all x) and symmetric (i.e. 

 , for all (x, y)). In all the examples,  is chosen suitably. Also, we denote the underlying 

crisp graph by G∗: (σ∗, µ∗) where σ∗ =     and     . Throughout, 

we assume that   . The fuzzy graph  is said to be a partial fuzzy subgraph of  

if   and  . In particular, we call  a fuzzy subgraph of  if   for 

all   and   for all  . A fuzzy graph  is called trivial if 


 . 

Two nodes  and  in a fuzzy graph  are said to be adjacent (neighbors) if  . The set of all 

neighbors of  is denoted by . An arc  of a fuzzy graph  with   is 

called a the weakest arc of  if  is an arc with a minimum . A path  of length  is a 

sequence of distinct nodes  such that 


  and the degree of 

membership of the weakest arc is defined as its strength. If  , and  , then  is called a cycle, 

and  is called a fuzzy cycle if it contains more than one weakest arc. A cycle's strength is the strength of 

its weakest arc. The strength of connectedness between two nodes,  and , is defined as the maximum 

of the strengths of all paths between  and  and is denoted by .  

A fuzzy graph  is connected if for every ,  in 


,  . 

An arc  of a fuzzy graph is called an effective arc if   . neighbors of  are called 

the effective neighborhood of  and are denoted by . 

A fuzzy graph  is said to be complete if µ   , for all u, v ∈ σ∗. 

The order  and size  of a fuzzy graph  is defined to be 


  and

 

   

Let  be a fuzzy graph and  . Then the scalar cardinality of S is defined to be


 , 

and it is denoted by . Let  denotes the scalar cardinality of , also called the order of . 

The complement of a fuzzy graph , denoted by , is defined to be G = (V, σ, µ) where 

    for all x, y ∈ V [13]. An arc of a fuzzy graph G :  (V, σ, µ) is called strong 

if its weight is at least as great as the strength of connectedness of its end nodes when it is deleted. A fuzzy 

graph G is called a strong fuzzy graph if each arc in G is a strong arc. Depending on   of 

an arc (x, y) in a fuzzy graph G, Mathew and Sunitha [17] defined three different types of arcs. Note that 
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is the strength of connectedness between x and y in the fuzzy graph obtained from 

G by deleting the arc (x, y). An arc (x, y) in G is α−strong if      
  

An arc (x, y) in G is β−strong if      
 An arc (x, y) in G is δ−arc if 

     
  

Thus, an arc (x, y) is strong if it is either α strong or β strong. Also, y is called a strong neighbor of x if 

the arc (x, y) is strong. The set of all strong neighbors of x is called the strong neighborhood of x and is 

denoted by Ns(x). The closed strong neighborhood Ns[x] is defined as     A path P 

is called a strong path if P contains only strong arcs. 

A fuzzy graph G: (V, σ, µ) is said to be bipartite [25] if the vertex set V can be partitioned into two non-

empty sets  and such that    if ,  ∈  or ,  ∈ . Further if 

   for all u ∈  and v ∈ , then G is called a complete bipartite graph and is 

denoted by , where and are respectively the restrictions of σ to  and . 

A node u is said to be isolated if µ(u, v) = 0 for all  . 

3 | Strong Global Domination in Fuzzy Graphs 

This section introduces the concept of global domination in fuzzy graphs using strong arcs. Recall the 

notion of global domination in graphs introduced by Sampathkumar [7]. According to him, a dominating 

set S of G is a global dominating set of G if S is also a dominating set of the complement of G. The 

minimum number of vertices in a global dominating set of G is the global domination number γg(G) of 

G. 

Nagoorgani and Hussain [24] introduced the concept of global domination in fuzzy graphs using 

effective arcs. According to then a set   is a dominating set of a fuzzy graph G if every vertex in 

V\ D is effective adjacent to some vertex in D. A fuzzy dominating set D of an effective fuzzy graph G 

is a global fuzzy dominating set if D is also a fuzzy dominating set of the complement of a fuzzy graph 

G. The global fuzzy domination number is the minimum fuzzy cardinality of a fuzzy global dominating 

set. These concepts have motivated researchers to reformulate the concept of global domination more 

effectively. The studies in [24] are the main motivation of this article, and it is introduced the definition 

of global domination of a fuzzy graph using strong arcs. This introduction is essential because the 

parameter 'global domination number' defined by Nagoorgani and Hussain [24] is inclined more towards 

graphs than fuzzy graphs. Using the new definition of global domination number, it is possible to reduce 

the value of the old global domination number and extract classic results in a fuzzy graph. 

Definition 1 ([21]). A node v in a fuzzy graph G : (V, σ, µ)  is said to strongly dominate itself and each 

of its strong neighbors; that is, v strongly dominates the nodes in  
  . A set D of nodes of G is a 

strong dominating G set if every node of V(G) −D is a strong neighbor of some node in D. 

Definition 2. A strong dominating set D of a fuzzy graph G : (V, σ, µ) is called a strong global 

dominating set of G if D is also a strong dominating set of the complement of the fuzzy graph G. 

Definition 3. The weight of a strong global dominating set D is defined as W (D) = u∈D µ(u, v), where 

µ(u, v) is the minimum of the membership values (weights) of the strong arcs incident on u. The strong 
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global domination number of a fuzzy graph G is defined as the minimum weight of strong global 

dominating sets of G, and it is denoted by  or simply . A minimum strong global dominating 

set in a fuzzy graph G is a strong global dominating set of minimum weight. 

Let γsg(G) or γsg denote the strong global domination number of the complement of a fuzzy graph G. 

Remark 1. Note that in any undirected fuzzy graph G : (V, σ, µ), for any x, y  V, if (x, y) is a strong arc in 

G, then (x, y) need not be a strong arc in . That is, if x strongly dominates y in G, then x need not 

strongly dominate y in . 

Remark 2. If all the nodes are isolated, then V is the only strong global dominating set of G of order p 

and γsg = 0. That is, Ns(u) = ϕ for each u ∈ V. 

Example 1. Consider the fuzzy graph given in Fig. 1. 

Fig. 1. Illustration of strong global domination in fuzzy graphs. 

In this fuzzy graph, strong arcs are (u, w), (w, x), and (x, v). The strong global dominating sets are D1 = {u, 

x}, D2 = {u, v}, D3 = {w, x}, and D4 ={v, w}. Among these, the minimum strong global dominating sets 

are D1 and D3 where 

Hence γsg = 0.5. 

4 | Strong Global Domination Number for Classes of Fuzzy Graphs 

This section determines the strong global domination number of a complete fuzzy graph, complete 

bipartite fuzzy graphs, and fuzzy cycles. 

Proposition 1. If G : (V, σ, µ) is a complete fuzzy graph, then 

Where n is the number of nodes in G and µ(u, v) is the weight of the weakest arc in G. 

Proof. Since G is a complete fuzzy graph, all arcs are strong [25] and each node is adjacent to all other 

nodes. Also, all nodes in  are isolated nodes hence the set of all nodes of G is the strong global dominating 

set of G. Hence the result follows. 

Proposition 2. In any fuzzy graph G : (V, σ, µ), the number of elements in any minimum strong global 

dominating set of both G and   are the same. 

Proof. By definition, a strong global dominating set is a dominating set of both G and  . Hence the 

proposition. 
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Proposition 3. γsg(Kσ1,σ2 ) = 2µ(u, v), where µ(u, v) is the weight of the weakest arc in Kσ1,σ2 and u ∈ V1, 

v ∈ V2. 

Proof. In Kσ1,σ2 , all arcs are strong. Also, each node in V1 is adjacent to all nodes in V2. Hence in Kσ1,σ2, 

the strong global dominating set is any set containing precisely two nodes, one in V1 and the other in 

V2. The end nodes say {u, v} of any weakest arc (u, v) in Kσ1,σ2 forms the minimum strong global 

dominating set of G. Hence γsg(Kσ1,σ2 ) = µ(u, v) + µ(u, v) = 2µ(u, v). So the proposition is proved. 

Theorem 1. Let G : (V, σ, µ) be a fuzzy cycle where G∗ is a cycle. Then, γsg(G) =   is a strong 

global dominating set in G with |D| ≥ 
 
 
 

, where n is the number of nodes in G. 

Proof. In a fuzzy cycle, every arc is strong. Also, the number of nodes in a strong global dominating set 

of both G and G∗ are the same because each arc in both graphs is strong. In graph G∗, the strong global 

domination number of G∗ is obtained as ⌊ ⌋ [27]. Hence the minimum number of nodes in a strong 

global dominating set of G is ⌊ ⌋. Therefore the result follows. 

Proposition 4. Let G : (V, σ, µ) be a non trivial fuzzy graph of size q. Then γsg(G) = q if and only if all 

arcs are strong and each node is either isolated or has a unique, strong neighbor. 

Proof. If all arcs are strong and each node is either an isolated node or has a unique, strong neighbor, 

then the minimum strong global dominating set of G is a set D containing nodes, each of which is either 

an isolated node or an end node of each unique, strong arc. Hence the weight of D is exactly 

Hence γsg = q. 

Conversely, suppose that γsg = q. To prove that all arcs are strong and each node is either isolated or has 

a unique, strong neighbor. If possible, let (u, v) be an arc of G, which is not strong. Then the weight of 

this arc is not counted for getting γsg. Hence γsg < q, a contradiction. Hence all arcs are strong. 

Let x be any node of G. If x is an isolated node, then clearly, x is contained in the minimum strong 

global dominating set. If possible, suppose x has two strong neighbors say v and w. Then exactly one of 

the weights of the arcs (x, v) and (x, w) contribute to the weight of the minimum strong global dominating 

set. Hence γsg < q, a contradiction. Hence each node has a unique, strong neighbor. 

Remark 3. In proposition 4, G is exactly S ∪ N where S is a set of isolated nodes, may be empty, and 

N is a union of K2 s. 

Remark 4. In any fuzzy graph G : (V, σ, µ), sg  < p always holds since µ(x, y) ≤ σ(x)   σ(y) for all x, y ∈ 

σ∗, [p is the scalar cardinality of G, which is obtained by using the node weights, and  is the weight 

of the minimum strong global dominating set, which is obtained by using the arc weights]. 

For the strong global domination number , the following theorem gives a Nordhaus-Gaddum type 

result. 

Theorem 2. For any fuzzy graph G : (V, σ, µ), γsg + γsg < 2p. 

Proof. Since γsg < p and γsg < p by remark 4, we have γsg +γsg < p+p = 2p. 
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Definition 4. A strong global dominating set D of a fuzzy graph G : (V, σ, µ) is called a minimal strong 

global dominating set if no proper subset of D is a strong global dominating set. 

Example 2. In Fig. 1 of example 1, D =    is a minimal strong global dominating set. 

Definition 5 ([18]). A strong dominating set D of a fuzzy graph G : (V, σ, µ) is a strongly connected 

dominating set of G if the induced fuzzy sub graph < D > is connected. 

Remark 5 ([18]). Note that a fuzzy graph G : (V, σ, µ) contains a strong, connected dominating set if and 

only if G is connected. 

Definition 6 ([18]). The weight of a strong, connected dominating set D is defined as 

, where µ(u, v) is the minimum of the membership values(weights) of strong arcs incident on 

u. The strong connected  domination number of a fuzzy graph G is defined as the minimum weight of 

strong, connected dominating sets of G, and it is denoted by γsc(G) or simply γsc. A minimum strong, 

connected dominating set in a fuzzy graph G is a strong, connected dominating set of minimum weight. 

Let γsc( ) or  denote the strong connected domination number of the complement of a fuzzy graph G. 

Remark 6. Let D be a minimum strong global dominating set of a fuzzy graph G : (V, σ, µ). Then D 

induces a connected subgraph in G or Gc. Hence D is a strongly connected dominating set of G or Gc. 

Thus the following proposition is established. 

Proposition 5. For any fuzzy graph G : (V, σ, µ), at least one of the following holds; 

 γsc ≤γsg. 

  ≤  . 

5 | Strong Global Domination in Complement of Fuzzy Graphs 

Sunitha and Vijayakumar [13] have defined the present notion of the complement of a fuzzy graph. 

Sandeep and Sunitha [28] have studied the connectivity concepts in a fuzzy graph and its complement. The 

complement of a fuzzy graph G, denoted by  or  is defined to be   where 

   for all   [13]. Bhutani [8] has defined the isomorphism between 

fuzzy graphs. 

Consider the fuzzy graphs G1 : (V1, σ1, µ1) and G2 : (V2, σ2, µ2) with σ1
∗ = V1 and σ2

∗ = V2. An isomorphism 

[8] between two fuzzy graphs G1 and G2 is a bijective map h: V1 → V2 that satisfies; 

 σ1(u) = σ2(h(u)) for all u ∈ V1. 

 µ1(u, v) = µ2(h(u), h(v)) for all u, v ∈ V1 and we write G1 ≈ G2. 

A fuzzy graph G is self-complementary [13] if G ≈ . 

Theorem 3 ([13]). If G is an M-strong fuzzy graph, then  is also an M-strong fuzzy graph. 

Theorem 4. If G is an M-strong fuzzy graph, then G and  have the same strong global dominating set. 

Proof. By theorem 3, if G is an M-strong fuzzy graph, then Gc is also an M-strong fuzzy graph. Then the 

end nodes of the M-strong arcs in G are isolated nodes in Gc, and isolated nodes in G are the end nodes 
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of M-strong arcs in Gc. Hence every strong global dominating set of G is a strong global dominating set 

of Gc and vice-versa. Thus the theorem follows. 

Theorem 5. Every non-trivial self-complementary connected fuzzy graph G has a strong global 

dominating set D whose complement is also a strong global dominating set. 

Proof. Every non-trivial connected fuzzy graph G has a strong dominating set D whose complement V 

− D is also a strong dominating set [16]. Since G is self-complementary, G    Gc. Hence G and Gc are 

connected. Hence the theorem follows by using the result in [16]. 

Theorem 6. For any self-complementary connected fuzzy graph G : (V, σ, µ), γsg ≤ p/2. 

Proof. Let D be a minimal strong global dominating set of G. Then, by theorem 3, V − D is a strong 

global dominating set of G. Then γsg ≤ W (D) and γsg ≤ W (V − D). 

Therefore  p implies  . Hence the proof. 

Corollary 1. Let G be a self complimentary connected fuzzy graph. Then γsg +𝛾𝑠𝑔̅̅ ̅̅  ≤ p further equality 

holds if and only if γsg = 𝛾𝑠𝑔̅̅ ̅̅  = p/2. 

Proof. By theorem 6, γsg ≤ p/2,  ≤ p/2  γsg +  ≤ p/2 + p/2 = p, that is γsg +  ≤ p. If 

  , then obviously   . Conversely, suppose   . Then, by theorem 

6, we have γsg ≤ p/2,  ≤ p/2. If either γsg < p/2 or  < p/2, then   , which is a 

contradiction. Hence the only possibility is that   .  

Theorem 7. In any fuzzy graph, G : (V, σ, µ), γsg = p/2 if and only if the following conditions hold. 

I. The graph is a self-complementary fuzzy graph. 

II. All nodes have the same weight. 

III. All arcs are M-strong arcs. 

IV. For every minimum strong global dominating set D of G,  , where n is the number of nodes 

of G, and n is even. 

Proof. If all the above conditions hold, then obviously γsg = p/2. 

Conversely, suppose γsg = p/2. If the graph is not self-complementary, then clearly γsg < p/2. If some 

nodes say u and v have different weights, then the arc weight corresponding to these nodes is µ(x, y) ≤ 

σ(x)   σ(y). 

If µ(x, y) < σ(x)   σ(y), then obviously γsg < p/2, a contradiction. 

If µ(x, y) = σ(x)   σ(y), then (x,y) is a M-strong arc. 

If |D| < n/2, then clearly γsg < p/2, a contradiction.  

Hence all the conditions are sufficient. 
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6 | Strong Global Domination in Fuzzy Trees 

A fuzzy subgraph H : (τ, ν) spans the fuzzy graph G : (V, σ, µ) if τ = σ [20]. A connected fuzzy graph G = 

(V, σ, µ) is called a fuzzy tree (f-tree) if it has a fuzzy spanning subgraph F : (σ, ν), which is a tree, where for 

all arcs (x, y) not in F there exists a path from x to y in F whose strength is more than µ(x, y) [26]. Note 

that here F is a tree that contains all nodes of G and hence is a spanning tree of G. Also, note that F is the 

unique Maximum Spanning Tree (MST) of G [11], where a MST of a connected fuzzy graph G: (V, σ, µ) 

is a fuzzy spanning subgraph T : (σ, ν), such that T∗ is a tree, and for which is maximum [20]. 

An arc is called a fuzzy bridge (f-bridge) of a fuzzy graph G: (V, σ, µ) if its removal reduces the strength of 

connectedness between some pair of nodes in G [26]. 

Similarly, a fuzzy cut node (f-cut node) w is a node in G whose removal from G reduces the strength of 

connectedness between some pair of nodes other than w [26]. 

A node z is called a fuzzy end node (f-end node) if it has precisely one strong neighbor in G [10]. 

A non-trivial fuzzy tree G contains at least two fuzzy end nodes, and every node in G is either a fuzzy cut 

node or a fuzzy end node [10]. 

In an f-tree G, an arc is strong if and only if it is an arc of F, where F is the associated unique MST of G 

[9], [11]. Note that these strong arcs are α-strong, and there are no β-strong arcs in an f-tree [17]. Also, 

note that in an f-tree G, an arc (x, y) is α-strong if and only if (x, y) is an f-bridge of G [17]. 

Theorem 8 ([12]). The strong arc incident with a fuzzy end node is a fuzzy bridge in any non-trivial fuzzy 

graph G : (V, σ, µ). 

Corollary 2 ([12]). In a non-trivial fuzzy tree G : (V, σ, µ) except K2, the strong neighbor of a fuzzy end 

node is a fuzzy cut node of G. 

Theorem 9. In a non-trivial fuzzy tree G : (V, σ, µ), every node of a strong global dominating set is either 

a fuzzy cut node or a fuzzy end node. 

Proof. A non-trivial fuzzy tree G contains at least two fuzzy end nodes, and every node in G is either a 

fuzzy cut node or a fuzzy end node [10]. Hence the theorem. 

Theorem 10. In a non-trivial fuzzy tree G : (V, σ, µ), each node of a strong global dominating set is incident 

on a fuzzy bridge of G. 

Proof. Let D be a strong global dominating set of G. Let  . Since D is a strong global dominating set, 

there exists   such that (u, v) is a strong arc. Also, D is a strong global dominating set of G¯. Then 

(u, v) is an arc of the unique MST F of G [9], [11]. Hence (u, v) is an f-bridge of G [26]. Since u is arbitrary, 

this is true for every node of the strong global dominating set of G. This completes the proof. 

7 | Practical Application 

Let G be a graph that represents the road network connecting various hospitals. Let the vertices denote 

the hospitals, and the edges denote the roads connecting the hospitals. Suppose we need to navigate 

patients in between hospitals during busy hours. The membership functions σ and µ on the vertex set and 

the edge set of G's can be constructed from the statistical data that represents the number of ambulances 

going to various hospitals and the number of ambulances passing through multiple roads during a busy 

hour. Now the term' busy' is vague in nature. It depends on the availability of ambulances, time of journey, 

hospital's demands, special requirements of patients, etc. Thus, we get a fuzzy graph model. Some of the 
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roads may be too traffic during the busy hour. So, we must think of taking patients to various hospitals 

through secret roads. In this fuzzy graph, a strong global dominating set D can be interpreted as a set 

of busy hospitals in the sense that every hospital not in D is connected to a hospital in D by a road or a 

secret road in which the traffic flow is full. 

8 | Conclusion 

Global fuzzy domination yields specific, adaptable, and conformable results compared to classical 

domination and fuzzy domination. Hence it introduced global domination in fuzzy graphs using strong 

arcs and found some results using the newly defined parameter' global domination number.' It is 

established that every node of a strong global dominating set of a fuzzy tree is either a fuzzy cut node 

or a fuzzy end node. It is proved that in a fuzzy tree, each node of a strong global dominating set is 

incident on a fuzzy bridge. Also, the characteristic properties of the existence of a strong global 

dominating set for a fuzzy graph and its complement are established. 
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