Document Type : Research Paper


Department of Mathematics, Government College University, Lahore 54000, Pakistan.


In this paper, we define the term " η-fuzzy subgroup" and show that every fuzzy subgroup is a η-fuzzy subgroup. We define some of the algebraic properties of the concept of η-fuzzy cosets. Furthermore, we initiate the study of the η-fuzzy normal subgroup and the quotient group with respect  to the η-fuzzy normal subgroup and demonstrate some of their various group theoretical properties.


Main Subjects

  • Ajmal, N. (1994). Homomorphism of fuzzy groups, correspondence theorem and fuzzy quotient groups. Fuzzy sets and systems61(3), 329-339.
  • Anthony, J. M., & Sherwood, H. (1979). Fuzzy groups redefined. Journal of mathematical analysis and applications69(1), 124-130.
  • Chakraborty, A. B., & Khare, S. S. (1993). Fuzzy homomorphism and algebraic structures. Fuzzy sets and systems59(2), 211-221.
  • Das, P. S. (1981). Fuzzy groups and level subgroups. Journal of mathematical analysis and applications84(1), 264-269.
  • Gupta, M. M., & Qi, J. (1991). Theory of T-norms and fuzzy inference methods. Fuzzy sets and systems40(3), 431-450.
  • Mordeson, J. N., Bhutani, K. R., & Rosenfeld, A. (2005). Fuzzy group theory(Vol. 182). New York: Springer.
  • Mukherjee, N. P., & Bhattacharya, P. (1984). Fuzzy normal subgroups and fuzzy cosets. Information sciences34(3), 225-239.
  • Rosenfeld, A. (1971). Fuzzy groups. Journal of mathematical analysis and applications35(3), 512-517.
  • Tarnauceanu, M. (2012). Classifying fuzzy subgroups of finite nonabelian groups. Iranian journal of fuzzy systems9, 33-43.
  • Tarnauceanu, M. (2015). Classifying fuzzy normal subgroups of finite groups. Iranian journal of fuzzy systems, 12(2), 107-115.
  • Yager, R. R. (1984). Fuzzy set and possibility theory. IEEE transactions on systems, man, and cybernetics, 1, 169-169.
  • Zadeth, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.
  • Zulfiqar, M. (2014). On sub-implicative (α, β)-fuzzy ideals of BCH-algebras. Mathematical reports1, 141-161.
  • Zulfiqar, M., & Shabir, M. (2015). Characterizations of (∈,∈∨ q)-interval valued fuzzy H-ideals in BCK-algebras.Kuwait journal of science42(2), 42-66.
  • Bhunia, S., Ghorai, G., Kutbi, M. A., Gulzar, M., & Alam, M. A. (2021). On the algebraic characteristics of fuzzy sub e-groups. Journal of function spaces2021, 1-7.
  • Bhunia, S., Ghorai, G., Xin, Q., & Torshavn, F. I. (2021). On the characterization of Pythagorean fuzzy subgroups. AIMS mathematics6(1), 962-978.