Document Type : Research Paper
Authors
1 Research Scholar, Catholicate College, Pattanamthitta, Kerala, India.
2 Department of Mathematics, Catholicate College, Pattanamthitta, Kerala, India.
3 Department of Science & Humanities, Providence College of Engineering and School of Business, Alappuzha, Kerala, India.
4 Department of Mathematics, University of New Mexico 705 Gurley Ave. Gallup, NM 87301, USA.
Abstract
This work is the continuation of our recent work entitled “n-Cylindrical Fuzzy Neutrosophic Topological Spaces (n-CyFNTS). In this paper, we present n-Cylindrical fuzzy neutrosophic (n-CyFN) continuous functions and related results. A characterization on n-CyFN continuous functions is proposed as well. Along with familiarising the n-CyFN interior and n-CyFN closure of sets in n-Cylindrical fuzzy neutrosophic topological space (n-CyFNT) and its basic theorems, we define n-CyFN open function, n-CyFN closed function and n-CyFN homeomorphism.
Keywords
- n-CyFN continuous functions
- CyFN interior
- n-CyFN closure
- n-CyFN open function
- n-CyFN closed function
- n-CyFN homeomorphism
Main Subjects
- Salama, A. A., & Alblowi, S. A. (2012). Neutrosophic set and neutrosophic topological spaces. IOSR journal of mathematics (IOSR-JM), 3(4), 31-35. https://philpapers.org/rec/SALNSA-5
- Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
- Atanassov, K. T. (1989). More on intuitionistic fuzzy sets. Fuzzy sets and systems, 33(1), 37-45. https://doi.org/10.1016/0165-0114(89)90215-7
- Chang, C. L. (1968). Fuzzy topological spaces. Journal of mathematical analysis and applications, 24(1), 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
- Cuong, B. C., & Kreinovich, V. (2014). Picture fuzzy sets. Journal of computer science and cybernetics, 30(4), 409-420.
- Coker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systems, 88(1), 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0
- Smarandache, F. (2002). A unifying field in logics, neutrosophic logic, multiplevalued logic. An international journal, 8 (3), 385-438.
- Veereswari, Y. (2017). An introduction to fuzzy neutrosophic topological spaces. Infinite Study.
- Kumari, S. R., Kalayathankal, S., George, M., & Smarandache, F. (2022). N-cylindrical fuzzy neutrosophic sets. International journal of neutrosophic science, 18(4). 355-374.
- Razaq, A., Garg, H., & Shuaib, U. (2022). Classification and construction of picture fuzzy topological spaces. Retrieved from https://doi.org/10.48550/arXiv.2201.03928
- Princy, R., & Mohana, K. (2019). An introduction to spherical fuzzy topological spaces. International journal of innovative research in technology, 6(5), 110-112.
- Olgun, M., Ünver, M., & Yardımcı, Ş. (2019). Pythagorean fuzzy topological spaces. Complex & intelligent systems, 5(2), 177-183. https://doi.org/10.1007/s40747-019-0095-2
- Arockiarani, I., & Jency, J. M. (2014). More on fuzzy neutrosophic sets and fuzzy neutrosophic topological spaces. International journal of innovative research and studies, 3(5), 643-652.
- Kahraman, C., & Gündogdu, F. K. (2021). Decision making with spherical fuzzy sets. Studies in fuzziness and soft computing, 392, 3-25.
- Lee, S. J., & Lee, E. P. (2000). The category of intuitionistic fuzzy topological spaces. Bulletin of the Korean mathematical society, 37(1), 63-76.