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Abstract 

 

1 | Introduction 

Following Zadeh's invention of fuzzy sets [14], Chang [6] introduced the idea of fuzzy topological 

space, and numerous researchers adapted general topological notions in the context of fuzzy 

topology, among them. Atanassov's Intuitionistic Fuzzy Sets (IFSs) [5] are one of the fuzzy set's 

generalisations. Later, Coker [7] introduced the useful concept of intuitionistic fuzzy topological 

space by utilising the concept of the IFS. Jeon et al. [11] defined and investigated the concepts of 

intuitionistic fuzzy-continuity and pre-continuity. After Smarandache [8], [9] introduced the concepts 

of neutrosophy and neutrosophic set, Salama and Alblowi [1] introduced the concepts of 

neutrosophic crisp set and neutrosophic crisp topological spaces. Neutrosophy has laid the 

groundwork for a new class of mathematical theories that generalise both their crisp and fuzzy 

counterparts. The neutrosophic set is a generalisation of the IFS. Salama and Alblowi [1] introduced 

the concept of neutrosophic topological spaces in 2012. They defined neutrosophic topological space 

as a generalisation of intuitionistic fuzzy topological space and a neutrosophic set in addition to each 

element's degree of membership, degree of indeterminacy, and degree of non-membership. 

Smarandache [7], [8] introduced the dependence degree of (also, the independence degree of) the 

fuzzy and neutrosophic components for the first time. Arokiarani et al. [4] pioneered the concept of 
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fuzzy neutrosophic set, defined as the sum of all three membership functions not exceeding 3. In 2017, 

Veereswari [16] proposed a Fuzzy Neutrosophic topological space and basic operations on it. Sarannya et 

al. [13] introduced n-Cylindrical Fuzzy Neutrosophic Sets (n-CyFNS), which have T and F as dependent 

components and I as independent components. Except for fuzzy neutrosophic sets, the n-CyFNS is the 

largest extension of fuzzy sets. In this case, the degree to which positive, neutral, and negative membership 

functions satisfy the condition, 0 ≤ βA(x) ≤1 and 0 ≤ αA n(x) + γAn(x) ≤ 1, n > 1, is an integer. They also 

defined the distance between two n-CyFNS, as well as their properties and basic operations. 

In this work, the membership functions of an image and its pre image in n-CyFNSs are defined at first. 

We then introduced the n-CyFN continuity of a function defined between two n-Cylindrical Fuzzy 

Neutrosophic Topological Spaces (n-CyFNTS) using this concept. In addition, we characterise the n-CyFN 

continuity and present some fundamental results associated with this idea. Additionally defined are n-CyFN 

interior and closure of n-CyFN subsets of n-CyFNTS. Based on these concepts, we investigate some 

properties. As well as this, the ideas of n-CyFN open function, n-CyFN closed function and n-CyFN 

homeomorphism are presented. 

2 | Preliminaries 

Throughout this paper, Ʋ denotes the universe of discourse. 

Definition 1 ([17]). A fuzzy set A in Ʋ is defined by membership function µA: A→ [0, 1] whose 

membership value µA(x) shows the degree to which x ∈ Ʋ includes in the fuzzy set A, for all x ∈ Ʋ. 

Definition 2 ([6]). A fuzzy topological space is a pair (X, T), where X is any set and T is a family of fuzzy 

sets in X satisfying following axioms: 

I. Ф, X ∈ T. 

II. If A, B ∈ T, then A∩B ∈ T. 

III. If Ai ∈ T for each i ∈ I, then Ui Ai ∈ T. 

Definition 3 ([5]). An IFS A on Ʋ is an object of the form A = {(x, αA(x), γA(x) |x ∈ Ʋ)} where αA(x) ∈ 

[0,1] is called the degree of membership of x in A, γA(x) ∈ [0,1] is called the degree of non-membership of 

x in A, and where αA and γA satisfy (for all x ∈ Ʋ) (αA(x) + γA(x) ≤ 1) IFS(Ʋ) denote the set of all the IFSs on 

a universe Ʋ. 

Definition 4 ([8]). A neutrosophic set A on Ʋ is A = < x, TA(x), IA(x), FA(x) >; x ∈ Ʋ, where TA, IA, FA: 

A→ ]-0,1+[ and -0 < TA(x) + IA(x) + FA(x) < 3+. 

Definition 5 ([16]). A fuzzy neutrosophic set A on Ʋ is A = < x, TA(x), IA(x), FA(x) >; x ∈ Ʋ, where TA,, 

IA, FA: A→ [0,1] and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 

Definition 6 ([9]). A neutrosophic set A on Ʋ is an object of the form A = {(𝑥, 𝑢𝐴(𝑥), 𝜁𝐴 (𝑥), 𝑣𝐴(𝑥)): 𝑥 ∈ 

Ʋ}, where 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥) ∈ [0,1], 0 ≤ 𝑢𝐴(𝑥) + 𝜁𝐴(𝑥) + 𝑣𝐴 (𝑥) ≤ 3, for all 𝑥 ∈ Ʋ. 𝑢𝐴(𝑥) is the degree of truth 

membership, 𝜁𝐴(𝑥) is the degree of indeterminacy and 𝑣𝐴(𝑥) is the degree of non-membership. Here (𝑥) 

and (𝑥) are dependent components and (𝑥) is an independent component.  

Definition 7 ([1]). A Neutrosophic Topology (NT) on a non-empty set X is a family 𝜏 of neutrosophic 

subsets in X satisfying the following axioms: 

I. (NT1) 0𝑁, 1𝑁 ∈ 𝜏. 

II. (NT2) 𝐺1∩𝐺2 ∈ 𝜏 for any 𝐺1, 𝐺2 ∈ 𝜏. 
III. (NT3) ∪ 𝐺𝑖 ∈ 𝜏, for all {𝐺𝑖: 𝑖 ∈ 𝐽} ⊆ 𝜏. 
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In this case the pair (X) is called a Neutrosophic Topological Space (NTS) and any neutrosophic set in 

𝜏 is known as Neutrosophic Open Set (NOS) in X. The elements of 𝜏 are called open neutrosophic sets, 

A neutrosophic set F is closed if and only if it C(F) is neutrosophic open. 

Definition 8 ([16]). A Fuzzy Neutrosophic Topology (FNT) a non-empty set X is a family 𝜏 of fuzzy 

neutrosophic subsets in satisfying the following axioms: 

I. (FNT1) 0𝑁,1𝑁 ∈ 𝜏. 

II. (FNT2) 𝐺1∩𝐺2 ∈𝜏 for any 𝐺1, 𝐺2 ∈ 𝜏. 

III. (FNT3) ∪𝐺𝑖 ∈𝜏, for all{𝐺𝑖: 𝑖 ∈ 𝐽}⊆ 𝜏. 

In this case the pair (X) is called a Fuzzy Neutrosophic Topological Space (FNTS) and any fuzzy 

neutrosophic set in 𝜏 is known as Fuzzy Neutrosophic Open Set (FNOS) in. The elements of 𝜏 are 

called open fuzzy neutrosophic sets. 

Definition 9 ([13]). A n-CyFNS A on Ʋ is an object of the form A = {  x, αA(x), βA(x), γA(x)  | x ∈ Ʋ} 

where αA(x) ∈ [0, 1], called the degree of positive membership of x in A, βA(x) ∈ [0,1], called the degree 

of neutral membership of x in A and γA(x) ∈ [0, 1], called the degree of negative membership of x in A, 

which satisfies the condition, (for all x ∈ Ʋ) (0 ≤ βA(x) ≤ 1 and 0 ≤ αA
 n(x) + γA

n(x) ≤ 1, n > 1, is an integer. 

Here T and F are dependent neutrosophic components and I is independent. 

For the convenience,  αA(x), βA(x), γA(x)  is called as n-Cylindrical Fuzzy Neutrosophic Number (n-

CyFNN) and is denoted as A =  αA, βA, γA  . 

Definition 10 ([13]). Let { } be an arbitrary family of n-CyFNS in Ʋ. Then 

  {  x, inf (αAi(x)), inf (βAi(x)), sup ((γAi(x))  |x ∈ Ʋ}.  
 = {  x, sup (αAi(x)), sup (βAi(x)), inf ((γAi(x))  |x ∈ Ʋ}. 

Definition 11 ([13]). Let ꞆN(Ʋ) denote the family of all n-CyFNSs on Ʋ. 

1. Inclusion: for every two A, B ∈ ꞆN(Ʋ), A ⊆ B iff (for all x ∈ Ʋ, αA(x) ≤ αB(x) and βA(x) ≤ βB(x) and 

γA(x) ≥ γB (x)) and A = B iff (A ⊆ B and B ⊆ A). 

2. Union: for every two A, B ∈ 𝜏N(Ʋ), the union of two n-CyFNSs A and B is: 

 

3. Intersection: for every two A, B ∈ ꞆN(Ʋ), the intersection of two n-CyFNSs A and B is: 

4. Complementation: for every A ∈ ꞆN(Ʋ), the complement of an n-CyFNS A is A𝓒 = {  x, γA(x), βA(x), 

αA(x)  |x ∈ Ʋ}. 

Definition 12 ([13]). 

I. If A ⊆ B & B ⊆ C then A ⊆ C. 

II. A⋃ B = B ⋃ A & A ∩ B = B∩A. 

III. (A⋃B) ⋃ C = A⋃ (B ⋃ C) & (A ∩ B) ∩C = A∩ (B ∩ C). 

IV. (A⋃B) ∩C = (A ∩ C) ⋃ (B ∩ C) & (A ∩ B) ⋃C = (A ⋃ C) ∩ (B ⋃ C). 

V. A ∩ A = A & A ⋃ A = A. 

VI. De Morgan’s Law for A & B ie, (A ⋃ B) = A𝓒 ∩ B𝓒 & (A ∩ B) = A𝓒 ⋃ B . 

A⋃B(x) = {  x, max (αA(x), αB(x)), max (βA(x), βB(x)), min (γA(x), γB(x))  |x ∈ Ʋ}.  

}.Ʋ ∈|x (x)) B(x), γA(x)), max (γB(x), βA(x)), min (βB(x), αAx, min (αA∩B(x) = {  
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Definition 13. 

 0CyN1 = {  x, 0, 1, 1  | x ∈ Ʋ} and 1CyN1 = {  x, 1, 1, 0  | x ∈ Ʋ} or, 

 0CyN2 = {  x, 0, 0, 1  | x ∈ Ʋ} and 1CyN2 = {  x, 1, 0, 0  | x ∈ Ʋ}. 

Commonly it can be denoted as 0CyN and 1CyN. 

Definition 14. An n-Cylindrical Fuzzy Neutrosophic Topology (n-CyFNT) on a non-empty set X is a 

family, , of n-cylindrical fuzzy neutrosophic sets in X which satisfies the following conditions: 

I. 0cyN, 1cyN . 

II.  . 

III. , for any arbitrary family  , i . 

The pair (X, ) is called an n-CyFNTS and any n-CyFNS belongs to is called an n-Cylindrical Fuzzy 

Neutrosophic Open Set (n-CyFNOS) and the complement of n-CyFNOS is called n-Cylindrical Fuzzy 

Neutrosophic Closed Set (n-CyFNCS) in X. Like classical topological spaces and fuzzy topological spaces, 

the family {0cyN, 1cyN} is called indiscrete n-CyFNTS and the topology containing all the n-CyFN subsets 

is called Discrete n-CyFNTs. 

Definition 15. Let (X, ) be a CyFNTS on X. Then, , a sub family of  is called an n-CyFN base 

for (X, ), if each member of  may be expressed as the union of members in . 

, a sub family of  is called a n-CyFN sub-base for (X, ), if the family of all finite intersections 

of 𝒮 forms a base for (X, ). 

3 | n-Cylindrical Fuzzy Neutrosophic Continuous Functions 

In this section we will introduce n-CyFN continuous functions and related results. 

For that, we define the positive, neutral and negative membership functions of image and pre image of a 

function in n-CyFNSs. 

Definition 16. Let X and Y be two non-empty sets and let f: X Y be a function. If A = {  x, αA(x), βA(x), 

γA(x)  |x ∈ X} is an n-CyFNS in X, then the membership functions of image of A under f, defined as: 

fαA(y) = sup{αA(x)): x ∈  is non empty 

          = 0 if . 

fβA(y) = sup{βA(x)): x ∈  }  is non empty 

         = 0 if  . 

fγA(y) = inf {γA(x)): x ∈ , ( ) is non empty 

         = 1 if  

Definition 17. Let X and Y be two non-empty sets and let f: X Y be a function. If B = {  y, αB(y), βB(y)), 

γB(y)  |y ∈ Y}, is an n-CyFNS in Y, then the membership functions of pre image of B under f are defined 

as: 
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I. αB(x) = αB(f(x)), 

II. βB(x) = βB(f(x)), 

III. γB(x) = γB(f(x)), respectively. 

Now we define the image and pre image of n-CyFNSs. 

Definition 18. Let X and Y be two non-empty sets and let f: X Y be a function. If B = {  y, αB(y), 

βB(y)), γB(y)  |y ∈ Y}, is an n-CyFNS in Y, then the pre image of Y under f is denoted by , is the 

n-CyFNS in X defined by: 

 

Similarly, if A = {  x, αA(x), βA(x), γA(x)  |x ∈ X} is an n-CyFNS in X, then the image of A under f, 

denoted by f(A), is the n-CyFNS in Y defined by f(A) = {  y, fαA(y), fβA(y), fγA(y)  |y ∈ Y}. 

It is evident that f(A) and  are n-CyFNSs and f is called n-CyFN function. 

Preposition 1. Let X and Y be two non-empty sets and let f: X Y be an n-CyFN function. 

Then 

1.  for any n-CyFN subset B of Y. 

2.  for any n-CyFN subset A of X. 

3. If are two n-CyFN subsets of  Y &  , then . 

4. If  , are two n-CyFN subsets of X & , then ( ) ( )

5. For any n-CyFN subset B of Y

6. For any n-CyFN subset A of X, . 

7.  & . 

8.  &  , if f is one-one, then . 

9. 0CyN) = 0CyN  & (1CyN) = 1CyN. 

10. f (0CyN) = 0CyN & f(1CyN) = 1CyN, if f is onto. 

Proof: 

For (1): we have {  x, αB(x), 𝑓−1 βB(x),  γB(x)  |x ∈ X}. Then  {  x,  

γB(x),  βB(x), αB(x)  |x ∈ X}  {  x, γB(f(x)) , βB(f(x)), αB(f(x))  |x ∈ X}. 

                       = . 

For (2): we have f(A) = {  y, fαA(y), fβA(y), fγA(y)  |y ∈ Y}. Then 

 = {  y, fγA(y), fβA(y), fαA(y)  |y ∈ Y} = {  y, inf γA(x), sup βA(x), sup αA(x)  |y ∈ Y} 

Now we have,  (y) = sup , z ∈  

                                            

                                          = γA(y) 

                                            inf γA(z) = fγA(y) 

( 1) ( 1) ( 1) ( 1)( ) { ,  ( ),  ( ),  ( ) | }.B B Bf B x f x f x f x x X           
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                                          = (y). 

Similarly, it follows for the other membership functions. Thus . 

For (3): we have , for any x ∈ X, αB1(x) = αB1(f(x))  αB2(f(x)) = αB2(x), 

Similarly, we can prove that  βB1(x)  βB2(x) and  γB1(x)   γB2(x). 

Hence . 

For (4): this is similar to 3. 

For (5): for any y ∈ Y, such that f(y) , f( = sup ( , z  

                                                                                    = sup , z  

                                                                                   = . 

 If f(y) = , then f(  , also f(   . Similarly, we have f . 

For (6): for any x ∈ X  =  

                                                      = sup , z ∈  

                                                       . 

Similarly, we have ) and . 

For (7): it follows immediately. 

For (8): it is evident since 7 holds. 

For (9): we have (0CyN) = (  y, 0, 0, 1  ) =  x, 0), 0), 𝑓−1(1)  =  x, 0, 0, 1  = 0CyN  1CyN) 

=  y, 1,0, 0  ) =  x, 1), 0), 0)  =  x, 1, 0, 0  = 1CyN. 

For (10): this is similar to 7. 

Now we'll look at how to define n-CyFN continuity of a function. 

Definition 19. Let (X, ) and (Y, ) be two n-cylindrical fuzzy neutrosophic topological spaces and let 

f: X Y be an n-CyFN function. Then f is said to be n-CyFN continuous if for any n-Cylindrical fuzzy 

neutrosophic subset A of X and for any neighborhood V of f[A] there exists a neighborhood U of A such 

that f[U] V. 

The following theorem gives the characterization of n-cylindrical fuzzy neutrosophic continuity. 

Theorem 1. Let (X, ) and (Y,  be two n-cylindrical fuzzy neutrosophic topological spaces and let f: 

X→Y be a function. Then the following are equivalent: 
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I. f is n-cylindrical fuzzy neutrosophic continuous. 

II. For any n-cylindrical fuzzy neutrosophic subset (n-CyFNS) A of X and for any neighborhood V of 

f[A], there exists a neighborhood U of A such that for any B U implies, f[B]  V. 

III. For any n-CyFNS A of X and for any neighborhood V of f [A], there exists a neighborhood U of A 

such that U . 

IV. For any n-CyFNS A of X and for any neighborhood V of f[A],  is a neighborhood of A. 

Proof: for equivelency of I) and II), 

Suppose f is n-cylindrical fuzzy neutrosophic continuous and A  X is n-CyFNS and V be the 

neighborhood of f[A]. Then there exist a neighborhood U of A such that f[U] V, by the definition of 

continuity. If B U, then f[B] f[U]  V. 

For equivelency of II) and III),  

Suppose II) holds. Let A X is n-CyFNS and V be the neighborhood of f[A], then there exist a 

neighborhood U of A such that for any B U, then f[B]  V, then we can write B f-1f[B] f-1[V]. 

Since B is arbitrary, III) follows. 

For equivelency of III) and IV), 

Suppose III) holds ie, for any neighborhood U of A X, A is n-CyFNS in X, U f-1[V]. By the definition 

of neighborhood, A C U, C is n-CyFNOS of X. 

But A  C  U  f-1[V]. Thus A  C f-1[V]. This implies IV) 

For equivelency of IV) and I), 

Suppose IV) holds. ie, A  C  f-1[V]; C is n-CyFNOS of X. 

Now f[C]  f(f-1[V]) this shows that f[C]  f(f-1[V])  V. Since C is open, it is a neighborhood of A. Thus 

f is n-CyFN continuous. 

Example 1. Let X = {a, b, c} and family of n-CyFN subsets of X, . 

Also Y = { p, q, r } with τy = { 1cyN , 0cyN, P, Q, R, S} and let f: (X Y, ) be a function. Also, 

A = {<a; 0.4, 0.5, 0.6>, <b; 0.6, 0.5, 0.3>, <c; 0.7, 0.5, 0.5>}, 

B = {<a; 0.7, 0.5, 0.6>, <b; 0.7, 0.6, 0.4>, <c; 0.7, 0.6, 0.6>}, 

C = {<a; 0.7, 0.5, 0.6>, <b; 0.7, 0.6, 0.3>, <c; 0.7, 0.6, 0.5>}, 

D = {<a; 0.4, 0.5, 0.6>, <b; 0.6, 0.5, 0.4>, <c; 0.7, 0.5, 0.6>}, 

P = {<p; 0.6, 0.5, 0.3>, <q; 0.4, 0.5, 0.6>, <r; 0.7, 0.5, 0.5>}, 

Q = {<p; 0.7, 0.6, 0.4>, <q; 0.7, 0.5, 0.6>, <r; 0.7, 0.6, 0.6>}, 

R = {<p; 0.7, 0.6, 0.3>, <q; 0.7, 0.5, 0.6>, <r; 0.7, 0.6, 0.5>},  

S = {<p; 0.6, 0.5, 0.4>, <q; 0.4, 0.5, 0.6>, <r; 0.7, 0.5, 0.6>}. 

Clearly (X, ) and (Y, ) are n-CyFNTS.  
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If f: (X, Y, ) is defined by f(a) = q, f(b) = p and f(c) = f(r), then f is n-CyFN continuous. 

Theorem 2. Let (X, ) and (Y, ) be two n-CyFNTS and let f: X Y is n-CyFN continuous if and only 

if for each n-CyFN open subset B of Y, we have  is an n-CyFN open subset of X. 

Proof: let f: X Y is n-CyFN continuous, then for any n-CyFNS A of X and V is a neighborhood of f[A], 

there exists a neighborhood U of A such that f[U]  V. Let B  Y be n-CyFN open in Y, then there is a 

neighborhood V of f[A] such that V  B, by iv) of Theorem 1, f-1[V] is a neighborhood of A. Since V ⊂ B 

implies f-1[V]  f-1[B]. Thus f-1[B] is a neighborhood and A is arbitrary, it follows the definition of n-CyFN 

open subset. 

Conversely suppose, A  X is n-CyFNS and V is a neighborhood of f[A]. Then, there exists an n-CyFN 

open subset C such that f[A]  C V and f-1[C] is open. Also we can write A  f-1f[A] f-1[C] f-1[V]. 

Thus f-1[V] is a neighborhood of A. hence f is n-CyFN continuous. 

Definition 20. Let (X, ) and (Y,  be two n-CyFNTS and let f: X Y is an n-CyFN function. Then  

I. f is called an n-CyFN open function if f(A) is n-CyFN open in Y for every n-CyFN open set A in X. 

II. f is called n-CyFN closed function if f(B) is n-CyFN closed in Y for every n-CyFN closed set B in X. 

Example 2. In Example 1, f is clearly an open function but not closed. 

Theorem 3. Let X be a non-empty set and let (Y, ) be an n-CyFNTS and f: X Y be a function. Then, 

there exists a coarsest n-cylindrical fuzzy neutrosophic topology  on X such that f is n-CyFN continuous. 

Proof: clearly, 

I) 0cyN, 1cyN ∈ . 

II) and III) are evident. Also from Theorem 2, f is n-CyFN continuous. 

To prove that  is the coarsest n-CyFNT on X such that the f is n-CyFN continuous. 

Suppose  is the coarsest n-CyFNT on X such that f is n-CyFN continuous. If B   , then there 

is V in  such that f-1[V] = B. But f is n-CyFN continuous with respect to . 

Then B = f-1[V]  . 

Thus    this implies τc  = . 

4 | Interior and Closure of n-Cylindrical Fuzzy Neutrosophic Sets 

We will now define the interior and closure of a set in n-CyFNTS.  

Chang gave the definition of a neighborhood of a fuzzy open set instead of a neighborhood of a point. 

Definition 21. Let A and N be two n-cylindrical fuzzy neutrosophic subsets of an n-CyFNTS. N is called 

neighborhood of A if there exists an n-CyFNOS, O such that A . 

Preposition 2. A  is n-cylindrical fuzzy neutrosophic open in (X, ) if and only if it carries a 

neighborhood of its each subset. 
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Definition 22. Let (X, ) be an n-CyFNTS and let P = {  x, αP(x), βP(x), γP(x)  |x ∈ X} is an n-CyFNS 

in X. Then the n-Cylindrical fuzzy neutrosophic interior ( ) is defined as the n-CyFN union of all 

n-CyFN open subsets of X ie, (P) =  and A }. 

Clearly (P) is the biggest n-CyFN open set that is contained by P. 

Example 3. Let X ={x, y} and  = {1cyN, 0cyN, P, Q, R, S}, where  

P = {<x; 0.4, 0.5, 0.8>, <y; 0.3, 0.5, 0.3>}, Q = {<x; 0.5, 0.5, 0.3>, <y; 0.5, 0.5, 0.9>}, 

R = {<x; 0.5, 0.5, 0.3>, <y; 0.5, 0.5, 0.3>},  S = {<x; 0.4, 0.5, 0.8>, <y; 0.3, 0.5, 0.9>}. 

Clearly (X,  ) is an n-CyFNTS. 

Let G = {<x; 0.5, 0.5, 0.2 >, <y; 0.5, 0.5, 0.2>}, Clearly (G) = R. 

Theorem 4. Let (X, ) be an n-CyFNTS and G  X. G is an n-CyFN open set if and only if G = 

(G).  

Proof: if G is an n-CyFN open set, then the largest n-CyFN open set contained by G is (G). Hence 

G = (G).  

Conversely, (G) is an n-CyFN open set and, if G = (G) then G is n-CyFN open set. 

Theorem 5. Let (X, ) be an n-CyFNTS and G, H  X. Then, 

I. ( (G)) = (G). 

II. G  H ⟹ (G)  ⊆ (H).   

III. (G)  (H) = (G H). 

IV. (G)  (H) ⊆ (G  H). 

Proof: 

I. Let (G) =  A. Then A∈  if and only if A = (A), therefore, (G) = ( (G)). 

II. Let G H. From the definition of n-CyFN interior, 𝑖𝑛𝑡𝐶𝑦𝑁(G)  G and (H)  H. Also (H) 

is the largest n-CyFN open set contained by H. Hence G H (G)  (H).   

III. By the definition of n-CyFN interior, (G)  G and (H)  H. Then (G) (H) 

 G ∩ H. But 𝑖𝑛𝑡𝐶𝑦𝑁(G  H) is the largest open set contained by G  H, then (G) (H) 

 (G∩ H).                                                                                                (1) 

On the other hand, G  H ⊆ G and G  H ⊆ H then 𝑖𝑛𝑡𝐶𝑦𝑁 (G H) (G) and  (G  H)  

(H), and (G  H)  (G) (H).                                                      (2) 

From (1) and (2), the result follows. 

IV. We have (G)  G and (H)  H. Then (G) (H)  (G  H). But  (G  

H) is the largest open set contained by G  H. Hence, (G)  (H)  (G ∪ H). 

Definition 23. Let (X, ) be an n-CyFNTS and let P = {  x, αP(x), βP(x), γP(x)  |x ∈ X} is an n-CyFNS 

in X. Then the n-Cylindrical fuzzy neutrosophic closure ( ) of P.  
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ie, (P) =  {B: B is an n-CyFNCS in X and }. 

It is to be noted that, (P) is the smallest closed set that contains P. 

Example 4. From Example 3, 

The set of closed sets of  is denoted as  = {{1cyN, 0cyN, , } 

 = {<x; 0.8, 0.5, 0.4>, <y; 0.3, 0.5, 0.3>},  = {<x; 0.3, 0.5, 0.5>, <y; 0.9, 0.5, 0.5>}, 

 = {<x; 0.3, 0.5, 0.5>, <y; 0.3, 0.5, 0.5>},  = {<x; 0.8, 0.5, 0.4>, <y; 0.9, 0.5, 0.3>}, 

Let H = {<x; 0.2, 0.5, 0.5 >, <y; 0.2, 0.5, 0.5>}, Clearly (H) = . 

Theorem 6. Let (X, ) be an n-CyFNTS and H X. H is an n-CyFN closed set if and only if H = (H).  

Proof: the proof is obvious. 

Theorem 7. Let (X, τX) be an n-CyFNTS and H ⊆X. Then 𝑖𝑛𝑡𝐶𝑦𝑁(H) ⊆ 𝐻 ⊆  𝑐𝑙𝐶𝑦𝑁(H). 

Proof: from the definition of n-CyFN interior, it is clear that (H) is the largest n-CyFN open set 

contained by H. Hence (H) . 

Also from the definition of n-CyFN closure, (H) is the smallest closed set that contains H. Therefore 

(H).  

Hence proved. 

Theorem 8. Let (X, τX) be an n-CyFNTS and G, H ⊆ X. Then, 

I. ( (H)) = (H). 

II. G H (G) ⊆ (H).   

III. (G∩H) ⊆ (G) ∩ (H). 

IV. (G) ∪ (H) = (G∪H). 

V. = . 

Proof: 

I. Let (H) = K. Then K is an n-CyFN closed set. Then K = (K) Hence ( (H)) = (H). 

II. Let G H. From the definition of n-CyFN closure, G ⊆ G) and H  H). Also (H) is the 

smallest n-CyFN closed set that contains H. Hence G H (G) ⊆ (H).   

III. G) and H) are n-CyFN closed sets. So G)  is an n-CyFN closed set. By the 

definition of n-CyFN closure, (G) and H (H). Then G H⊆ (G)  (H). But 

(G H) is the smallest closed set that contains G H, then (G∩H) ⊆ (G)  ∩ (H). 

IV. We have (G) and (H), then G H (G) (H). 

But G H) is the smallest closed set that contains G H. Therefore G H) (G)

(H).  

Conversely, (G) G H) and (H) G H). Then 𝑐𝑙𝐶𝑦𝑁(G) ∪  𝑐𝑙𝐶𝑦𝑁(H) 

⊆ 𝑐𝑙𝐶𝑦𝑁(G∪H).Hence the result holds. 
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V. If we take the basic definition of n-CyFN closure and n-CyFN interior, we get, = ( , 

H  and ∈ . 

But ( = . 

Theorem 9. Let (X, ) and (Y,  be two n-CyFNTS and let f: X Y is an n-CyFN function. Then 

I. f is n-CyFN open function if f( )  for each n-CyFN set G over X.  

II. f is n-CyFN closed function if (f(H))  f( , for each n-CyFN set H over X. 

Proof: straight forward. 

Definition 24. Let (X, ) and (Y, ) be two n-CyFNTS and let f: X Y is an n-CyFN function. Then 

f is n-CyFN homeomorphism if: 

I. f is a bijection. 

II. f is n-CyFN continuous. 

III. Inverse of f, f-1 is also n-CyFN continuous. 

Example 5. Let X = {a, b, c, d}. Now consider the n-CyFN subsets I, J, K, L of X as 

I = {<a; 0.4, 0.5, 0.6>, <b; 0.6, 0.5, 0.3>, <c; 0.7, 0.5, 0.5>, <d; 0.7, 0.5, 0.6>}, 

J = {<a; 0.7, 0.5, 0.6>, <b; 0.6, 0.5, 0.3>, <c; 0.7, 0.5, 0.5>, <d; 0.4, 0.5, 0.6>}, 

K = {<a; 0.7, 0.5, 0.6>, <b; 0.6, 0.5, 0.3>, <c; 0.7, 0.5, 0.5>, <d; 0.7, 0.5, 0.6>}, 

L = {<a; 0.4, 0.5, 0.6>, <b; 0.6, 0.5, 0.3>, <c; 0.7, 0.5, 0.5>, <d; 0.4, 0.5, 0.6>}. 

Let  = {0cyN, 1cyN,  I,  J, K, L}. Then (X, ) is an n-CyFNTS. Consider : X X defined by (a) = d, 

(b) = b, (c) = c and (d) = a. Clearly  is an n-CyFN homeomorphism. 

Theorem 10. Let (X, ) and (Y, ) be two n-CyFNTS and let f: X Y is an n-CyFN function. Then 

the following conditions are equivalent. 

I. f is f is n-CyFN homeomorphism. 

II. f is n-CyFN continuous and n-CyFN open. 

III. f is n-CyFN continuous and n-CyFN closed. 

Proof: from the definition and properties of n-CyFN continuous function, n-CyFN interior and n-CyFN 

closure, it follows. 

5 | Conclusion 

n-Cylindrical fuzzy neutrosophic sets are the latest extension of neutrosophic sets in which I as an 

independent neutrosophic component. In our previous work we defined the topological space in n-

CyFNS context. So far, we have introduced n-CyFN base, n-CyFN subbase and related theorems. 

Through this paper our aim is to extend the important concepts like continuity, interiors, closure and 

related theorems to n-cylindrical fuzzy neutrosophic environment. Here, we define the membership 

functions of an image and its pre image in n-CyFNSs. Using this concept, we then introduced the n-

Cylindrical fuzzy neutrosophic continuity of a function defined between two n-CyFNTS. In addition, 

we present some fundamental results related to this concept, as well as a characterization of the n-

Cylindrical fuzzy neutrosophic continuity. Also defined are the n-Cylindrical fuzzy neutrosophic interior 
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and n-Cylindrical fuzzy neutrosophic closure of n-CyFN subsets of n-CyFNTS. We examine some 

properties based on these concepts. The concept of n-CyFN open function, n-CyFN closed function and 

n-CyFN homeomorphism are also presented. To that extent, the study sheds more light on the subject, 

allowing for further investigation in other important concepts of topology like compactness, 

connectedness, separation axioms etc. 
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