Document Type : Research Paper


1 Department of Mathematics, Ganesh Dutt College, Begusarai, Bihar, India.

2 Department of Mathematics, Lalit Narayan Mithila University, Darbhanga, India.


Picture Fuzzy Sets (PFSs) are expanded to include Intuitionistic Fuzzy Sets (IFSs), with the extra advantage of avoiding underlying limitations. PFS based models may be adequate in situations when we face opinions involving more answer of types: yes, abstain and no. In this paper, the concepts of semi-prime ideals of PFS are explained. We also discussed how to construct picture fuzzy regular and intra-regular ideals and represents certain fundamental facts.


Main Subjects

Adak, A. K., Bhowmik, M., & Pal, M. (2012). Interval cut-set of generalized interval-valued intuitionistic fuzzy sets. International journal of fuzzy system applications (IJFSA)2(3), 35-50.
Adak , A. K., Bhowmik, M., & Pal, M., (2013). Distributive lattice over intuitionistic fuzzy matrices. The journal of fuzzy mathematics, 21(2), 401-416.
Manna, D., & Adak, A. K. (2016). Interval-valued intuitionistic fuzzy r-subgroup of near-rings. Journal of fuzzy mathematics, 24(4), 985-994.
Adak, A. K., & Darvishi Salokolaei, D. (2019). Some properties of pythagorean fuzzy ideal of near-rings. International journal of applied operational research-an open access journal9(3), 1-9.
Adak, A. K. (2020). Interval-valued intuitionistic fuzzy subnear rings. In Handbook of research on emerging applications of fuzzy algebraic structures(pp. 213-224). IGI Global.
Adak, A. K., & Salokolaei, D. D. (2021). Some properties rough pythagorean fuzzy sets. Fuzzy information and engineering (IEEE), 13(4), 420-435.
Adak, A. K. (2022). Characterization of pythagorean q-fuzzy ideal of near-ring. In Handbook of research on advances and applications of fuzzy sets and logic(pp. 229-242). IGI Global.
Adak, A. K., & Kumar, D. (2022). Some properties of pythagorean fuzzy ideals of Γ-near-rings. Palestine journal of mathematics, 11(4), 336-346.
Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20, 87-96.
Biswas, R. (1990). Fuzzy subgroups and anti fuzzy subgroups. Fuzzy sets and systems35(1), 121-124.
Ebrahimnejad, A., Adak, A. K., & Jamkhaneh, E. B. (2019). Eigenvalue of intuitionistic fuzzy matrices over distributive lattice.International journal of fuzzy system applications (IJFSA)8(1), 1-18.
Y. B., Kim, K. H., & Yon, Y. H. (1999). Intuitionistic fuzzy ideals of near-rings. Journal of institute of mathematical and computer science, 12(3), 221-228.
K. H.,& Jun, Y. B. (2002). Intuitionistic fuzzy ideals of semigroups. Indian journal
 pure appl math, 33(4), 443-449.
Kim, K. H., & Jun,Y. B. (2001). Intuitionistic fuzzy interior ideals of semigroups. International journal of mathematics and mathematical sciencessci, 27(5), 261-267.
Kim, K. H., & LEE, J. G. (2005). On intuitionistic fuzzy bi-ideals of semigroups. Turkish journal of mathematics, 29(2), 201-210.
Kuroki, N. (1981). On fuzzy ideals and fuzzy bi-ideals in semigroups. Fuzzy sets and systems, 5(2), 203-215.
Kuroki, N. (1982). Fuzzy semiprime ideals in semigroups. Fuzzy sets and systems, 8(1), 71-79.
Sardar, S. K., Majumder , S. K., & M. Mandal, M. (2011). Atanassov's intuitionistic fuzzy ideals of gamma-semigroups. International journal of algebra, 5(7), 335-353.
Sen, M. K., & Saha, N. K. (1986). On  Γ-semigroup I. Bulletin of the calcutta mathematical society, 78(3), 180–186.
Xie, X. Y., & Yan, F. (2005). Fuzzy ideals extenstions of ordered semigroups. Lobachevskii journal of mathematics19, 29-40.
Zadeh,L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
Adak, A. K., Kumar, G., & Bhowmik, (2023). Pythagorean fuzzy semi-prime ideals of ordered semi-groups. International journal of computer applications, 185(5), 4-10.
Cuong, B. C. (2014). Picture fuzzy sets. Journal of computer science and cybernetics30(4), 409-409